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Overview

• Use sockets in Java

• Implement communication for a distributed game
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Battleship

• Battleship [1, 2] is a simple game for two players
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Battleship

• Battleship [1, 2] is a simple game for two players

• Usually played with pen and paper
• Each player has a play field divided into a grid of cells drawn on her

paper, hidden to the other player
• Hidden to the other player, she places ships of different sizes on her grid
• Each player’s grid has the same size, the same number of ships is placed
• Players take turns in “firing” on the other player’s grid (“I shoot at cell

(3,2)!”)
• After each shot, the other player announces success or failure: “You hit

one of my ships!” or “You missed.”
• Each cell can be fired at at most 1 time
• If all cells of a ship have been hit, the ship sinks
• If all ships of a player have been sunken, she loses
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Distributed Battleship

• Instead of pad & pen, let’s use computers
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• I provide a simple implementation in Java of all the necessary stuff
except communication:

• A simple game engine ( BattleshipModel ) which updates

• a GUI ( BattleshipView ) by creating

• events ( BattleshipModelEvent ) to which

• listeners ( IBattleshipModelListener ) can register.

• A main ( Main ) program for starting the game

• A skeleton class ( Communicator ) where you can introduce the
communication.

• You know how to do communication: Use sockets [3–6]! (either
TCP [7, 8] or UDP [7])

• You do not need to do (touch, read) anything else, only class
Communicator !
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Task

• Fill the class Communicator with code that allows us to play
Battleship over a network connection!
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• You can choose the protocol (e.g., TCP or UDP) you want to use and
how the connection should work

• In the class, some parts are marked with TODO

• Read the comments on these parts and fill in code accordingly

• The connection must be established by code being added to the
method void start(int ownPort, String enemyHost, int enemyPort)

which receives the connection parameters from the GUI

• The message-receiving code should be put into the method
void run()

• The other methods should be used/implemented according to the
comments therein
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Result

• Send me a zip archive named hw01_[your_student_id].zip (where

[your_student_id] is replaced with your student id) containing the

complete Eclipse project, including the src and bin folder with,
with all the code of this project and your modifications of it.
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Caspar David Friedrich, “Der Wanderer über dem Nebelmeer”, 1818
http://en.wikipedia.org/wiki/Wanderer_above_the_Sea_of_Fog
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