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Overview

• Use Java RMI [1–3]

• Implement a RMI server for chat
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Events and Model-View-Controler

• Many UIs are designed according to the Model-View-Controller (or
Model-Delegate) pattern [4–7]
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Events and Model-View-Controler

• Many UIs are designed according to the Model-View-Controller (or
Model-Delegate) pattern [4–7]

• Some underlying process or model manages a state

• Views display the state of the model

• Views are updated by receiving events

• Events usually encapsulated in objects

• Views implement certain callback interfaces, i.e., have methods that
can process events

• Java is full of this, just google for ActionListener , MouseListener ,
TableModelListener , VetoableChangeListener , . . .
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RMI Callbacks

• RMI is a technology for building distributed applications
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RMI Callbacks

• RMI is a technology for building distributed applications

• A server object is registered in a naming service
( java.rmi.registry.Registry )

• Object functionality is provided via interfaces

• The server side implements the functionality with a ‘real’ class

• The client side automatically creates a proxy instance of the object
that forwards all calls to the server

• In Java RMI, we can also create callback objects

• These inherit from java.rmi.server.UnicastRemoteObject and

implement a callback interface derived from java.rmi.Remote

• They can be passed to an RMI server without needing to be
registered in a registry

• −→ We can have distributed callbacks, and therefore: distributed
model-view-controler application structures
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Callbacks for Chat!

• With this, we can implement a chat system!
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Callbacks for Chat!

• With this, we can implement a chat system!

• Server:
• central instance distributing chat events
• provides methods to login, log out, and to send messages
• maintains a list of logged in clients and corresponding callback

interfaces

• Client
• uses server to log in, log out, and to send message
• registeres a callback interface at log in
• client receives events from server and updates ui
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Chat Program
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Chat Program

• For this homework, the following things have been done:
• The functionality of a chat server has been defined in interface

IChatServer

• The client callback interface has been defined in IChatClient

• A chat client GUI that can connect to a chat server implementation
has fully been implemented in ChatClient

• An event class for chat events has been defined in ChatEvent

• A skeleton class for the chat server, but no functionality is provided in
ChatServer

• What remains to be done is:
• Fill the chat server ChatServer with life!

• Follow the comments in ChatServer and IChatServer !
• Start the server, connect some clients to the server, chat. . .

• Send me your complete Eclipse project folder packed as zip archive
with name hw04_[your_student_id].zip (where [your_student_id] is

replaced with your student id)
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Caspar David Friedrich, “Der Wanderer über dem Nebelmeer”, 1818
http://en.wikipedia.org/wiki/Wanderer_above_the_Sea_of_Fog

谢谢谢谢谢谢
Thank you

Thomas Weise [汤卫思]
tweise@hfuu.edu.cn

http://www.it-weise.de
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Shushan District, Hefei, Anhui,
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