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Overview

• What is MapReduce?

• Distinguish use cases of Hadoop/MapReduce, MPI, Servlets

• Getting to know the MapReduce support of the Hadoop framework
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HTTP, Web Services, and Java Servlets are ideal for:

• Applications with request-response and client-server scheme

• Data processing does not take place in a natural distributed fashion

• Requests are answered by single threads, cooperative parallelism does
not improve overall performance

• We want to combine different applications in a heterogeneous system
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MPI Use Case

MPI is ideal for the following situation:

• Communication is expensive and the bottleneck of our application. It must be
done as efficiently as possible.

• Available hardware is homogenous, e.g., we have a cluster of the same server
components connected by an Infiniband network, so we can use
highly-specialized communication libraries.

• Processes need to be organized in groups or topological structures (see the heat
simulation example) to make efficient use of collective communication to
achieve high performance. =⇒ Problems have regular patterns.

• Basically anything where we need lots of/repetitive interprocess communication
during the computation.

• Size of data that needs to be transmitted is smaller in comparison to runtime
of computations (see point 1).

• We are in a scientific environment and do not need to connect to other
software such as enterprise systems.

Distributed Computing Thomas Weise 5/41



Other Scenario

But what if we have distributed computations. . .
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Other Scenario

But what if we have distributed computations with

• Communication is not the bottleneck: We spend much more time
computing than communicating.

• Hardware is commodity PCs or heterogeneous

• Processes do not need to be organized in any special way, data and
workload can be distributed in an arbitrary fashion. =⇒ Problems
have parallel, unstructured, or batch job character.

• Problems require communication only during startup and end, similar
to a single scatter/reduce step in MPI.

• Alternatively: Data is unstructured (e.g., text) and potentially huge.
Communication will take up lots of time (and thus would eat up all
advantages of MPI).

• Our data comes from and results need to be passed to other
applications, such as enterprise systems, which may use stacks such
as HTTP/Java Servlet/Web Service.
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Use Cases

http:

//www.hadoopilluminated.com/hadoop_illuminated/Hadoop_Use_Cases.html

reports many use cases
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Use Cases

http:

//www.hadoopilluminated.com/hadoop_illuminated/Hadoop_Use_Cases.html

reports many use cases:

• analysis of large-scale data sets (e.g., 1TB/day) for banks, health care, mobile
phone carriers, travel industry, . . .

• processing of human genome data

• data mining for online sales platform, travel industry, marketing campaigns

• data analysis backend for software-as-a-service / business intelligence

• large-scale parallel image processing
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MapReduce with Hadoop

• There are large-scale distributed computations for which MPI is not
the right answer.

• MapReduce [1, 2] with Hadoop [1–3] fills this gap.

• MapReduce is a programming model and an associated
implementation for processing and generating large data sets with a
parallel, distributed algorithm on a cluster. [4]

• Conceptually similar to scatter/reduce in MPI
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Divide & Conquer

• Data is divided into smaller pieces, each piece corresponds to a
problem part. The parts are solved separately and the separate
solutions are combined to final results.
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MapReduce

• solving of partial problems = mapping; combination of partial results
to final results = reduce
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Hadoop

• Apache Hadoop is a huge framework in Java that – amongst many
other things – provides MapReduce support
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Hadoop

• Apache Hadoop is a huge framework in Java that – amongst many
other things – provides MapReduce support

• Scalable and fault-tolerant system for data processing and storage [6]

• Two main components in core Hadoop [6]:
• Hadoop Distributed File System: self-healing high-bandwidth clustered

storage: distributed fault-tolerant resource management and scheduling
coupled with a scalable data programming abstraction.

• MapReduce

• http://hadoop.apache.org/, current version 2.7.2

• Due to time restrictions, we will only consider the MapReduce part
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Word Count

• The most well-known example for Hadoop

• Input: A (potentially large) text

• Output: A list of words and how often they occur in the text

• Map:

1 divide text into pieces
2 assign one piece to each worker
3 worker creates <word, 1> tuples for each word it finds

• Reduce:

1 the word elements of the tuples are keys

2 we add up the corresponding values (the 1 s) per word

• We can also do this locally on each node, after Map and before
Reduce, to reduce the amount of communication needed (this is
called combination)
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WordCount Mapper

• The input of the MapReduce process are text files

• The TextInputFormat splits the text files into single lines (of type

Text , the Hadoop version of Strings)

• Input of Mapper: tuples of the form
<Integer (line number), Text (the line contents)>

• The mapper will split each line into words (ignoring punctuation
marks). For each word of the like, it will emit a tuple

• Output of Mapper:
<Text (the word), WriteableInteger (always value 1)> , where the

WriteableInteger is stands for the number of appearences

• If a word occurs multiple times in a line, one token is emitted for each
occurrence.
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Listing: The mapper class.

package wordCount;

public class WordCountMapper

extends Mapper <LongWritable , Text , Text , IntWritable > {

public static final IntWritable ONE = new IntWritable (1);

@Override

protected void map(final LongWritable offset , final Text line ,

final Context context) throws IOException , InterruptedException {

for (String word : line.toString ()// replace punctuation and other

.replace('.', ' ').replace(',', ' ').replace('/', ' ')// strange

.replace(']', ' ').replace('[', ' ').replace('_', ' ')// chars

.replace(')', ' ').replace('(', ' ').replace('#', ' ')// with

.replace('!', ' ').replace('?', ' ').replace("-", "")// spaces

.replace("\"", "").replace("\'", "").replaceAll("[0-9]+", " ")//

.replace(':', ' ').replace('\t', ' ').replace('\f', ' ')//

.split("\\s+")) {// iterate over all space -separated words

word = word.trim();

if (word.length () > 0) {// emit one tuple <WORD , 1> for each WORD

context.write(new Text(word.toLowerCase ()), WordCountMapper.ONE);

}

}

}

}
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WordCount Reducer

• After this mapping step, the reducer is applied.
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WordCount Reducer

• After this mapping step, the reducer is applied.

• Input:
<Text (the word), Iterable<WriteableInteger> (number of occurrences)>

• Hadoop has put all the <WriteableInteger> for the same

<Text (the word)> key into a list for us!

• We now only need to add them up

• Output:
<Text (the word), WriteableInteger (count of occurrences)>

• The reducer can also be used as combinator: Before sending the
results of the mapper to the central reducer, we can add up the tuples
( WriteableInteger s) for the same key (word, Text ). This way we
reduce the data volume.
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Listing: The reducer class.

package wordCount;

public class WordCountReducer

extends Reducer <Text , IntWritable , Text ,

IntWritable > {

@Override

protected void reduce(final Text key , final

Iterable <IntWritable > values ,

final Context context) throws IOException ,

InterruptedException {

// we receive tuples of the type <WORD ,

IntWritable > for each WORD

int count = 0;

for (final IntWritable current : values) { //

we add up all the ints

count += current.get();

}

context.write(key , new IntWritable(count));//

and emit the final count

}

}
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WordCount Driver

• We put everything together in a “driver” class
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Driver Class

Listing: The driver class.

package wordCount;

public class WordCountDriver extends Configured implements Tool {

public static void main(final String [] args) throws Exception {

System.exit(ToolRunner.run(new Configuration (), //

new WordCountDriver (), args));

}

@Override

public int run(final String [] args) throws Exception {

final Configuration conf;

final Job job;

conf = new Configuration ();

job = Job.getInstance(conf , "Word Count Map -Reduce");

job.setJarByClass(WordCountDriver.class);

if (args.length < 2) {

return 1;

}

job.setMapperClass(WordCountMapper.class);// set mapper

job.setReducerClass(WordCountReducer.class);// set reducer

// a combiner performs something like a reduction step right after

// mapping , on the mapper 's computer , before sending on the data

job.setCombinerClass(WordCountReducer.class);// set combiner

job.setOutputKeyClass(Text.class);// set output key class

job.setOutputValueClass(IntWritable.class);// set output value class

job.setInputFormatClass(TextInputFormat.class);// set input format

job.setOutputFormatClass(TextOutputFormat.class);// set output format

FileInputFormat.setInputPaths(job , new Path(args [0]));

FileOutputFormat.setOutputPath(job , new Path(args [1]));

job.waitForCompletion(true);

return 0;

}
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Maven Setup

• We can set up this project by using Maven
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pom.xml

Listing: [pom.xml] – Part 1: Basic Project Information

<project xmlns="http: //maven.apache.org/POM /4.0.0"

xmlns:xsi="http://www.w3.org /2001/ XMLSchema -instance"

xsi:schemaLocation="http:// maven.apache.org/POM /4.0.0 

http:// maven.apache.org/xsd/maven -4.0.0. xsd">

<modelVersion >4.0.0 </modelVersion >

<groupId >thomasWeise </groupId >

<artifactId >wordCount </artifactId >

<version >0.8.0</version >

<packaging >jar</packaging >

<name>Hadoop Word Counting Example </name>

<description >The famous word counting example for

Hadoop.</description >
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pom.xml

Listing: [pom.xml] – Part 2: Information about Organization

<url>http://www.it-weise.de/</url>

<organization >

<url>http: //www.it-weise.de/</url>

<name>thomasWeise </name>

</organization >
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pom.xml

Listing: [pom.xml] – Part 3: Information about Developer

<developers >

<developer >

<id>thomasWeise </id>

<name>Thomas Weise </name>

<email >tweise@ustc.edu.cn</email >

<url>http: //www.it-weise.de/</url>

<organization >University of Science and Technology of

China (USTC)</organization >

<organizationUrl >http: //www.ustc.edu.cn/</organizationUrl >

<roles >

<role>architect </role>

<role>developer </role>

</roles >

<timezone >China Time Zone</timezone >

</developer >

</developers >
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pom.xml

Listing: [pom.xml] – Part 4: Properties for Rest of pom

<properties >

<encoding >UTF -8</encoding >

<project.build.sourceEncoding >${ encoding}</project.build.sourceEncoding >

<project.reporting.outputEncoding >${ encoding}</project.reporting.outputEncoding >

<jdk.version >1.7</jdk.version >

<project.mainClass >wordCount.WordCountDriver </project.mainClass >
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pom.xml

Listing: [pom.xml] – Part 5: Licensing

<licenses >

<license >

<name>GNU GENERAL PUBLIC LICENSE Version 3, 29 June

2007</name>

<url>http: //www.gnu.org/licenses/gpl -3.0- standalone.html</url>

<distribution >repo</distribution >

</license >

</licenses >
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pom.xml

Listing: [pom.xml] – Part 6: SCM, Issue Management, and Inception Year

<issueManagement >

<url>https: // github.com/thomasWeise/distributedComputingExamples/issues </url>

<system >GitHub </system >

</issueManagement >

<scm>

<connection >scm:git:git@github.com:thomasWeise/distributedComputingExamples.git</connection >

<developerConnection >scm:git:git@github.com:thomasWeise/distributedComputingExamples.git</developerConne

<url>git@github.com:thomasWeise/distributedComputingExamples.git</url>

</scm>

<inceptionYear >2016</inceptionYear >
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pom.xml

Listing: [pom.xml] – Part 7: Dependencies

<dependencies >

<dependency >

<groupId >org.apache.hadoop </groupId >

<artifactId >hadoop -client </artifactId >

<version >2.7.2 </version >

</dependency >

</dependencies >
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pom.xml

Listing: [pom.xml] – Part 8: Build

<build>

<finalName >wordCount </finalName >

<plugins >

<plugin >

<groupId >org.apache.maven.plugins </groupId >

<artifactId >maven -compiler -plugin </artifactId >

<version >3.1</version >

<configuration >

<source >${jdk.version}</source >

<target >${jdk.version}</target >

<encoding >${ encoding}</encoding >

<showWarnings >true</showWarnings >

<showDeprecation >true</showDeprecation >

</configuration >

</plugin >

<!-- This one is for building the fat jar. -->

<plugin >

<groupId >org.apache.maven.plugins </groupId >

<artifactId >maven -shade -plugin </artifactId >

<version >2.3</version >

<executions >

<execution >

<phase>package </phase >

<goals>

<goal>shade </goal>

</goals>

<configuration >

<minimizeJar >false </minimizeJar >

<shadedArtifactAttached >true</shadedArtifactAttached >

<createDependencyReducedPom >false </createDependencyReducedPom >

<finalName >wordCount -full</finalName >

<filters >

<filter >

<artifact >*:*</artifact >

<excludes >

<exclude >META -INF /*.SF</exclude >

<exclude >META -INF /*. DSA</exclude >

<exclude >META -INF /*. RSA</exclude >

</excludes >

</filter >

</filters >

<transformers >

<transformer

implementation="org.apache.maven.plugins.shade.resource.ManifestResourceTransformer">

<mainClass >${ project.mainClass}</mainClass >

</transformer >

<transformer

implementation="org.apache.maven.plugins.shade.resource.ApacheLicenseResourceTransformer" />

<transformer

implementation="org.apache.maven.plugins.shade.resource.ApacheNoticeResourceTransformer" />

<transformer

implementation="org.apache.maven.plugins.shade.resource.PluginXmlResourceTransformer" />

<transformer

implementation="org.apache.maven.plugins.shade.resource.ServicesResourceTransformer" />

</transformers >

</configuration >

</execution >

</executions >

</plugin >

</plugins >

</build>
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Executing the Example

• Enter the hadoop folder and perform the following steps
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• Enter the hadoop folder and perform the following steps:
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Web Finder Count

• Try to find the interconnection between pages
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Web Finder Count

• Try to find the interconnection between pages

• Input to Mapper: List of URLs (as Text s)

• Output of Mapper: Tuples of URL to resources and URLs from input
referencing them

• Input of Reducer: Tuples of URL to a resources and list of URLs
(from Mapper input) referencing them

• Output of Reducer: List of URLs to shared resources and URLs (from
Mapper input) referencing them

• Having this, we can find out which resources are fundamental in the
web, which are shared between different pages, and how the most
important pages in China are interconnected
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Web Finder Mapper

• The input of the MapReduce process are text files
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Web Finder Mapper

• The input of the MapReduce process are text files

• The TextInputFormat splits the text files into single lines (of type

Text , the Hadoop version of Strings)

• Input of Mapper: tuples of the form
<Integer (line number), Text (the line contents)>

• Each line is a URL (let’s call it A )

• We download the referenced web page

• We detect all references to other pages, CSS, and javscript in the
page. Each reference corresponds to a URL, let’s call it B

• We emit all tuples <B as Text, A as Text>

• The process is applied recursively (up to a maximum depth)

• So we have tuples of resources and the URLs referencing them
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Listing: The mapper class.

package webFinder;

/**

* This is the Mapper component of the Web Finder example. Its input are

* text lines , where each line stands for a website URL. It finds all

* resources that are loaded by a given website URL and emits tuples of

* kind {@code <resource URL , website URL >}.

*/

public class WebFinderMapper

extends Mapper <LongWritable , Text , Text , Text > {

/** the logger we use */

private static Logger LOGGER = Logger.getLogger(WebFinderMapper.class);

/**

* Map tuples of type {@code <line number , website url text >} to tuples

* of kind {@code <resource url text , website url text >}.

*/

@Override

protected void map(final LongWritable offset , final Text line ,

final Context context) throws IOException , InterruptedException {

final URL baseUrl;

final URI baseUri;

final int maxDepth;

final Text baseUrlText;

final HashSet <URL > done;

String str;

str = WebFinderMapper.__prepare(line.toString (), true);

if (str == null) {// prepare base url

return;

}

// set maximum depth of spider

maxDepth = context.getConfiguration ().getInt("maxDepth", 1);

baseUri = URI.create(str).normalize ();

baseUrl = baseUri.toURL();

done = new HashSet <>();// URLs that have been processed

done.add(baseUrl);
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Web Finder Reducer

• The input of the Reducer are tuples of resources and lists of URLs
referencing them
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Web Finder Reducer

• The input of the Reducer are tuples of resources and lists of URLs
referencing them

• For each resource URL, we compute the set of unique URLs
referencing them

• If the set contains more then one resource, we have a resource shared
among multiple of the originally provided URLs

• We will only output such elements, as tuple
<URL, list of URLs referencing it>
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Listing: The reducer class.

package webFinder;

/**

* This is the reducer component of the web finder example. For each key (

* {@code resource URL}) of the tuples produced by the mapper , it receives

* the list of all values ({ @code website URLs}). If such a list contains

* more than one unique element , this means that the resource is shared by

* multiple websites. This reducer emits tuples of the form

* {@code <resource URL , list of website urls >}.

*/

public class WebFinderReducer

extends Reducer <Text , Text , Text , List <Text >> {

/**

* The actual reduction step: From the tuples of form

* {@code <resource URL , iterable of referencing website URLs >}, select

* all resources referenced by more than one unique website. For these ,

* output tuples of the form {@code <resource URL , list of website URLs >}

* .

*/

@Override

protected void reduce(final Text key , final Iterable <Text > values ,

final Context context) throws IOException , InterruptedException {

final HashSet <URL > set;

final int size;

final ArrayList list;

String string;

URL add;

int index;

set = new HashSet <>();

looper: for (final Text url : values) {

string = url.toString ();// convert value to a URL

try {

add = new URI(string).normalize ().toURL();

} catch (@SuppressWarnings("unused") final Throwable error) {

try {

add = new URL(string).toURI().normalize ().toURL();

} catch (@SuppressWarnings("unused") final Throwable error2) {

try {

add = new URL(string);

} catch (@SuppressWarnings("unused") final Throwable error3) {

continue looper;

}

}

}

set.add(add); // store value in set of URLs pointing to this resource
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WebFinder Driver

• We put everything together in a “driver” class
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The Driver Class

Listing: The driver class.

package webFinder;

/**

* The driver of the web finder sets up the distributed computation by

* defining what the mapper and reducer classes , amongst other things.

*/

public class WebFinderDriver extends Configured implements Tool {

public static void main(final String [] args) throws Exception {

try {

final int res = ToolRunner.run(new Configuration (),

new WebFinderDriver (), args);

System.exit(res);

} catch (final Exception e) {

e.printStackTrace ();

System.exit (255);

}

}

/** Setting up the computation. */

@Override

public int run(final String [] args) throws Exception {

final Configuration conf;

final Job job;

conf = new Configuration ();

job = Job.getInstance(conf , "WebFinder MapReduce");

job.setJarByClass(WebFinderDriver.class);// use current jar

if (args.length < 2) {

return 1;

}

if (args.length > 2) {// set max depth and pass parameter to mapper

conf.setInt("maxDepth", Integer.parseInt(args [2]));

}

job.setMapperClass(WebFinderMapper.class);// set mapper

job.setMapOutputKeyClass(Text.class);// set mapper output key type

job.setMapOutputValueClass(Text.class); // set mapper output value type

job.setReducerClass(WebFinderReducer.class);// set reducer

job.setOutputKeyClass(Text.class);// set reducer output key type

job.setOutputValueClass(List.class);// set reducer output value

job.setInputFormatClass(TextInputFormat.class);// set input format

job.setOutputFormatClass(TextOutputFormat.class);// set output format

FileInputFormat.setInputPaths(job , new Path(args [0]));

FileOutputFormat.setOutputPath(job , new Path(args [1]));
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Executing the Example

• Enter the hadoop folder and perform the following steps

Distributed Computing Thomas Weise 36/41



Executing the Example

• Enter the hadoop folder and perform the following steps:

Distributed Computing Thomas Weise 36/41



Executing the Example

• Enter the hadoop folder and perform the following steps:

1 bin/hdfs namenode -format

Distributed Computing Thomas Weise 36/41



Executing the Example

• Enter the hadoop folder and perform the following steps:

1 bin/hdfs namenode -format

2 sbin/start-dfs.sh

Distributed Computing Thomas Weise 36/41



Executing the Example

• Enter the hadoop folder and perform the following steps:

1 bin/hdfs namenode -format

2 sbin/start-dfs.sh

3 bin/hdfs dfs -mkdir /user

Distributed Computing Thomas Weise 36/41



Executing the Example

• Enter the hadoop folder and perform the following steps:

1 bin/hdfs namenode -format

2 sbin/start-dfs.sh

3 bin/hdfs dfs -mkdir /user

4 bin/hdfs dfs -mkdir /user/<username> (use your user name)

Distributed Computing Thomas Weise 36/41



Executing the Example

• Enter the hadoop folder and perform the following steps:

1 bin/hdfs namenode -format

2 sbin/start-dfs.sh

3 bin/hdfs dfs -mkdir /user

4 bin/hdfs dfs -mkdir /user/<username> (use your user name)

5 bin/hdfs dfs -put Y/distributedComputingExamples/hadoop/webFinder/input input where

Y is the folder where we have the distributedComputingExamples repository

Distributed Computing Thomas Weise 36/41



Executing the Example

• Enter the hadoop folder and perform the following steps:

1 bin/hdfs namenode -format

2 sbin/start-dfs.sh

3 bin/hdfs dfs -mkdir /user

4 bin/hdfs dfs -mkdir /user/<username> (use your user name)

5 bin/hdfs dfs -put Y/distributedComputingExamples/hadoop/webFinder/input input where

Y is the folder where we have the distributedComputingExamples repository

6

bin/hadoop jar Y/distributedComputingExamples/hadoop/webFinder/target/webFinder-full.jar

output

Distributed Computing Thomas Weise 36/41



Executing the Example

• Enter the hadoop folder and perform the following steps:

1 bin/hdfs namenode -format

2 sbin/start-dfs.sh

3 bin/hdfs dfs -mkdir /user

4 bin/hdfs dfs -mkdir /user/<username> (use your user name)

5 bin/hdfs dfs -put Y/distributedComputingExamples/hadoop/webFinder/input input where

Y is the folder where we have the distributedComputingExamples repository

6

bin/hadoop jar Y/distributedComputingExamples/hadoop/webFinder/target/webFinder-full.jar

output

7 bin/hdfs dfs -ls output

Distributed Computing Thomas Weise 36/41



Executing the Example

• Enter the hadoop folder and perform the following steps:

1 bin/hdfs namenode -format

2 sbin/start-dfs.sh

3 bin/hdfs dfs -mkdir /user

4 bin/hdfs dfs -mkdir /user/<username> (use your user name)

5 bin/hdfs dfs -put Y/distributedComputingExamples/hadoop/webFinder/input input where

Y is the folder where we have the distributedComputingExamples repository

6

bin/hadoop jar Y/distributedComputingExamples/hadoop/webFinder/target/webFinder-full.jar

output

7 bin/hdfs dfs -ls output

8 bin/hdfs dfs -cat output/part-r-00000 | less

Distributed Computing Thomas Weise 36/41



Executing the Example

• Enter the hadoop folder and perform the following steps:

1 bin/hdfs namenode -format

2 sbin/start-dfs.sh

3 bin/hdfs dfs -mkdir /user

4 bin/hdfs dfs -mkdir /user/<username> (use your user name)

5 bin/hdfs dfs -put Y/distributedComputingExamples/hadoop/webFinder/input input where

Y is the folder where we have the distributedComputingExamples repository

6

bin/hadoop jar Y/distributedComputingExamples/hadoop/webFinder/target/webFinder-full.jar

output

7 bin/hdfs dfs -ls output

8 bin/hdfs dfs -cat output/part-r-00000 | less

9 bin/hdfs dfs -copyToLocal output/part-r-00000

Distributed Computing Thomas Weise 36/41



Executing the Example

• Enter the hadoop folder and perform the following steps:

1 bin/hdfs namenode -format

2 sbin/start-dfs.sh

3 bin/hdfs dfs -mkdir /user

4 bin/hdfs dfs -mkdir /user/<username> (use your user name)

5 bin/hdfs dfs -put Y/distributedComputingExamples/hadoop/webFinder/input input where

Y is the folder where we have the distributedComputingExamples repository

6

bin/hadoop jar Y/distributedComputingExamples/hadoop/webFinder/target/webFinder-full.jar

output

7 bin/hdfs dfs -ls output

8 bin/hdfs dfs -cat output/part-r-00000 | less

9 bin/hdfs dfs -copyToLocal output/part-r-00000

10 sbin/stop-dfs.sh
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Listing: Output

http ://c.youku.com/aboutcn/youtu [http :// www.tudou.com , http :// www.youku.com]

http ://c.youku.com/abouteg/youku [http :// www.tudou.com , http :// www.youku.com]

http ://c.youku.com/abouteg/youtu [http :// www.tudou.com , http :// www.youku.com]

http :// cbjs.baidu.com/js/m.js [http :// www.baidu.com , http :// www.qq.com]

http :// css.tudouui.com/skin/__g/img/sprite.gif [http :// www.tudou.com , http :// www.youku.com]

http :// events.youku.com/global/scripts/jquery -1.8.3. js [http :// www.tudou.com , http :// www.youku.com]

http :// events.youku.com/global/scripts/youku.js [http :// www.tudou.com , http :// www.youku.com]

http :// images.china.cn/images1/ch/appxz /2. jpg [http :// www.qq.com , http :// www.youku.com]

http :// images.china.cn/images1/ch/appxz /3. jpg [http :// www.qq.com , http :// www.youku.com]

http ://js.tudouui.com/v3/dist/js/lib_6.js [http :// www.tudou.com , http :// www.youku.com]

http :// mail.qq.com [http :// www.baidu.com , http :// www.qq.com]

http :// minisite.youku.com/mini_common/urchin.js [http :// www.tudou.com , http :// www.youku.com]

http :// player.youku.com/jsapi [http :// www.tudou.com , http :// www.youku.com]

http :// qzone.qq.com [http :// www.baidu.com , http :// www.qq.com]

http :// res.mfs.ykimg.com /051000004 D92DF6197927339BA04E210.js [http :// www.tudou.com , http :// www.youku.com]

http :// static.youku.com/user/img/avatar /80/5. jpg [http :// www.tudou.com , http :// www.youku.com]

http :// static.youku.com/user/img/avatar /80/9. jpg [http :// www.tudou.com , http :// www.youku.com]

http :// weibo.com [http :// www.baidu.com , http :// www.qq.com]

http :// www .12377. cn [http :// www.baidu.com , http :// www.qq.com , http :// www.youku.com]

http :// www .12377. cn/node_548446.htm [http :// www.qq.com , http :// www.youku.com]

http :// www.bjjubao.org [http :// www.baidu.com , http :// www.youku.com]

http :// www.china.com.cn/player/video.js [http :// www.qq.com , http :// www.youku.com]

http :// www.ellechina.com [http :// www.qq.com , http :// www.youku.com]

http :// www.hao123.com [http :// www.baidu.com , http :// www.qq.com]

http :// www.hd315.gov.cn/beian/view.asp?bianhao =010202006082400023 [http :// www.tudou.com ,

http :// www.youku.com]

http :// www.miibeian.gov.cn [http :// www.qq.com , http :// www.tudou.com , http :// www.youku.com]

http :// www.miibeian.gov.cn/publish/query/indexFirst.action [http :// www.tudou.com , http :// www.youku.com]

http :// www.pclady.com.cn [http :// www.baidu.com , http :// www.qq.com]

http :// www.qq.com [http :// www.baidu.com , http :// www.qq.com]

http :// www.shjbzx.cn [http :// www.qq.com , http :// www.tudou.com]

http :// www.tudou.com [http :// www.tudou.com , http :// www.youku.com]

http :// www.tudou.com/about/cn [http :// www.tudou.com , http :// www.youku.com]

http :// www.tudou.com/about/en [http :// www.tudou.com , http :// www.youku.com]

http :// www.youku.com [http :// www.baidu.com , http :// www.tudou.com , http :// www.youku.com]

http :// www.youku.com/show_page/id_z8dc3fdeedcb911e3a705.html [http :// www.tudou.com , http :// www.youku.com]

http ://y.qq.com [http :// www.baidu.com , http :// www.qq.com]

https ://www.alipay.com [http ://www.baidu.com , http ://www.youku.com]

Distributed Computing Thomas Weise 37/41



Summary

• MapReduce via Hadoop can cover a use case of distributed
computing that neither MPI nor Java Servlets can

• Easy to use with Java and Maven

• Apache Hadoop has many more features, which we cannot cover here

Distributed Computing Thomas Weise 38/41



Caspar David Friedrich, “Der Wanderer über dem Nebelmeer”, 1818
http://en.wikipedia.org/wiki/Wanderer_above_the_Sea_of_Fog
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