
Distributed Computing
Homework 1: Battleship Game

Thomas Weise · 汤卫思

tweise@hfuu.edu.cn · http://www.it-weise.de

Hefei University, South Campus 2 合肥学院 南艳湖校区/南2区
Faculty of Computer Science and Technology 计算机科学与技术系

Institute of Applied Optimization 应用优化研究所

230601 Shushan District, Hefei, Anhui, China 中国 安徽省 合肥市 蜀山区 230601
Econ. & Tech. Devel. Zone, Jinxiu Dadao 99 经济技术开发区 锦绣大道99号

mailto:tweise@hfuu.edu.cn
http://www.it-weise.de

Outline

1 Battleship

2 Task

Distributed Computing Thomas Weise 2/10

w
e
b
s
it
e

Overview

• Use sockets in Java

• Implement communication for a distributed game

Distributed Computing Thomas Weise 3/10

Battleship

• Battleship [1, 2] is a simple game for two players

Distributed Computing Thomas Weise 4/10

Battleship

• Battleship [1, 2] is a simple game for two players

• Usually played with pen and paper
• Each player has a play field divided into a grid of cells drawn on her

paper, hidden to the other player

Distributed Computing Thomas Weise 4/10

Battleship

• Battleship [1, 2] is a simple game for two players

• Usually played with pen and paper
• Each player has a play field divided into a grid of cells drawn on her

paper, hidden to the other player
• Hidden to the other player, she places ships of different sizes on her grid

Distributed Computing Thomas Weise 4/10

Battleship

• Battleship [1, 2] is a simple game for two players

• Usually played with pen and paper
• Each player has a play field divided into a grid of cells drawn on her

paper, hidden to the other player
• Hidden to the other player, she places ships of different sizes on her grid
• Each player’s grid has the same size, the same number of ships is placed

Distributed Computing Thomas Weise 4/10

Battleship

• Battleship [1, 2] is a simple game for two players

• Usually played with pen and paper
• Each player has a play field divided into a grid of cells drawn on her

paper, hidden to the other player
• Hidden to the other player, she places ships of different sizes on her grid
• Each player’s grid has the same size, the same number of ships is placed
• Players take turns in “firing” on the other player’s grid (“I shoot at cell

(3,2)!”)

Distributed Computing Thomas Weise 4/10

Battleship

• Battleship [1, 2] is a simple game for two players

• Usually played with pen and paper
• Each player has a play field divided into a grid of cells drawn on her

paper, hidden to the other player
• Hidden to the other player, she places ships of different sizes on her grid
• Each player’s grid has the same size, the same number of ships is placed
• Players take turns in “firing” on the other player’s grid (“I shoot at cell

(3,2)!”)
• After each shot, the other player announces success or failure: “You hit

one of my ships!” or “You missed.”

Distributed Computing Thomas Weise 4/10

Battleship

• Battleship [1, 2] is a simple game for two players

• Usually played with pen and paper
• Each player has a play field divided into a grid of cells drawn on her

paper, hidden to the other player
• Hidden to the other player, she places ships of different sizes on her grid
• Each player’s grid has the same size, the same number of ships is placed
• Players take turns in “firing” on the other player’s grid (“I shoot at cell

(3,2)!”)
• After each shot, the other player announces success or failure: “You hit

one of my ships!” or “You missed.”
• Each cell can be fired at at most 1 time

Distributed Computing Thomas Weise 4/10

Battleship

• Battleship [1, 2] is a simple game for two players

• Usually played with pen and paper
• Each player has a play field divided into a grid of cells drawn on her

paper, hidden to the other player
• Hidden to the other player, she places ships of different sizes on her grid
• Each player’s grid has the same size, the same number of ships is placed
• Players take turns in “firing” on the other player’s grid (“I shoot at cell

(3,2)!”)
• After each shot, the other player announces success or failure: “You hit

one of my ships!” or “You missed.”
• Each cell can be fired at at most 1 time
• If all cells of a ship have been hit, the ship sinks

Distributed Computing Thomas Weise 4/10

Battleship

• Battleship [1, 2] is a simple game for two players

• Usually played with pen and paper
• Each player has a play field divided into a grid of cells drawn on her

paper, hidden to the other player
• Hidden to the other player, she places ships of different sizes on her grid
• Each player’s grid has the same size, the same number of ships is placed
• Players take turns in “firing” on the other player’s grid (“I shoot at cell

(3,2)!”)
• After each shot, the other player announces success or failure: “You hit

one of my ships!” or “You missed.”
• Each cell can be fired at at most 1 time
• If all cells of a ship have been hit, the ship sinks
• If all ships of a player have been sunken, she loses

Distributed Computing Thomas Weise 4/10

Distributed Battleship

• Instead of pad & pen, let’s use computers

Distributed Computing Thomas Weise 5/10

Distributed Battleship

• Instead of pad & pen, let’s use computers

• 2 players in the network can play against each other

Distributed Computing Thomas Weise 5/10

Distributed Battleship

• Instead of pad & pen, let’s use computers

• 2 players in the network can play against each other

• I provide a simple implementation in Java of all the necessary stuff
except communication

Distributed Computing Thomas Weise 5/10

Distributed Battleship

• Instead of pad & pen, let’s use computers

• 2 players in the network can play against each other

• I provide a simple implementation in Java of all the necessary stuff
except communication:

• A simple game engine (BattleshipModel)

Distributed Computing Thomas Weise 5/10

Distributed Battleship

• Instead of pad & pen, let’s use computers

• 2 players in the network can play against each other

• I provide a simple implementation in Java of all the necessary stuff
except communication:

• A simple game engine (BattleshipModel) which updates

• a GUI (BattleshipView)

Distributed Computing Thomas Weise 5/10

Distributed Battleship

• Instead of pad & pen, let’s use computers

• 2 players in the network can play against each other

• I provide a simple implementation in Java of all the necessary stuff
except communication:

• A simple game engine (BattleshipModel) which updates

• a GUI (BattleshipView) by creating

• events (BattleshipModelEvent)

Distributed Computing Thomas Weise 5/10

Distributed Battleship

• Instead of pad & pen, let’s use computers

• 2 players in the network can play against each other

• I provide a simple implementation in Java of all the necessary stuff
except communication:

• A simple game engine (BattleshipModel) which updates

• a GUI (BattleshipView) by creating

• events (BattleshipModelEvent) to which

• listeners (IBattleshipModelListener) can register.

Distributed Computing Thomas Weise 5/10

Distributed Battleship

• Instead of pad & pen, let’s use computers

• 2 players in the network can play against each other

• I provide a simple implementation in Java of all the necessary stuff
except communication:

• A simple game engine (BattleshipModel) which updates

• a GUI (BattleshipView) by creating

• events (BattleshipModelEvent) to which

• listeners (IBattleshipModelListener) can register.

• A main (Main) program for starting the game

Distributed Computing Thomas Weise 5/10

Distributed Battleship

• Instead of pad & pen, let’s use computers

• 2 players in the network can play against each other

• I provide a simple implementation in Java of all the necessary stuff
except communication:

• A simple game engine (BattleshipModel) which updates

• a GUI (BattleshipView) by creating

• events (BattleshipModelEvent) to which

• listeners (IBattleshipModelListener) can register.

• A main (Main) program for starting the game

• A skeleton class (Communicator) where you can introduce the
communication.

Distributed Computing Thomas Weise 5/10

Distributed Battleship

• Instead of pad & pen, let’s use computers

• 2 players in the network can play against each other

• I provide a simple implementation in Java of all the necessary stuff
except communication:

• A simple game engine (BattleshipModel) which updates

• a GUI (BattleshipView) by creating

• events (BattleshipModelEvent) to which

• listeners (IBattleshipModelListener) can register.

• A main (Main) program for starting the game

• A skeleton class (Communicator) where you can introduce the
communication.

• You know how to do communication!

Distributed Computing Thomas Weise 5/10

Distributed Battleship

• Instead of pad & pen, let’s use computers

• 2 players in the network can play against each other

• I provide a simple implementation in Java of all the necessary stuff
except communication:

• A simple game engine (BattleshipModel) which updates

• a GUI (BattleshipView) by creating

• events (BattleshipModelEvent) to which

• listeners (IBattleshipModelListener) can register.

• A main (Main) program for starting the game

• A skeleton class (Communicator) where you can introduce the
communication.

• You know how to do communication: Use sockets [3–6]!

Distributed Computing Thomas Weise 5/10

Distributed Battleship

• Instead of pad & pen, let’s use computers

• 2 players in the network can play against each other

• I provide a simple implementation in Java of all the necessary stuff
except communication:

• A simple game engine (BattleshipModel) which updates

• a GUI (BattleshipView) by creating

• events (BattleshipModelEvent) to which

• listeners (IBattleshipModelListener) can register.

• A main (Main) program for starting the game

• A skeleton class (Communicator) where you can introduce the
communication.

• You know how to do communication: Use sockets [3–6]! (either
TCP [7, 8] or UDP [7])

Distributed Computing Thomas Weise 5/10

Distributed Battleship

• Instead of pad & pen, let’s use computers

• 2 players in the network can play against each other

• I provide a simple implementation in Java of all the necessary stuff
except communication:

• A simple game engine (BattleshipModel) which updates

• a GUI (BattleshipView) by creating

• events (BattleshipModelEvent) to which

• listeners (IBattleshipModelListener) can register.

• A main (Main) program for starting the game

• A skeleton class (Communicator) where you can introduce the
communication.

• You know how to do communication: Use sockets [3–6]! (either
TCP [7, 8] or UDP [7])

• You do not need to do (touch, read) anything else, only class
Communicator !

Distributed Computing Thomas Weise 5/10

Task

• Fill the class Communicator with code that allows us to play
Battleship over a network connection!

Distributed Computing Thomas Weise 6/10

Task

• Fill the class Communicator with code that allows us to play
Battleship over a network connection!

• You can choose the protocol (e.g., TCP or UDP) you want to use and
how the connection should work

Distributed Computing Thomas Weise 6/10

Task

• Fill the class Communicator with code that allows us to play
Battleship over a network connection!

• You can choose the protocol (e.g., TCP or UDP) you want to use and
how the connection should work

• In the class, some parts are marked with TODO

Distributed Computing Thomas Weise 6/10

Task

• Fill the class Communicator with code that allows us to play
Battleship over a network connection!

• You can choose the protocol (e.g., TCP or UDP) you want to use and
how the connection should work

• In the class, some parts are marked with TODO

• Read the comments on these parts and fill in code accordingly

Distributed Computing Thomas Weise 6/10

Task

• Fill the class Communicator with code that allows us to play
Battleship over a network connection!

• You can choose the protocol (e.g., TCP or UDP) you want to use and
how the connection should work

• In the class, some parts are marked with TODO

• Read the comments on these parts and fill in code accordingly

• The connection must be established by code being added to the
method void start(int ownPort, String enemyHost, int enemyPort)

which receives the connection parameters from the GUI

Distributed Computing Thomas Weise 6/10

Task

• Fill the class Communicator with code that allows us to play
Battleship over a network connection!

• You can choose the protocol (e.g., TCP or UDP) you want to use and
how the connection should work

• In the class, some parts are marked with TODO

• Read the comments on these parts and fill in code accordingly

• The connection must be established by code being added to the
method void start(int ownPort, String enemyHost, int enemyPort)

which receives the connection parameters from the GUI

• The message-receiving code should be put into the method
void run()

Distributed Computing Thomas Weise 6/10

Task

• Fill the class Communicator with code that allows us to play
Battleship over a network connection!

• You can choose the protocol (e.g., TCP or UDP) you want to use and
how the connection should work

• In the class, some parts are marked with TODO

• Read the comments on these parts and fill in code accordingly

• The connection must be established by code being added to the
method void start(int ownPort, String enemyHost, int enemyPort)

which receives the connection parameters from the GUI

• The message-receiving code should be put into the method
void run()

• The other methods should be used/implemented according to the
comments therein

Distributed Computing Thomas Weise 6/10

Result

• Send me a zip archive named hw01_[your_student_id].zip (where

[your_student_id] is replaced with your student id) containing the

complete Eclipse project, including the src and bin folder with,
with all the code of this project and your modifications of it.

Distributed Computing Thomas Weise 7/10

Caspar David Friedrich, “Der Wanderer über dem Nebelmeer”, 1818
http://en.wikipedia.org/wiki/Wanderer_above_the_Sea_of_Fog

谢谢谢谢谢谢
Thank you

Thomas Weise [汤卫思]
tweise@hfuu.edu.cn

http://www.it-weise.de

Hefei University, South Campus 2
Institute of Applied Optimization
Shushan District, Hefei, Anhui,

China

Distributed Computing Thomas Weise 8/10

mailto:tweise@hfuu.edu.cn
mailto:http://www.it-weise.de

Bibliography

Distributed Computing Thomas Weise 9/10

Bibliography I

1. Jeffrey P. Hinebaugh. A Board Game Education. G – Reference, Information and Interdisciplinary Subjects Series. Lanham,
MD, USA: Rowman & Littlefield Publishing Group, R&L Eduction, 2009. ISBN 1607092603 and 9781607092605. URL
http://books.google.de/books?id=nvqw9vK0R8sC.

2. Brian C. Ladd and Christopher James Jenkins. Introductory Programming with Simple Games – Using Java and the Freely
Available Networked Game Engine. New York, NY, USA: John Wiley & Sons Ltd., 2009. ISBN 0470212845 and
9780470212844. URL http://books.google.de/books?id=EMuxvH65pW8C.

3. Standard for Information Technology – Portable Operating System Interface (POSIX), volume 1003.1,2004. Piscataway, NJ,
USA: IEEE (Institute of Electrical and Electronics Engineers), 2004.

4. Lesson: All about sockets, 2009. URL http://docs.oracle.com/javase/tutorial/networking/sockets/.
5. Kenneth L. Calvert and Michael J. Donahoo. TCP/IP Sockets in Java: Practical Guide for Programmers. Morgan

Kaufmann Practical Guides. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2008. ISBN 0123742552 and
9780123742551. URL http://books.google.de/books?id=lfHo7uMk7r4C.

6. Merlin Hughes, Michael Shoffner, and Derek Hamner. Java Network Programming: A Complete Guide to Networking,
Streams, and Distributed Computing. Manning Pubs Co. Greenwich, CT, USA: Manning Publications Co., 1999. ISBN
188477749X and 9781884777493. URL http://books.google.de/books?id=xapQAAAAMAAJ.

7. Charles M. Kozierok. The TCP/IP Guide: A Comprehensive, Illustrated Internet Protocols Reference. San Francisco, CA,
USA: No Starch Press, 2005. ISBN 159327047X and 9781593270476. URL
http://books.google.de/books?id=Pm4RgYV2w4YC.

8. Douglas Comer. Internetworking with TCP/IP: Principles, Protocols, and Architecture. Upper Saddle River, NJ, USA:
Prentice Hall International Inc., 2006. ISBN 0131876716 and 9780131876712. URL
http://books.google.de/books?id=jonyuTASbWAC.

Distributed Computing Thomas Weise 10/10

http://books.google.de/books?id=nvqw9vK0R8sC
http://books.google.de/books?id=EMuxvH65pW8C
http://docs.oracle.com/javase/tutorial/networking/sockets/
http://books.google.de/books?id=lfHo7uMk7r4C
http://books.google.de/books?id=xapQAAAAMAAJ
http://books.google.de/books?id=Pm4RgYV2w4YC
http://books.google.de/books?id=jonyuTASbWAC

	Outline
	Overview
	Battleship
	Battleship
	Distributed Battleship

	Task
	Task
	Result

	Presentation End
	Bibliography

