
Distributed Computing
Homework 4: RMI-based Chat

Thomas Weise · 汤卫思

tweise@hfuu.edu.cn · http://www.it-weise.de

Hefei University, South Campus 2 合肥学院 南艳湖校区/南2区
Faculty of Computer Science and Technology 计算机科学与技术系

Institute of Applied Optimization 应用优化研究所

230601 Shushan District, Hefei, Anhui, China 中国 安徽省 合肥市 蜀山区 230601
Econ. & Tech. Devel. Zone, Jinxiu Dadao 99 经济技术开发区 锦绣大道99号

mailto:tweise@hfuu.edu.cn
http://www.it-weise.de

Outline

1 RMI Chat

2 Homework

Distributed Computing Thomas Weise 2/10

w
e
b
s
it
e

Overview

• Use Java RMI [1–3]

• Implement a RMI server for chat

Distributed Computing Thomas Weise 3/10

Events and Model-View-Controler

• Many UIs are designed according to the Model-View-Controller (or
Model-Delegate) pattern [4–7]

Distributed Computing Thomas Weise 4/10

Events and Model-View-Controler

• Many UIs are designed according to the Model-View-Controller (or
Model-Delegate) pattern [4–7]

• Some underlying process or model manages a state

Distributed Computing Thomas Weise 4/10

Events and Model-View-Controler

• Many UIs are designed according to the Model-View-Controller (or
Model-Delegate) pattern [4–7]

• Some underlying process or model manages a state

• Views display the state of the model

Distributed Computing Thomas Weise 4/10

Events and Model-View-Controler

• Many UIs are designed according to the Model-View-Controller (or
Model-Delegate) pattern [4–7]

• Some underlying process or model manages a state

• Views display the state of the model

• Views are updated by receiving events

Distributed Computing Thomas Weise 4/10

Events and Model-View-Controler

• Many UIs are designed according to the Model-View-Controller (or
Model-Delegate) pattern [4–7]

• Some underlying process or model manages a state

• Views display the state of the model

• Views are updated by receiving events

• Events usually encapsulated in objects

Distributed Computing Thomas Weise 4/10

Events and Model-View-Controler

• Many UIs are designed according to the Model-View-Controller (or
Model-Delegate) pattern [4–7]

• Some underlying process or model manages a state

• Views display the state of the model

• Views are updated by receiving events

• Events usually encapsulated in objects

• Views implement certain callback interfaces, i.e., have methods that
can process events

Distributed Computing Thomas Weise 4/10

Events and Model-View-Controler

• Many UIs are designed according to the Model-View-Controller (or
Model-Delegate) pattern [4–7]

• Some underlying process or model manages a state

• Views display the state of the model

• Views are updated by receiving events

• Events usually encapsulated in objects

• Views implement certain callback interfaces, i.e., have methods that
can process events

• Java is full of this, just google for ActionListener , MouseListener ,
TableModelListener , VetoableChangeListener , . . .

Distributed Computing Thomas Weise 4/10

RMI Callbacks

• RMI is a technology for building distributed applications

Distributed Computing Thomas Weise 5/10

RMI Callbacks

• RMI is a technology for building distributed applications

• A server object is registered in a naming service
(java.rmi.registry.Registry)

Distributed Computing Thomas Weise 5/10

RMI Callbacks

• RMI is a technology for building distributed applications

• A server object is registered in a naming service
(java.rmi.registry.Registry)

• Object functionality is provided via interfaces

Distributed Computing Thomas Weise 5/10

RMI Callbacks

• RMI is a technology for building distributed applications

• A server object is registered in a naming service
(java.rmi.registry.Registry)

• Object functionality is provided via interfaces

• The server side implements the functionality with a ‘real’ class

Distributed Computing Thomas Weise 5/10

RMI Callbacks

• RMI is a technology for building distributed applications

• A server object is registered in a naming service
(java.rmi.registry.Registry)

• Object functionality is provided via interfaces

• The server side implements the functionality with a ‘real’ class

• The client side automatically creates a proxy instance of the object
that forwards all calls to the server

Distributed Computing Thomas Weise 5/10

RMI Callbacks

• RMI is a technology for building distributed applications

• A server object is registered in a naming service
(java.rmi.registry.Registry)

• Object functionality is provided via interfaces

• The server side implements the functionality with a ‘real’ class

• The client side automatically creates a proxy instance of the object
that forwards all calls to the server

• In Java RMI, we can also create callback objects

Distributed Computing Thomas Weise 5/10

RMI Callbacks

• RMI is a technology for building distributed applications

• A server object is registered in a naming service
(java.rmi.registry.Registry)

• Object functionality is provided via interfaces

• The server side implements the functionality with a ‘real’ class

• The client side automatically creates a proxy instance of the object
that forwards all calls to the server

• In Java RMI, we can also create callback objects

• These inherit from java.rmi.server.UnicastRemoteObject and

implement a callback interface derived from java.rmi.Remote

Distributed Computing Thomas Weise 5/10

RMI Callbacks

• RMI is a technology for building distributed applications

• A server object is registered in a naming service
(java.rmi.registry.Registry)

• Object functionality is provided via interfaces

• The server side implements the functionality with a ‘real’ class

• The client side automatically creates a proxy instance of the object
that forwards all calls to the server

• In Java RMI, we can also create callback objects

• These inherit from java.rmi.server.UnicastRemoteObject and

implement a callback interface derived from java.rmi.Remote

• They can be passed to an RMI server without needing to be
registered in a registry

Distributed Computing Thomas Weise 5/10

RMI Callbacks

• RMI is a technology for building distributed applications

• A server object is registered in a naming service
(java.rmi.registry.Registry)

• Object functionality is provided via interfaces

• The server side implements the functionality with a ‘real’ class

• The client side automatically creates a proxy instance of the object
that forwards all calls to the server

• In Java RMI, we can also create callback objects

• These inherit from java.rmi.server.UnicastRemoteObject and

implement a callback interface derived from java.rmi.Remote

• They can be passed to an RMI server without needing to be
registered in a registry

• −→ We can have distributed callbacks

Distributed Computing Thomas Weise 5/10

RMI Callbacks

• RMI is a technology for building distributed applications

• A server object is registered in a naming service
(java.rmi.registry.Registry)

• Object functionality is provided via interfaces

• The server side implements the functionality with a ‘real’ class

• The client side automatically creates a proxy instance of the object
that forwards all calls to the server

• In Java RMI, we can also create callback objects

• These inherit from java.rmi.server.UnicastRemoteObject and

implement a callback interface derived from java.rmi.Remote

• They can be passed to an RMI server without needing to be
registered in a registry

• −→ We can have distributed callbacks, and therefore: distributed
model-view-controler application structures

Distributed Computing Thomas Weise 5/10

Callbacks for Chat!

• With this, we can implement a chat system!

Distributed Computing Thomas Weise 6/10

Callbacks for Chat!

• With this, we can implement a chat system!

• Server

Distributed Computing Thomas Weise 6/10

Callbacks for Chat!

• With this, we can implement a chat system!

• Server:
• central instance distributing chat events

Distributed Computing Thomas Weise 6/10

Callbacks for Chat!

• With this, we can implement a chat system!

• Server:
• central instance distributing chat events
• provides methods to login, log out, and to send messages

Distributed Computing Thomas Weise 6/10

Callbacks for Chat!

• With this, we can implement a chat system!

• Server:
• central instance distributing chat events
• provides methods to login, log out, and to send messages
• maintains a list of logged in clients

Distributed Computing Thomas Weise 6/10

Callbacks for Chat!

• With this, we can implement a chat system!

• Server:
• central instance distributing chat events
• provides methods to login, log out, and to send messages
• maintains a list of logged in clients

• Client

Distributed Computing Thomas Weise 6/10

Callbacks for Chat!

• With this, we can implement a chat system!

• Server:
• central instance distributing chat events
• provides methods to login, log out, and to send messages
• maintains a list of logged in clients

• Client
• uses server to log in, log out, and to send message

Distributed Computing Thomas Weise 6/10

Callbacks for Chat!

• With this, we can implement a chat system!

• Server:
• central instance distributing chat events
• provides methods to login, log out, and to send messages
• maintains a list of logged in clients and corresponding callback

interfaces

• Client
• uses server to log in, log out, and to send message
• registeres a callback interface at log in

Distributed Computing Thomas Weise 6/10

Callbacks for Chat!

• With this, we can implement a chat system!

• Server:
• central instance distributing chat events
• provides methods to login, log out, and to send messages
• maintains a list of logged in clients and corresponding callback

interfaces

• Client
• uses server to log in, log out, and to send message
• registeres a callback interface at log in
• client receives events from server and updates ui

Distributed Computing Thomas Weise 6/10

Chat Program

• For this homework, the following things have been done

Distributed Computing Thomas Weise 7/10

Chat Program

• For this homework, the following things have been done:
• The functionality of a chat server has been defined in interface

IChatServer

Distributed Computing Thomas Weise 7/10

Chat Program

• For this homework, the following things have been done:
• The functionality of a chat server has been defined in interface

IChatServer

• The client callback interface has been defined in IChatClient

Distributed Computing Thomas Weise 7/10

Chat Program

• For this homework, the following things have been done:
• The functionality of a chat server has been defined in interface

IChatServer

• The client callback interface has been defined in IChatClient

• A chat client GUI that can connect to a chat server implementation
has fully been implemented in ChatClient

Distributed Computing Thomas Weise 7/10

Chat Program

• For this homework, the following things have been done:
• The functionality of a chat server has been defined in interface

IChatServer

• The client callback interface has been defined in IChatClient

• A chat client GUI that can connect to a chat server implementation
has fully been implemented in ChatClient

• An event class for chat events has been defined in ChatEvent

Distributed Computing Thomas Weise 7/10

Chat Program

• For this homework, the following things have been done:
• The functionality of a chat server has been defined in interface

IChatServer

• The client callback interface has been defined in IChatClient

• A chat client GUI that can connect to a chat server implementation
has fully been implemented in ChatClient

• An event class for chat events has been defined in ChatEvent

• A skeleton class for the chat server, but no functionality is provided in
ChatServer

Distributed Computing Thomas Weise 7/10

Chat Program

• For this homework, the following things have been done:
• The functionality of a chat server has been defined in interface

IChatServer

• The client callback interface has been defined in IChatClient

• A chat client GUI that can connect to a chat server implementation
has fully been implemented in ChatClient

• An event class for chat events has been defined in ChatEvent

• A skeleton class for the chat server, but no functionality is provided in
ChatServer

• What remains to be done is

Distributed Computing Thomas Weise 7/10

Chat Program

• For this homework, the following things have been done:
• The functionality of a chat server has been defined in interface

IChatServer

• The client callback interface has been defined in IChatClient

• A chat client GUI that can connect to a chat server implementation
has fully been implemented in ChatClient

• An event class for chat events has been defined in ChatEvent

• A skeleton class for the chat server, but no functionality is provided in
ChatServer

• What remains to be done is:
• Fill the chat server ChatServer with life!

Distributed Computing Thomas Weise 7/10

Chat Program

• For this homework, the following things have been done:
• The functionality of a chat server has been defined in interface

IChatServer

• The client callback interface has been defined in IChatClient

• A chat client GUI that can connect to a chat server implementation
has fully been implemented in ChatClient

• An event class for chat events has been defined in ChatEvent

• A skeleton class for the chat server, but no functionality is provided in
ChatServer

• What remains to be done is:
• Fill the chat server ChatServer with life!

• Follow the comments in ChatServer and IChatServer !

Distributed Computing Thomas Weise 7/10

Chat Program

• For this homework, the following things have been done:
• The functionality of a chat server has been defined in interface

IChatServer

• The client callback interface has been defined in IChatClient

• A chat client GUI that can connect to a chat server implementation
has fully been implemented in ChatClient

• An event class for chat events has been defined in ChatEvent

• A skeleton class for the chat server, but no functionality is provided in
ChatServer

• What remains to be done is:
• Fill the chat server ChatServer with life!

• Follow the comments in ChatServer and IChatServer !
• Start the server

Distributed Computing Thomas Weise 7/10

Chat Program

• For this homework, the following things have been done:
• The functionality of a chat server has been defined in interface

IChatServer

• The client callback interface has been defined in IChatClient

• A chat client GUI that can connect to a chat server implementation
has fully been implemented in ChatClient

• An event class for chat events has been defined in ChatEvent

• A skeleton class for the chat server, but no functionality is provided in
ChatServer

• What remains to be done is:
• Fill the chat server ChatServer with life!

• Follow the comments in ChatServer and IChatServer !
• Start the server, connect some clients to the server

Distributed Computing Thomas Weise 7/10

Chat Program

• For this homework, the following things have been done:
• The functionality of a chat server has been defined in interface

IChatServer

• The client callback interface has been defined in IChatClient

• A chat client GUI that can connect to a chat server implementation
has fully been implemented in ChatClient

• An event class for chat events has been defined in ChatEvent

• A skeleton class for the chat server, but no functionality is provided in
ChatServer

• What remains to be done is:
• Fill the chat server ChatServer with life!

• Follow the comments in ChatServer and IChatServer !
• Start the server, connect some clients to the server, chat. . .

Distributed Computing Thomas Weise 7/10

Chat Program

• For this homework, the following things have been done:
• The functionality of a chat server has been defined in interface

IChatServer

• The client callback interface has been defined in IChatClient

• A chat client GUI that can connect to a chat server implementation
has fully been implemented in ChatClient

• An event class for chat events has been defined in ChatEvent

• A skeleton class for the chat server, but no functionality is provided in
ChatServer

• What remains to be done is:
• Fill the chat server ChatServer with life!

• Follow the comments in ChatServer and IChatServer !
• Start the server, connect some clients to the server, chat. . .

• Send me your complete Eclipse project folder packed as zip archive
with name hw04_[your_student_id].zip (where [your_student_id] is

replaced with your student id)

Distributed Computing Thomas Weise 7/10

Caspar David Friedrich, “Der Wanderer über dem Nebelmeer”, 1818
http://en.wikipedia.org/wiki/Wanderer_above_the_Sea_of_Fog

谢谢谢谢谢谢
Thank you

Thomas Weise [汤卫思]
tweise@hfuu.edu.cn

http://www.it-weise.de

Hefei University, South Campus 2
Institute of Applied Optimization
Shushan District, Hefei, Anhui,

China

Distributed Computing Thomas Weise 8/10

mailto:tweise@hfuu.edu.cn
mailto:http://www.it-weise.de

Bibliography

Distributed Computing Thomas Weise 9/10

Bibliography I

1. Ann Wollrath, Roger Riggs, and Jim Waldo. A distributed object model for the java system. In Douglas C. Schmidt and
Doug Lea, editors, Proceedings of the USENIX 1996 Conference on Object-Oriented Technologies (COOTS), Toronto, ON,
Canada, 1996. URL http://pdos.csail.mit.edu/6.824/papers/waldo-rmi.pdf.

2. William Grosso. Java RMI. Sebastopol, CA, USA: O’Reilly Media, Inc., 2011. ISBN 1449315356 and 9781449315351. URL
http://books.google.de/books?id=TeK5uL2dWwQC.

3. Josef Stepisnik. Distributed Object-Oriented Architectures: Sockets, Java RMI and CORBA. Hamburg, Germany: Diplomica
Verlag GmbH, 2007. ISBN 3836650339 and 9783836650335. URL http://books.google.de/books?id=qNGTzYdJt18C.

4. William Crawford and Jonathan Kaplan. J2EE Design Patterns. Patterns of the Real World. Sebastopol, CA, USA: O’Reilly
Media, Inc., 2003. ISBN 0596004273 and 9780596004279. URL http://books.google.de/books?id=x-7_W0P9KGsC.

5. Barbara Purchase and Steven Holzner. Design Patterns for Dummies. For Dummies Computers Series. New York, NY, USA:
John Wiley & Sons Ltd., 2006. ISBN 0471798541 and 9780471798545. URL
http://books.google.de/books?id=6rZbzSbKsQMC.

6. Robert T. Monroe, Andrew Kompanek, Ralph Melton, and David Garlan. Architectural styles, design patterns, and objects.
IEEE Software Magazine, 14(1):43–52, January–February 1997. doi: 10.1109/52.566427. URL
http://www.cs.cmu.edu/~able/publications/ObjPatternsArch-ieee97/.

7. Frank Buschmann, Regine Meunier, Hand Rohnert, Peter Sommerlad, and Michael Stal. Pattern-Oriented Software
Architecture, Volume 1: A System of Patterns. New York, NY, USA: John Wiley & Sons Ltd., August 8, 1996. ISBN
047-1958-697 and 978-0471958697. URL http://books.google.de/books?id=0kUFZDuqvmEC.

Distributed Computing Thomas Weise 10/10

http://pdos.csail.mit.edu/6.824/papers/waldo-rmi.pdf
http://books.google.de/books?id=TeK5uL2dWwQC
http://books.google.de/books?id=qNGTzYdJt18C
http://books.google.de/books?id=x-7_W0P9KGsC
http://books.google.de/books?id=6rZbzSbKsQMC
http://www.cs.cmu.edu/~able/publications/ObjPatternsArch-ieee97/
http://books.google.de/books?id=0kUFZDuqvmEC

	Outline
	Overview
	RMI Chat
	Events and Model-View-Controler
	RMI Callbacks
	Callbacks for Chat!

	Homework
	Chat Program

	Presentation End
	Bibliography

