
Distributed Computing
Lesson 23: MapReduce with Hadoop

Thomas Weise · 汤卫思

tweise@hfuu.edu.cn · http://www.it-weise.de

Hefei University, South Campus 2 合肥学院 南艳湖校区/南2区
Faculty of Computer Science and Technology 计算机科学与技术系

Institute of Applied Optimization 应用优化研究所

230601 Shushan District, Hefei, Anhui, China 中国 安徽省 合肥市 蜀山区 230601
Econ. & Tech. Devel. Zone, Jinxiu Dadao 99 经济技术开发区 锦绣大道99号

mailto:tweise@hfuu.edu.cn
http://www.it-weise.de


Outline

1 MapReduce & Hadoop

2 Examples

Distributed Computing Thomas Weise 2/41

w
e
b
s
it
e



Overview

• What is MapReduce?

• Distinguish use cases of Hadoop/MapReduce, MPI, Servlets

• Getting to know the MapReduce support of the Hadoop framework

Distributed Computing Thomas Weise 3/41



HTTP/Web Services/Java Servlet Use Case

HTTP, Web Services, and Java Servlets are ideal for

Distributed Computing Thomas Weise 4/41



HTTP/Web Services/Java Servlet Use Case

HTTP, Web Services, and Java Servlets are ideal for:

• Applications with request-response and client-server scheme

Distributed Computing Thomas Weise 4/41



HTTP/Web Services/Java Servlet Use Case

HTTP, Web Services, and Java Servlets are ideal for:

• Applications with request-response and client-server scheme

• Data processing does not take place in a natural distributed fashion

Distributed Computing Thomas Weise 4/41



HTTP/Web Services/Java Servlet Use Case

HTTP, Web Services, and Java Servlets are ideal for:

• Applications with request-response and client-server scheme

• Data processing does not take place in a natural distributed fashion

• Requests are answered by single threads, cooperative parallelism does
not improve overall performance

Distributed Computing Thomas Weise 4/41



HTTP/Web Services/Java Servlet Use Case

HTTP, Web Services, and Java Servlets are ideal for:

• Applications with request-response and client-server scheme

• Data processing does not take place in a natural distributed fashion

• Requests are answered by single threads, cooperative parallelism does
not improve overall performance

• We want to combine different applications in a heterogeneous system

Distributed Computing Thomas Weise 4/41



MPI Use Case

MPI is ideal for the following situation

Distributed Computing Thomas Weise 5/41



MPI Use Case

MPI is ideal for the following situation:

• Communication is expensive and the bottleneck of our application. It must be
done as efficiently as possible.

Distributed Computing Thomas Weise 5/41



MPI Use Case

MPI is ideal for the following situation:

• Communication is expensive and the bottleneck of our application. It must be
done as efficiently as possible.

• Available hardware is homogenous, e.g., we have a cluster of the same server
components connected by an Infiniband network, so we can use
highly-specialized communication libraries.

Distributed Computing Thomas Weise 5/41



MPI Use Case

MPI is ideal for the following situation:

• Communication is expensive and the bottleneck of our application. It must be
done as efficiently as possible.

• Available hardware is homogenous, e.g., we have a cluster of the same server
components connected by an Infiniband network, so we can use
highly-specialized communication libraries.

• Processes need to be organized in groups or topological structures (see the heat
simulation example) to make efficient use of collective communication to
achieve high performance.

Distributed Computing Thomas Weise 5/41



MPI Use Case

MPI is ideal for the following situation:

• Communication is expensive and the bottleneck of our application. It must be
done as efficiently as possible.

• Available hardware is homogenous, e.g., we have a cluster of the same server
components connected by an Infiniband network, so we can use
highly-specialized communication libraries.

• Processes need to be organized in groups or topological structures (see the heat
simulation example) to make efficient use of collective communication to
achieve high performance. =⇒ Problems have regular patterns.

Distributed Computing Thomas Weise 5/41



MPI Use Case

MPI is ideal for the following situation:

• Communication is expensive and the bottleneck of our application. It must be
done as efficiently as possible.

• Available hardware is homogenous, e.g., we have a cluster of the same server
components connected by an Infiniband network, so we can use
highly-specialized communication libraries.

• Processes need to be organized in groups or topological structures (see the heat
simulation example) to make efficient use of collective communication to
achieve high performance. =⇒ Problems have regular patterns.

• Basically anything where we need lots of/repetitive interprocess communication
during the computation.

Distributed Computing Thomas Weise 5/41



MPI Use Case

MPI is ideal for the following situation:

• Communication is expensive and the bottleneck of our application. It must be
done as efficiently as possible.

• Available hardware is homogenous, e.g., we have a cluster of the same server
components connected by an Infiniband network, so we can use
highly-specialized communication libraries.

• Processes need to be organized in groups or topological structures (see the heat
simulation example) to make efficient use of collective communication to
achieve high performance. =⇒ Problems have regular patterns.

• Basically anything where we need lots of/repetitive interprocess communication
during the computation.

• Size of data that needs to be transmitted is smaller in comparison to runtime
of computations (see point 1).

Distributed Computing Thomas Weise 5/41



MPI Use Case

MPI is ideal for the following situation:

• Communication is expensive and the bottleneck of our application. It must be
done as efficiently as possible.

• Available hardware is homogenous, e.g., we have a cluster of the same server
components connected by an Infiniband network, so we can use
highly-specialized communication libraries.

• Processes need to be organized in groups or topological structures (see the heat
simulation example) to make efficient use of collective communication to
achieve high performance. =⇒ Problems have regular patterns.

• Basically anything where we need lots of/repetitive interprocess communication
during the computation.

• Size of data that needs to be transmitted is smaller in comparison to runtime
of computations (see point 1).

• We are in a scientific environment and do not need to connect to other
software such as enterprise systems.

Distributed Computing Thomas Weise 5/41



Other Scenario

But what if we have distributed computations. . .

Distributed Computing Thomas Weise 6/41



Other Scenario

But what if we have distributed computations with

• Communication is not the bottleneck: We spend much more time
computing than communicating.

Distributed Computing Thomas Weise 6/41



Other Scenario

But what if we have distributed computations with

• Communication is not the bottleneck: We spend much more time
computing than communicating.

• Hardware is commodity PCs or heterogeneous

Distributed Computing Thomas Weise 6/41



Other Scenario

But what if we have distributed computations with

• Communication is not the bottleneck: We spend much more time
computing than communicating.

• Hardware is commodity PCs or heterogeneous

• Processes do not need to be organized in any special way, data and
workload can be distributed in an arbitrary fashion.

Distributed Computing Thomas Weise 6/41



Other Scenario

But what if we have distributed computations with

• Communication is not the bottleneck: We spend much more time
computing than communicating.

• Hardware is commodity PCs or heterogeneous

• Processes do not need to be organized in any special way, data and
workload can be distributed in an arbitrary fashion. =⇒ Problems
have parallel, unstructured, or batch job character.

Distributed Computing Thomas Weise 6/41



Other Scenario

But what if we have distributed computations with

• Communication is not the bottleneck: We spend much more time
computing than communicating.

• Hardware is commodity PCs or heterogeneous

• Processes do not need to be organized in any special way, data and
workload can be distributed in an arbitrary fashion. =⇒ Problems
have parallel, unstructured, or batch job character.

• Problems require communication only during startup and end, similar
to a single scatter/reduce step in MPI.

Distributed Computing Thomas Weise 6/41



Other Scenario

But what if we have distributed computations with

• Communication is not the bottleneck: We spend much more time
computing than communicating.

• Hardware is commodity PCs or heterogeneous

• Processes do not need to be organized in any special way, data and
workload can be distributed in an arbitrary fashion. =⇒ Problems
have parallel, unstructured, or batch job character.

• Problems require communication only during startup and end, similar
to a single scatter/reduce step in MPI.

• Alternatively: Data is unstructured (e.g., text) and potentially huge.
Communication will take up lots of time (and thus would eat up all
advantages of MPI).

Distributed Computing Thomas Weise 6/41



Other Scenario

But what if we have distributed computations with

• Communication is not the bottleneck: We spend much more time
computing than communicating.

• Hardware is commodity PCs or heterogeneous

• Processes do not need to be organized in any special way, data and
workload can be distributed in an arbitrary fashion. =⇒ Problems
have parallel, unstructured, or batch job character.

• Problems require communication only during startup and end, similar
to a single scatter/reduce step in MPI.

• Alternatively: Data is unstructured (e.g., text) and potentially huge.
Communication will take up lots of time (and thus would eat up all
advantages of MPI).

• Our data comes from and results need to be passed to other
applications, such as enterprise systems, which may use stacks such
as HTTP/Java Servlet/Web Service.

Distributed Computing Thomas Weise 6/41



Use Cases

http:

//www.hadoopilluminated.com/hadoop_illuminated/Hadoop_Use_Cases.html

reports many use cases

Distributed Computing Thomas Weise 7/41

http://www.hadoopilluminated.com/hadoop_illuminated/Hadoop_Use_Cases.html
http://www.hadoopilluminated.com/hadoop_illuminated/Hadoop_Use_Cases.html


Use Cases

http:

//www.hadoopilluminated.com/hadoop_illuminated/Hadoop_Use_Cases.html

reports many use cases:

• analysis of large-scale data sets (e.g., 1TB/day) for banks, health care, mobile
phone carriers, travel industry, . . .

Distributed Computing Thomas Weise 7/41

http://www.hadoopilluminated.com/hadoop_illuminated/Hadoop_Use_Cases.html
http://www.hadoopilluminated.com/hadoop_illuminated/Hadoop_Use_Cases.html


Use Cases

http:

//www.hadoopilluminated.com/hadoop_illuminated/Hadoop_Use_Cases.html

reports many use cases:

• analysis of large-scale data sets (e.g., 1TB/day) for banks, health care, mobile
phone carriers, travel industry, . . .

• processing of human genome data

Distributed Computing Thomas Weise 7/41

http://www.hadoopilluminated.com/hadoop_illuminated/Hadoop_Use_Cases.html
http://www.hadoopilluminated.com/hadoop_illuminated/Hadoop_Use_Cases.html


Use Cases

http:

//www.hadoopilluminated.com/hadoop_illuminated/Hadoop_Use_Cases.html

reports many use cases:

• analysis of large-scale data sets (e.g., 1TB/day) for banks, health care, mobile
phone carriers, travel industry, . . .

• processing of human genome data

• data mining for online sales platform, travel industry, marketing campaigns

Distributed Computing Thomas Weise 7/41

http://www.hadoopilluminated.com/hadoop_illuminated/Hadoop_Use_Cases.html
http://www.hadoopilluminated.com/hadoop_illuminated/Hadoop_Use_Cases.html


Use Cases

http:

//www.hadoopilluminated.com/hadoop_illuminated/Hadoop_Use_Cases.html

reports many use cases:

• analysis of large-scale data sets (e.g., 1TB/day) for banks, health care, mobile
phone carriers, travel industry, . . .

• processing of human genome data

• data mining for online sales platform, travel industry, marketing campaigns

• data analysis backend for software-as-a-service / business intelligence

Distributed Computing Thomas Weise 7/41

http://www.hadoopilluminated.com/hadoop_illuminated/Hadoop_Use_Cases.html
http://www.hadoopilluminated.com/hadoop_illuminated/Hadoop_Use_Cases.html


Use Cases

http:

//www.hadoopilluminated.com/hadoop_illuminated/Hadoop_Use_Cases.html

reports many use cases:

• analysis of large-scale data sets (e.g., 1TB/day) for banks, health care, mobile
phone carriers, travel industry, . . .

• processing of human genome data

• data mining for online sales platform, travel industry, marketing campaigns

• data analysis backend for software-as-a-service / business intelligence

• large-scale parallel image processing

Distributed Computing Thomas Weise 7/41

http://www.hadoopilluminated.com/hadoop_illuminated/Hadoop_Use_Cases.html
http://www.hadoopilluminated.com/hadoop_illuminated/Hadoop_Use_Cases.html


MapReduce with Hadoop

• There are large-scale distributed computations for which MPI is not
the right answer.

Distributed Computing Thomas Weise 8/41



MapReduce with Hadoop

• There are large-scale distributed computations for which MPI is not
the right answer.

• MapReduce [1, 2] with Hadoop [1–3] fills this gap.

Distributed Computing Thomas Weise 8/41



MapReduce with Hadoop

• There are large-scale distributed computations for which MPI is not
the right answer.

• MapReduce [1, 2] with Hadoop [1–3] fills this gap.

• MapReduce is a programming model and an associated
implementation for processing and generating large data sets with a
parallel, distributed algorithm on a cluster. [4]

Distributed Computing Thomas Weise 8/41



MapReduce with Hadoop

• There are large-scale distributed computations for which MPI is not
the right answer.

• MapReduce [1, 2] with Hadoop [1–3] fills this gap.

• MapReduce is a programming model and an associated
implementation for processing and generating large data sets with a
parallel, distributed algorithm on a cluster. [4]

• Conceptually similar to scatter/reduce in MPI

Distributed Computing Thomas Weise 8/41



Divide & Conquer

• Data is divided into smaller pieces, each piece corresponds to a
problem part. The parts are solved separately and the separate
solutions are combined to final results.

Distributed Computing Thomas Weise 9/41



Divide & Conquer

• Data is divided into smaller pieces, each piece corresponds to a
problem part. The parts are solved separately and the separate
solutions are combined to final results.

Distributed Computing Thomas Weise 9/41



Divide & Conquer

• Data is divided into smaller pieces, each piece corresponds to a
problem part. The parts are solved separately and the separate
solutions are combined to final results.

Distributed Computing Thomas Weise 9/41

image source: [5]



MapReduce

• solving of partial problems = mapping; combination of partial results
to final results = reduce

Distributed Computing Thomas Weise 10/41



Hadoop

• Apache Hadoop is a huge framework in Java that – amongst many
other things – provides MapReduce support

Distributed Computing Thomas Weise 11/41

http://hadoop.apache.org/


Hadoop

• Apache Hadoop is a huge framework in Java that – amongst many
other things – provides MapReduce support

• Scalable and fault-tolerant system for data processing and storage [6]

Distributed Computing Thomas Weise 11/41

http://hadoop.apache.org/


Hadoop

• Apache Hadoop is a huge framework in Java that – amongst many
other things – provides MapReduce support

• Scalable and fault-tolerant system for data processing and storage [6]

• Two main components in core Hadoop [6]

Distributed Computing Thomas Weise 11/41

http://hadoop.apache.org/


Hadoop

• Apache Hadoop is a huge framework in Java that – amongst many
other things – provides MapReduce support

• Scalable and fault-tolerant system for data processing and storage [6]

• Two main components in core Hadoop [6]:
• Hadoop Distributed File System: self-healing high-bandwidth clustered

storage: distributed fault-tolerant resource management and scheduling
coupled with a scalable data programming abstraction.

Distributed Computing Thomas Weise 11/41

http://hadoop.apache.org/


Hadoop

• Apache Hadoop is a huge framework in Java that – amongst many
other things – provides MapReduce support

• Scalable and fault-tolerant system for data processing and storage [6]

• Two main components in core Hadoop [6]:
• Hadoop Distributed File System: self-healing high-bandwidth clustered

storage: distributed fault-tolerant resource management and scheduling
coupled with a scalable data programming abstraction.

• MapReduce

Distributed Computing Thomas Weise 11/41

http://hadoop.apache.org/


Hadoop

• Apache Hadoop is a huge framework in Java that – amongst many
other things – provides MapReduce support

• Scalable and fault-tolerant system for data processing and storage [6]

• Two main components in core Hadoop [6]:
• Hadoop Distributed File System: self-healing high-bandwidth clustered

storage: distributed fault-tolerant resource management and scheduling
coupled with a scalable data programming abstraction.

• MapReduce

• http://hadoop.apache.org/, current version 2.7.2

Distributed Computing Thomas Weise 11/41

http://hadoop.apache.org/


Hadoop

• Apache Hadoop is a huge framework in Java that – amongst many
other things – provides MapReduce support

• Scalable and fault-tolerant system for data processing and storage [6]

• Two main components in core Hadoop [6]:
• Hadoop Distributed File System: self-healing high-bandwidth clustered

storage: distributed fault-tolerant resource management and scheduling
coupled with a scalable data programming abstraction.

• MapReduce

• http://hadoop.apache.org/, current version 2.7.2

• Due to time restrictions, we will only consider the MapReduce part

Distributed Computing Thomas Weise 11/41

http://hadoop.apache.org/


Word Count

• The most well-known example for Hadoop

Distributed Computing Thomas Weise 12/41



Word Count

• The most well-known example for Hadoop

• Input: A (potentially large) text

Distributed Computing Thomas Weise 12/41



Word Count

• The most well-known example for Hadoop

• Input: A (potentially large) text

• Output: A list of words and how often they occur in the text

Distributed Computing Thomas Weise 12/41



Word Count

• The most well-known example for Hadoop

• Input: A (potentially large) text

• Output: A list of words and how often they occur in the text

• Map

Distributed Computing Thomas Weise 12/41



Word Count

• The most well-known example for Hadoop

• Input: A (potentially large) text

• Output: A list of words and how often they occur in the text

• Map:

1 divide text into pieces

Distributed Computing Thomas Weise 12/41



Word Count

• The most well-known example for Hadoop

• Input: A (potentially large) text

• Output: A list of words and how often they occur in the text

• Map:

1 divide text into pieces
2 assign one piece to each worker

Distributed Computing Thomas Weise 12/41



Word Count

• The most well-known example for Hadoop

• Input: A (potentially large) text

• Output: A list of words and how often they occur in the text

• Map:

1 divide text into pieces
2 assign one piece to each worker
3 worker creates <word, 1> tuples for each word it finds

Distributed Computing Thomas Weise 12/41



Word Count

• The most well-known example for Hadoop

• Input: A (potentially large) text

• Output: A list of words and how often they occur in the text

• Map:

1 divide text into pieces
2 assign one piece to each worker
3 worker creates <word, 1> tuples for each word it finds

• Reduce

Distributed Computing Thomas Weise 12/41



Word Count

• The most well-known example for Hadoop

• Input: A (potentially large) text

• Output: A list of words and how often they occur in the text

• Map:

1 divide text into pieces
2 assign one piece to each worker
3 worker creates <word, 1> tuples for each word it finds

• Reduce:

1 the word elements of the tuples are keys

Distributed Computing Thomas Weise 12/41



Word Count

• The most well-known example for Hadoop

• Input: A (potentially large) text

• Output: A list of words and how often they occur in the text

• Map:

1 divide text into pieces
2 assign one piece to each worker
3 worker creates <word, 1> tuples for each word it finds

• Reduce:

1 the word elements of the tuples are keys

Distributed Computing Thomas Weise 12/41



Word Count

• The most well-known example for Hadoop

• Input: A (potentially large) text

• Output: A list of words and how often they occur in the text

• Map:

1 divide text into pieces
2 assign one piece to each worker
3 worker creates <word, 1> tuples for each word it finds

• Reduce:

1 the word elements of the tuples are keys

2 we add up the corresponding values (the 1 s) per word

Distributed Computing Thomas Weise 12/41



Word Count

• The most well-known example for Hadoop

• Input: A (potentially large) text

• Output: A list of words and how often they occur in the text

• Map:

1 divide text into pieces
2 assign one piece to each worker
3 worker creates <word, 1> tuples for each word it finds

• Reduce:

1 the word elements of the tuples are keys

2 we add up the corresponding values (the 1 s) per word

• We can also do this locally on each node, after Map and before
Reduce, to reduce the amount of communication needed (this is
called combination)

Distributed Computing Thomas Weise 12/41



WordCount Mapper

• The input of the MapReduce process are text files

Distributed Computing Thomas Weise 13/41



WordCount Mapper

• The input of the MapReduce process are text files

• The TextInputFormat splits the text files into single lines (of type

Text , the Hadoop version of Strings)

Distributed Computing Thomas Weise 13/41



WordCount Mapper

• The input of the MapReduce process are text files

• The TextInputFormat splits the text files into single lines (of type

Text , the Hadoop version of Strings)

• Input of Mapper: tuples of the form
<Integer (line number), Text (the line contents)>

Distributed Computing Thomas Weise 13/41



WordCount Mapper

• The input of the MapReduce process are text files

• The TextInputFormat splits the text files into single lines (of type

Text , the Hadoop version of Strings)

• Input of Mapper: tuples of the form
<Integer (line number), Text (the line contents)>

• The mapper will split each line into words (ignoring punctuation
marks). For each word of the like, it will emit a tuple

Distributed Computing Thomas Weise 13/41



WordCount Mapper

• The input of the MapReduce process are text files

• The TextInputFormat splits the text files into single lines (of type

Text , the Hadoop version of Strings)

• Input of Mapper: tuples of the form
<Integer (line number), Text (the line contents)>

• The mapper will split each line into words (ignoring punctuation
marks). For each word of the like, it will emit a tuple

• Output of Mapper:
<Text (the word), WriteableInteger (always value 1)> , where the

WriteableInteger is stands for the number of appearences

Distributed Computing Thomas Weise 13/41



WordCount Mapper

• The input of the MapReduce process are text files

• The TextInputFormat splits the text files into single lines (of type

Text , the Hadoop version of Strings)

• Input of Mapper: tuples of the form
<Integer (line number), Text (the line contents)>

• The mapper will split each line into words (ignoring punctuation
marks). For each word of the like, it will emit a tuple

• Output of Mapper:
<Text (the word), WriteableInteger (always value 1)> , where the

WriteableInteger is stands for the number of appearences

• If a word occurs multiple times in a line, one token is emitted for each
occurrence.

Distributed Computing Thomas Weise 13/41



Listing: The mapper class.

package wordCount;

public class WordCountMapper

extends Mapper <LongWritable , Text , Text , IntWritable > {

public static final IntWritable ONE = new IntWritable (1);

@Override

protected void map(final LongWritable offset , final Text line ,

final Context context) throws IOException , InterruptedException {

for (String word : line.toString ()// replace punctuation and other

.replace('.', ' ').replace(',', ' ').replace('/', ' ')// strange

.replace(']', ' ').replace('[', ' ').replace('_', ' ')// chars

.replace(')', ' ').replace('(', ' ').replace('#', ' ')// with

.replace('!', ' ').replace('?', ' ').replace("-", "")// spaces

.replace("\"", "").replace("\'", "").replaceAll("[0-9]+", " ")//

.replace(':', ' ').replace('\t', ' ').replace('\f', ' ')//

.split("\\s+")) {// iterate over all space -separated words

word = word.trim();

if (word.length () > 0) {// emit one tuple <WORD , 1> for each WORD

context.write(new Text(word.toLowerCase ()), WordCountMapper.ONE);

}

}

}

}

Distributed Computing Thomas Weise 14/41



WordCount Reducer

• After this mapping step, the reducer is applied.

Distributed Computing Thomas Weise 15/41



WordCount Reducer

• After this mapping step, the reducer is applied.

• Input:
<Text (the word), Iterable<WriteableInteger> (number of occurrences)>

Distributed Computing Thomas Weise 15/41



WordCount Reducer

• After this mapping step, the reducer is applied.

• Input:
<Text (the word), Iterable<WriteableInteger> (number of occurrences)>

• Hadoop has put all the <WriteableInteger> for the same

<Text (the word)> key into a list for us!

Distributed Computing Thomas Weise 15/41



WordCount Reducer

• After this mapping step, the reducer is applied.

• Input:
<Text (the word), Iterable<WriteableInteger> (number of occurrences)>

• Hadoop has put all the <WriteableInteger> for the same

<Text (the word)> key into a list for us!

• We now only need to add them up

Distributed Computing Thomas Weise 15/41



WordCount Reducer

• After this mapping step, the reducer is applied.

• Input:
<Text (the word), Iterable<WriteableInteger> (number of occurrences)>

• Hadoop has put all the <WriteableInteger> for the same

<Text (the word)> key into a list for us!

• We now only need to add them up

• Output:
<Text (the word), WriteableInteger (count of occurrences)>

Distributed Computing Thomas Weise 15/41



WordCount Reducer

• After this mapping step, the reducer is applied.

• Input:
<Text (the word), Iterable<WriteableInteger> (number of occurrences)>

• Hadoop has put all the <WriteableInteger> for the same

<Text (the word)> key into a list for us!

• We now only need to add them up

• Output:
<Text (the word), WriteableInteger (count of occurrences)>

• The reducer can also be used as combinator

Distributed Computing Thomas Weise 15/41



WordCount Reducer

• After this mapping step, the reducer is applied.

• Input:
<Text (the word), Iterable<WriteableInteger> (number of occurrences)>

• Hadoop has put all the <WriteableInteger> for the same

<Text (the word)> key into a list for us!

• We now only need to add them up

• Output:
<Text (the word), WriteableInteger (count of occurrences)>

• The reducer can also be used as combinator: Before sending the
results of the mapper to the central reducer, we can add up the tuples
( WriteableInteger s) for the same key (word, Text ).

Distributed Computing Thomas Weise 15/41



WordCount Reducer

• After this mapping step, the reducer is applied.

• Input:
<Text (the word), Iterable<WriteableInteger> (number of occurrences)>

• Hadoop has put all the <WriteableInteger> for the same

<Text (the word)> key into a list for us!

• We now only need to add them up

• Output:
<Text (the word), WriteableInteger (count of occurrences)>

• The reducer can also be used as combinator: Before sending the
results of the mapper to the central reducer, we can add up the tuples
( WriteableInteger s) for the same key (word, Text ). This way we
reduce the data volume.

Distributed Computing Thomas Weise 15/41



Listing: The reducer class.

package wordCount;

public class WordCountReducer

extends Reducer <Text , IntWritable , Text ,

IntWritable > {

@Override

protected void reduce(final Text key , final

Iterable <IntWritable > values ,

final Context context) throws IOException ,

InterruptedException {

// we receive tuples of the type <WORD ,

IntWritable > for each WORD

int count = 0;

for (final IntWritable current : values) { //

we add up all the ints

count += current.get();

}

context.write(key , new IntWritable(count));//

and emit the final count

}

}
Distributed Computing Thomas Weise 16/41



WordCount Driver

• We put everything together in a “driver” class

Distributed Computing Thomas Weise 17/41



Driver Class

Listing: The driver class.

package wordCount;

public class WordCountDriver extends Configured implements Tool {

public static void main(final String [] args) throws Exception {

System.exit(ToolRunner.run(new Configuration (), //

new WordCountDriver (), args));

}

@Override

public int run(final String [] args) throws Exception {

final Configuration conf;

final Job job;

conf = new Configuration ();

job = Job.getInstance(conf , "Word Count Map -Reduce");

job.setJarByClass(WordCountDriver.class);

if (args.length < 2) {

return 1;

}

job.setMapperClass(WordCountMapper.class);// set mapper

job.setReducerClass(WordCountReducer.class);// set reducer

// a combiner performs something like a reduction step right after

// mapping , on the mapper 's computer , before sending on the data

job.setCombinerClass(WordCountReducer.class);// set combiner

job.setOutputKeyClass(Text.class);// set output key class

job.setOutputValueClass(IntWritable.class);// set output value class

job.setInputFormatClass(TextInputFormat.class);// set input format

job.setOutputFormatClass(TextOutputFormat.class);// set output format

FileInputFormat.setInputPaths(job , new Path(args [0]));

FileOutputFormat.setOutputPath(job , new Path(args [1]));

job.waitForCompletion(true);

return 0;

}

} Distributed Computing Thomas Weise 18/41



Maven Setup

• We can set up this project by using Maven

Distributed Computing Thomas Weise 19/41



Maven Setup

• We can set up this project by using Maven

• And create an executable jar with mvn clean compile package

Distributed Computing Thomas Weise 19/41



pom.xml

Listing: [pom.xml] – Part 1: Basic Project Information

<project xmlns="http: //maven.apache.org/POM /4.0.0"

xmlns:xsi="http://www.w3.org /2001/ XMLSchema -instance"

xsi:schemaLocation="http:// maven.apache.org/POM /4.0.0 

http:// maven.apache.org/xsd/maven -4.0.0. xsd">

<modelVersion >4.0.0 </modelVersion >

<groupId >thomasWeise </groupId >

<artifactId >wordCount </artifactId >

<version >0.8.0</version >

<packaging >jar</packaging >

<name>Hadoop Word Counting Example </name>

<description >The famous word counting example for

Hadoop.</description >

Distributed Computing Thomas Weise 20/41



pom.xml

Listing: [pom.xml] – Part 2: Information about Organization

<url>http://www.it-weise.de/</url>

<organization >

<url>http: //www.it-weise.de/</url>

<name>thomasWeise </name>

</organization >

Distributed Computing Thomas Weise 21/41



pom.xml

Listing: [pom.xml] – Part 3: Information about Developer

<developers >

<developer >

<id>thomasWeise </id>

<name>Thomas Weise </name>

<email >tweise@ustc.edu.cn</email >

<url>http: //www.it-weise.de/</url>

<organization >University of Science and Technology of

China (USTC)</organization >

<organizationUrl >http: //www.ustc.edu.cn/</organizationUrl >

<roles >

<role>architect </role>

<role>developer </role>

</roles >

<timezone >China Time Zone</timezone >

</developer >

</developers >

Distributed Computing Thomas Weise 22/41



pom.xml

Listing: [pom.xml] – Part 4: Properties for Rest of pom

<properties >

<encoding >UTF -8</encoding >

<project.build.sourceEncoding >${ encoding}</project.build.sourceEncoding >

<project.reporting.outputEncoding >${ encoding}</project.reporting.outputEncoding >

<jdk.version >1.7</jdk.version >

<project.mainClass >wordCount.WordCountDriver </project.mainClass >

Distributed Computing Thomas Weise 23/41



pom.xml

Listing: [pom.xml] – Part 5: Licensing

<licenses >

<license >

<name>GNU GENERAL PUBLIC LICENSE Version 3, 29 June

2007</name>

<url>http: //www.gnu.org/licenses/gpl -3.0- standalone.html</url>

<distribution >repo</distribution >

</license >

</licenses >

Distributed Computing Thomas Weise 24/41



pom.xml

Listing: [pom.xml] – Part 6: SCM, Issue Management, and Inception Year

<issueManagement >

<url>https: // github.com/thomasWeise/distributedComputingExamples/issues </url>

<system >GitHub </system >

</issueManagement >

<scm>

<connection >scm:git:git@github.com:thomasWeise/distributedComputingExamples.git</connection >

<developerConnection >scm:git:git@github.com:thomasWeise/distributedComputingExamples.git</developerConne

<url>git@github.com:thomasWeise/distributedComputingExamples.git</url>

</scm>

<inceptionYear >2016</inceptionYear >

Distributed Computing Thomas Weise 25/41



pom.xml

Listing: [pom.xml] – Part 7: Dependencies

<dependencies >

<dependency >

<groupId >org.apache.hadoop </groupId >

<artifactId >hadoop -client </artifactId >

<version >2.7.2 </version >

</dependency >

</dependencies >

Distributed Computing Thomas Weise 26/41



pom.xml

Listing: [pom.xml] – Part 8: Build

<build>

<finalName >wordCount </finalName >

<plugins >

<plugin >

<groupId >org.apache.maven.plugins </groupId >

<artifactId >maven -compiler -plugin </artifactId >

<version >3.1</version >

<configuration >

<source >${jdk.version}</source >

<target >${jdk.version}</target >

<encoding >${ encoding}</encoding >

<showWarnings >true</showWarnings >

<showDeprecation >true</showDeprecation >

</configuration >

</plugin >

<!-- This one is for building the fat jar. -->

<plugin >

<groupId >org.apache.maven.plugins </groupId >

<artifactId >maven -shade -plugin </artifactId >

<version >2.3</version >

<executions >

<execution >

<phase>package </phase >

<goals>

<goal>shade </goal>

</goals>

<configuration >

<minimizeJar >false </minimizeJar >

<shadedArtifactAttached >true</shadedArtifactAttached >

<createDependencyReducedPom >false </createDependencyReducedPom >

<finalName >wordCount -full</finalName >

<filters >

<filter >

<artifact >*:*</artifact >

<excludes >

<exclude >META -INF /*.SF</exclude >

<exclude >META -INF /*. DSA</exclude >

<exclude >META -INF /*. RSA</exclude >

</excludes >

</filter >

</filters >

<transformers >

<transformer

implementation="org.apache.maven.plugins.shade.resource.ManifestResourceTransformer">

<mainClass >${ project.mainClass}</mainClass >

</transformer >

<transformer

implementation="org.apache.maven.plugins.shade.resource.ApacheLicenseResourceTransformer" />

<transformer

implementation="org.apache.maven.plugins.shade.resource.ApacheNoticeResourceTransformer" />

<transformer

implementation="org.apache.maven.plugins.shade.resource.PluginXmlResourceTransformer" />

<transformer

implementation="org.apache.maven.plugins.shade.resource.ServicesResourceTransformer" />

</transformers >

</configuration >

</execution >

</executions >

</plugin >

</plugins >

</build>

Distributed Computing Thomas Weise 27/41



Executing the Example

• Enter the hadoop folder and perform the following steps

Distributed Computing Thomas Weise 28/41



Executing the Example

• Enter the hadoop folder and perform the following steps:

Distributed Computing Thomas Weise 28/41



Executing the Example

• Enter the hadoop folder and perform the following steps:

1 bin/hdfs namenode -format

Distributed Computing Thomas Weise 28/41



Executing the Example

• Enter the hadoop folder and perform the following steps:

1 bin/hdfs namenode -format

2 sbin/start-dfs.sh

Distributed Computing Thomas Weise 28/41



Executing the Example

• Enter the hadoop folder and perform the following steps:

1 bin/hdfs namenode -format

2 sbin/start-dfs.sh

3 bin/hdfs dfs -mkdir /user

Distributed Computing Thomas Weise 28/41



Executing the Example

• Enter the hadoop folder and perform the following steps:

1 bin/hdfs namenode -format

2 sbin/start-dfs.sh

3 bin/hdfs dfs -mkdir /user

4 bin/hdfs dfs -mkdir /user/<username> (use your user name)

Distributed Computing Thomas Weise 28/41



Executing the Example

• Enter the hadoop folder and perform the following steps:

1 bin/hdfs namenode -format

2 sbin/start-dfs.sh

3 bin/hdfs dfs -mkdir /user

4 bin/hdfs dfs -mkdir /user/<username> (use your user name)

5 bin/hdfs dfs -put Y/distributedComputingExamples/hadoop/wordCount/input input

where Y is the folder where we have the distributedComputingExamples repository

Distributed Computing Thomas Weise 28/41



Executing the Example

• Enter the hadoop folder and perform the following steps:

1 bin/hdfs namenode -format

2 sbin/start-dfs.sh

3 bin/hdfs dfs -mkdir /user

4 bin/hdfs dfs -mkdir /user/<username> (use your user name)

5 bin/hdfs dfs -put Y/distributedComputingExamples/hadoop/wordCount/input input

where Y is the folder where we have the distributedComputingExamples repository

6

bin/hadoop jar Y/distributedComputingExamples/hadoop/wordCount/target/wordCount-full.jar

input output

Distributed Computing Thomas Weise 28/41



Executing the Example

• Enter the hadoop folder and perform the following steps:

1 bin/hdfs namenode -format

2 sbin/start-dfs.sh

3 bin/hdfs dfs -mkdir /user

4 bin/hdfs dfs -mkdir /user/<username> (use your user name)

5 bin/hdfs dfs -put Y/distributedComputingExamples/hadoop/wordCount/input input

where Y is the folder where we have the distributedComputingExamples repository

6

bin/hadoop jar Y/distributedComputingExamples/hadoop/wordCount/target/wordCount-full.jar

input output

7 bin/hdfs dfs -ls output

Distributed Computing Thomas Weise 28/41



Executing the Example

• Enter the hadoop folder and perform the following steps:

1 bin/hdfs namenode -format

2 sbin/start-dfs.sh

3 bin/hdfs dfs -mkdir /user

4 bin/hdfs dfs -mkdir /user/<username> (use your user name)

5 bin/hdfs dfs -put Y/distributedComputingExamples/hadoop/wordCount/input input

where Y is the folder where we have the distributedComputingExamples repository

6

bin/hadoop jar Y/distributedComputingExamples/hadoop/wordCount/target/wordCount-full.jar

input output

7 bin/hdfs dfs -ls output

8 bin/hdfs dfs -cat output/part-r-00000 | less

Distributed Computing Thomas Weise 28/41



Executing the Example

• Enter the hadoop folder and perform the following steps:

1 bin/hdfs namenode -format

2 sbin/start-dfs.sh

3 bin/hdfs dfs -mkdir /user

4 bin/hdfs dfs -mkdir /user/<username> (use your user name)

5 bin/hdfs dfs -put Y/distributedComputingExamples/hadoop/wordCount/input input

where Y is the folder where we have the distributedComputingExamples repository

6

bin/hadoop jar Y/distributedComputingExamples/hadoop/wordCount/target/wordCount-full.jar

input output

7 bin/hdfs dfs -ls output

8 bin/hdfs dfs -cat output/part-r-00000 | less

9 bin/hdfs dfs -copyToLocal output/part-r-00000

Distributed Computing Thomas Weise 28/41



Executing the Example

• Enter the hadoop folder and perform the following steps:

1 bin/hdfs namenode -format

2 sbin/start-dfs.sh

3 bin/hdfs dfs -mkdir /user

4 bin/hdfs dfs -mkdir /user/<username> (use your user name)

5 bin/hdfs dfs -put Y/distributedComputingExamples/hadoop/wordCount/input input

where Y is the folder where we have the distributedComputingExamples repository

6

bin/hadoop jar Y/distributedComputingExamples/hadoop/wordCount/target/wordCount-full.jar

input output

7 bin/hdfs dfs -ls output

8 bin/hdfs dfs -cat output/part-r-00000 | less

9 bin/hdfs dfs -copyToLocal output/part-r-00000

10 sbin/stop-dfs.sh

Distributed Computing Thomas Weise 28/41



Web Finder Count

• Try to find the interconnection between pages

Distributed Computing Thomas Weise 29/41



Web Finder Count

• Try to find the interconnection between pages

• Input to Mapper: List of URLs (as Text s)

Distributed Computing Thomas Weise 29/41



Web Finder Count

• Try to find the interconnection between pages

• Input to Mapper: List of URLs (as Text s)

• Output of Mapper: Tuples of URL to resources and URLs from input
referencing them

Distributed Computing Thomas Weise 29/41



Web Finder Count

• Try to find the interconnection between pages

• Input to Mapper: List of URLs (as Text s)

• Output of Mapper: Tuples of URL to resources and URLs from input
referencing them

• Input of Reducer: Tuples of URL to a resources and list of URLs
(from Mapper input) referencing them

Distributed Computing Thomas Weise 29/41



Web Finder Count

• Try to find the interconnection between pages

• Input to Mapper: List of URLs (as Text s)

• Output of Mapper: Tuples of URL to resources and URLs from input
referencing them

• Input of Reducer: Tuples of URL to a resources and list of URLs
(from Mapper input) referencing them

• Output of Reducer: List of URLs to shared resources and URLs (from
Mapper input) referencing them

Distributed Computing Thomas Weise 29/41



Web Finder Count

• Try to find the interconnection between pages

• Input to Mapper: List of URLs (as Text s)

• Output of Mapper: Tuples of URL to resources and URLs from input
referencing them

• Input of Reducer: Tuples of URL to a resources and list of URLs
(from Mapper input) referencing them

• Output of Reducer: List of URLs to shared resources and URLs (from
Mapper input) referencing them

• Having this, we can find out which resources are fundamental in the
web, which are shared between different pages, and how the most
important pages in China are interconnected

Distributed Computing Thomas Weise 29/41



Web Finder Mapper

• The input of the MapReduce process are text files

Distributed Computing Thomas Weise 30/41



Web Finder Mapper

• The input of the MapReduce process are text files

• The TextInputFormat splits the text files into single lines (of type

Text , the Hadoop version of Strings)

Distributed Computing Thomas Weise 30/41



Web Finder Mapper

• The input of the MapReduce process are text files

• The TextInputFormat splits the text files into single lines (of type

Text , the Hadoop version of Strings)

• Input of Mapper: tuples of the form
<Integer (line number), Text (the line contents)>

Distributed Computing Thomas Weise 30/41



Web Finder Mapper

• The input of the MapReduce process are text files

• The TextInputFormat splits the text files into single lines (of type

Text , the Hadoop version of Strings)

• Input of Mapper: tuples of the form
<Integer (line number), Text (the line contents)>

• Each line is a URL (let’s call it A )

Distributed Computing Thomas Weise 30/41



Web Finder Mapper

• The input of the MapReduce process are text files

• The TextInputFormat splits the text files into single lines (of type

Text , the Hadoop version of Strings)

• Input of Mapper: tuples of the form
<Integer (line number), Text (the line contents)>

• Each line is a URL (let’s call it A )

• We download the referenced web page

Distributed Computing Thomas Weise 30/41



Web Finder Mapper

• The input of the MapReduce process are text files

• The TextInputFormat splits the text files into single lines (of type

Text , the Hadoop version of Strings)

• Input of Mapper: tuples of the form
<Integer (line number), Text (the line contents)>

• Each line is a URL (let’s call it A )

• We download the referenced web page

• We detect all references to other pages, CSS, and javscript in the
page. Each reference corresponds to a URL, let’s call it B

Distributed Computing Thomas Weise 30/41



Web Finder Mapper

• The input of the MapReduce process are text files

• The TextInputFormat splits the text files into single lines (of type

Text , the Hadoop version of Strings)

• Input of Mapper: tuples of the form
<Integer (line number), Text (the line contents)>

• Each line is a URL (let’s call it A )

• We download the referenced web page

• We detect all references to other pages, CSS, and javscript in the
page. Each reference corresponds to a URL, let’s call it B

• We emit all tuples <B as Text, A as Text>

Distributed Computing Thomas Weise 30/41



Web Finder Mapper

• The input of the MapReduce process are text files

• The TextInputFormat splits the text files into single lines (of type

Text , the Hadoop version of Strings)

• Input of Mapper: tuples of the form
<Integer (line number), Text (the line contents)>

• Each line is a URL (let’s call it A )

• We download the referenced web page

• We detect all references to other pages, CSS, and javscript in the
page. Each reference corresponds to a URL, let’s call it B

• We emit all tuples <B as Text, A as Text>

• The process is applied recursively (up to a maximum depth)

Distributed Computing Thomas Weise 30/41



Web Finder Mapper

• The input of the MapReduce process are text files

• The TextInputFormat splits the text files into single lines (of type

Text , the Hadoop version of Strings)

• Input of Mapper: tuples of the form
<Integer (line number), Text (the line contents)>

• Each line is a URL (let’s call it A )

• We download the referenced web page

• We detect all references to other pages, CSS, and javscript in the
page. Each reference corresponds to a URL, let’s call it B

• We emit all tuples <B as Text, A as Text>

• The process is applied recursively (up to a maximum depth)

• So we have tuples of resources and the URLs referencing them

Distributed Computing Thomas Weise 30/41



Listing: The mapper class.

package webFinder;

/**

* This is the Mapper component of the Web Finder example. Its input are

* text lines , where each line stands for a website URL. It finds all

* resources that are loaded by a given website URL and emits tuples of

* kind {@code <resource URL , website URL >}.

*/

public class WebFinderMapper

extends Mapper <LongWritable , Text , Text , Text > {

/** the logger we use */

private static Logger LOGGER = Logger.getLogger(WebFinderMapper.class);

/**

* Map tuples of type {@code <line number , website url text >} to tuples

* of kind {@code <resource url text , website url text >}.

*/

@Override

protected void map(final LongWritable offset , final Text line ,

final Context context) throws IOException , InterruptedException {

final URL baseUrl;

final URI baseUri;

final int maxDepth;

final Text baseUrlText;

final HashSet <URL > done;

String str;

str = WebFinderMapper.__prepare(line.toString (), true);

if (str == null) {// prepare base url

return;

}

// set maximum depth of spider

maxDepth = context.getConfiguration ().getInt("maxDepth", 1);

baseUri = URI.create(str).normalize ();

baseUrl = baseUri.toURL();

done = new HashSet <>();// URLs that have been processed

done.add(baseUrl);

Distributed Computing Thomas Weise 31/41



Web Finder Reducer

• The input of the Reducer are tuples of resources and lists of URLs
referencing them

Distributed Computing Thomas Weise 32/41



Web Finder Reducer

• The input of the Reducer are tuples of resources and lists of URLs
referencing them

• For each resource URL, we compute the set of unique URLs
referencing them

Distributed Computing Thomas Weise 32/41



Web Finder Reducer

• The input of the Reducer are tuples of resources and lists of URLs
referencing them

• For each resource URL, we compute the set of unique URLs
referencing them

• If the set contains more then one resource, we have a resource shared
among multiple of the originally provided URLs

Distributed Computing Thomas Weise 32/41



Web Finder Reducer

• The input of the Reducer are tuples of resources and lists of URLs
referencing them

• For each resource URL, we compute the set of unique URLs
referencing them

• If the set contains more then one resource, we have a resource shared
among multiple of the originally provided URLs

• We will only output such elements, as tuple
<URL, list of URLs referencing it>

Distributed Computing Thomas Weise 32/41



Listing: The reducer class.

package webFinder;

/**

* This is the reducer component of the web finder example. For each key (

* {@code resource URL}) of the tuples produced by the mapper , it receives

* the list of all values ({ @code website URLs}). If such a list contains

* more than one unique element , this means that the resource is shared by

* multiple websites. This reducer emits tuples of the form

* {@code <resource URL , list of website urls >}.

*/

public class WebFinderReducer

extends Reducer <Text , Text , Text , List <Text >> {

/**

* The actual reduction step: From the tuples of form

* {@code <resource URL , iterable of referencing website URLs >}, select

* all resources referenced by more than one unique website. For these ,

* output tuples of the form {@code <resource URL , list of website URLs >}

* .

*/

@Override

protected void reduce(final Text key , final Iterable <Text > values ,

final Context context) throws IOException , InterruptedException {

final HashSet <URL > set;

final int size;

final ArrayList list;

String string;

URL add;

int index;

set = new HashSet <>();

looper: for (final Text url : values) {

string = url.toString ();// convert value to a URL

try {

add = new URI(string).normalize ().toURL();

} catch (@SuppressWarnings("unused") final Throwable error) {

try {

add = new URL(string).toURI().normalize ().toURL();

} catch (@SuppressWarnings("unused") final Throwable error2) {

try {

add = new URL(string);

} catch (@SuppressWarnings("unused") final Throwable error3) {

continue looper;

}

}

}

set.add(add); // store value in set of URLs pointing to this resource

Distributed Computing Thomas Weise 33/41



WebFinder Driver

• We put everything together in a “driver” class

Distributed Computing Thomas Weise 34/41



The Driver Class

Listing: The driver class.

package webFinder;

/**

* The driver of the web finder sets up the distributed computation by

* defining what the mapper and reducer classes , amongst other things.

*/

public class WebFinderDriver extends Configured implements Tool {

public static void main(final String [] args) throws Exception {

try {

final int res = ToolRunner.run(new Configuration (),

new WebFinderDriver (), args);

System.exit(res);

} catch (final Exception e) {

e.printStackTrace ();

System.exit (255);

}

}

/** Setting up the computation. */

@Override

public int run(final String [] args) throws Exception {

final Configuration conf;

final Job job;

conf = new Configuration ();

job = Job.getInstance(conf , "WebFinder MapReduce");

job.setJarByClass(WebFinderDriver.class);// use current jar

if (args.length < 2) {

return 1;

}

if (args.length > 2) {// set max depth and pass parameter to mapper

conf.setInt("maxDepth", Integer.parseInt(args [2]));

}

job.setMapperClass(WebFinderMapper.class);// set mapper

job.setMapOutputKeyClass(Text.class);// set mapper output key type

job.setMapOutputValueClass(Text.class); // set mapper output value type

job.setReducerClass(WebFinderReducer.class);// set reducer

job.setOutputKeyClass(Text.class);// set reducer output key type

job.setOutputValueClass(List.class);// set reducer output value

job.setInputFormatClass(TextInputFormat.class);// set input format

job.setOutputFormatClass(TextOutputFormat.class);// set output format

FileInputFormat.setInputPaths(job , new Path(args [0]));

FileOutputFormat.setOutputPath(job , new Path(args [1]));

Distributed Computing Thomas Weise 35/41



Executing the Example

• Enter the hadoop folder and perform the following steps

Distributed Computing Thomas Weise 36/41



Executing the Example

• Enter the hadoop folder and perform the following steps:

Distributed Computing Thomas Weise 36/41



Executing the Example

• Enter the hadoop folder and perform the following steps:

1 bin/hdfs namenode -format

Distributed Computing Thomas Weise 36/41



Executing the Example

• Enter the hadoop folder and perform the following steps:

1 bin/hdfs namenode -format

2 sbin/start-dfs.sh

Distributed Computing Thomas Weise 36/41



Executing the Example

• Enter the hadoop folder and perform the following steps:

1 bin/hdfs namenode -format

2 sbin/start-dfs.sh

3 bin/hdfs dfs -mkdir /user

Distributed Computing Thomas Weise 36/41



Executing the Example

• Enter the hadoop folder and perform the following steps:

1 bin/hdfs namenode -format

2 sbin/start-dfs.sh

3 bin/hdfs dfs -mkdir /user

4 bin/hdfs dfs -mkdir /user/<username> (use your user name)

Distributed Computing Thomas Weise 36/41



Executing the Example

• Enter the hadoop folder and perform the following steps:

1 bin/hdfs namenode -format

2 sbin/start-dfs.sh

3 bin/hdfs dfs -mkdir /user

4 bin/hdfs dfs -mkdir /user/<username> (use your user name)

5 bin/hdfs dfs -put Y/distributedComputingExamples/hadoop/webFinder/input input where

Y is the folder where we have the distributedComputingExamples repository

Distributed Computing Thomas Weise 36/41



Executing the Example

• Enter the hadoop folder and perform the following steps:

1 bin/hdfs namenode -format

2 sbin/start-dfs.sh

3 bin/hdfs dfs -mkdir /user

4 bin/hdfs dfs -mkdir /user/<username> (use your user name)

5 bin/hdfs dfs -put Y/distributedComputingExamples/hadoop/webFinder/input input where

Y is the folder where we have the distributedComputingExamples repository

6

bin/hadoop jar Y/distributedComputingExamples/hadoop/webFinder/target/webFinder-full.jar

output

Distributed Computing Thomas Weise 36/41



Executing the Example

• Enter the hadoop folder and perform the following steps:

1 bin/hdfs namenode -format

2 sbin/start-dfs.sh

3 bin/hdfs dfs -mkdir /user

4 bin/hdfs dfs -mkdir /user/<username> (use your user name)

5 bin/hdfs dfs -put Y/distributedComputingExamples/hadoop/webFinder/input input where

Y is the folder where we have the distributedComputingExamples repository

6

bin/hadoop jar Y/distributedComputingExamples/hadoop/webFinder/target/webFinder-full.jar

output

7 bin/hdfs dfs -ls output

Distributed Computing Thomas Weise 36/41



Executing the Example

• Enter the hadoop folder and perform the following steps:

1 bin/hdfs namenode -format

2 sbin/start-dfs.sh

3 bin/hdfs dfs -mkdir /user

4 bin/hdfs dfs -mkdir /user/<username> (use your user name)

5 bin/hdfs dfs -put Y/distributedComputingExamples/hadoop/webFinder/input input where

Y is the folder where we have the distributedComputingExamples repository

6

bin/hadoop jar Y/distributedComputingExamples/hadoop/webFinder/target/webFinder-full.jar

output

7 bin/hdfs dfs -ls output

8 bin/hdfs dfs -cat output/part-r-00000 | less

Distributed Computing Thomas Weise 36/41



Executing the Example

• Enter the hadoop folder and perform the following steps:

1 bin/hdfs namenode -format

2 sbin/start-dfs.sh

3 bin/hdfs dfs -mkdir /user

4 bin/hdfs dfs -mkdir /user/<username> (use your user name)

5 bin/hdfs dfs -put Y/distributedComputingExamples/hadoop/webFinder/input input where

Y is the folder where we have the distributedComputingExamples repository

6

bin/hadoop jar Y/distributedComputingExamples/hadoop/webFinder/target/webFinder-full.jar

output

7 bin/hdfs dfs -ls output

8 bin/hdfs dfs -cat output/part-r-00000 | less

9 bin/hdfs dfs -copyToLocal output/part-r-00000

Distributed Computing Thomas Weise 36/41



Executing the Example

• Enter the hadoop folder and perform the following steps:

1 bin/hdfs namenode -format

2 sbin/start-dfs.sh

3 bin/hdfs dfs -mkdir /user

4 bin/hdfs dfs -mkdir /user/<username> (use your user name)

5 bin/hdfs dfs -put Y/distributedComputingExamples/hadoop/webFinder/input input where

Y is the folder where we have the distributedComputingExamples repository

6

bin/hadoop jar Y/distributedComputingExamples/hadoop/webFinder/target/webFinder-full.jar

output

7 bin/hdfs dfs -ls output

8 bin/hdfs dfs -cat output/part-r-00000 | less

9 bin/hdfs dfs -copyToLocal output/part-r-00000

10 sbin/stop-dfs.sh

Distributed Computing Thomas Weise 36/41



Listing: Output

http ://c.youku.com/aboutcn/youtu [http :// www.tudou.com , http :// www.youku.com]

http ://c.youku.com/abouteg/youku [http :// www.tudou.com , http :// www.youku.com]

http ://c.youku.com/abouteg/youtu [http :// www.tudou.com , http :// www.youku.com]

http :// cbjs.baidu.com/js/m.js [http :// www.baidu.com , http :// www.qq.com]

http :// css.tudouui.com/skin/__g/img/sprite.gif [http :// www.tudou.com , http :// www.youku.com]

http :// events.youku.com/global/scripts/jquery -1.8.3. js [http :// www.tudou.com , http :// www.youku.com]

http :// events.youku.com/global/scripts/youku.js [http :// www.tudou.com , http :// www.youku.com]

http :// images.china.cn/images1/ch/appxz /2. jpg [http :// www.qq.com , http :// www.youku.com]

http :// images.china.cn/images1/ch/appxz /3. jpg [http :// www.qq.com , http :// www.youku.com]

http ://js.tudouui.com/v3/dist/js/lib_6.js [http :// www.tudou.com , http :// www.youku.com]

http :// mail.qq.com [http :// www.baidu.com , http :// www.qq.com]

http :// minisite.youku.com/mini_common/urchin.js [http :// www.tudou.com , http :// www.youku.com]

http :// player.youku.com/jsapi [http :// www.tudou.com , http :// www.youku.com]

http :// qzone.qq.com [http :// www.baidu.com , http :// www.qq.com]

http :// res.mfs.ykimg.com /051000004 D92DF6197927339BA04E210.js [http :// www.tudou.com , http :// www.youku.com]

http :// static.youku.com/user/img/avatar /80/5. jpg [http :// www.tudou.com , http :// www.youku.com]

http :// static.youku.com/user/img/avatar /80/9. jpg [http :// www.tudou.com , http :// www.youku.com]

http :// weibo.com [http :// www.baidu.com , http :// www.qq.com]

http :// www .12377. cn [http :// www.baidu.com , http :// www.qq.com , http :// www.youku.com]

http :// www .12377. cn/node_548446.htm [http :// www.qq.com , http :// www.youku.com]

http :// www.bjjubao.org [http :// www.baidu.com , http :// www.youku.com]

http :// www.china.com.cn/player/video.js [http :// www.qq.com , http :// www.youku.com]

http :// www.ellechina.com [http :// www.qq.com , http :// www.youku.com]

http :// www.hao123.com [http :// www.baidu.com , http :// www.qq.com]

http :// www.hd315.gov.cn/beian/view.asp?bianhao =010202006082400023 [http :// www.tudou.com ,

http :// www.youku.com]

http :// www.miibeian.gov.cn [http :// www.qq.com , http :// www.tudou.com , http :// www.youku.com]

http :// www.miibeian.gov.cn/publish/query/indexFirst.action [http :// www.tudou.com , http :// www.youku.com]

http :// www.pclady.com.cn [http :// www.baidu.com , http :// www.qq.com]

http :// www.qq.com [http :// www.baidu.com , http :// www.qq.com]

http :// www.shjbzx.cn [http :// www.qq.com , http :// www.tudou.com]

http :// www.tudou.com [http :// www.tudou.com , http :// www.youku.com]

http :// www.tudou.com/about/cn [http :// www.tudou.com , http :// www.youku.com]

http :// www.tudou.com/about/en [http :// www.tudou.com , http :// www.youku.com]

http :// www.youku.com [http :// www.baidu.com , http :// www.tudou.com , http :// www.youku.com]

http :// www.youku.com/show_page/id_z8dc3fdeedcb911e3a705.html [http :// www.tudou.com , http :// www.youku.com]

http ://y.qq.com [http :// www.baidu.com , http :// www.qq.com]

https ://www.alipay.com [http ://www.baidu.com , http ://www.youku.com]

Distributed Computing Thomas Weise 37/41



Summary

• MapReduce via Hadoop can cover a use case of distributed
computing that neither MPI nor Java Servlets can

• Easy to use with Java and Maven

• Apache Hadoop has many more features, which we cannot cover here

Distributed Computing Thomas Weise 38/41



Caspar David Friedrich, “Der Wanderer über dem Nebelmeer”, 1818
http://en.wikipedia.org/wiki/Wanderer_above_the_Sea_of_Fog

谢谢谢谢谢谢
Thank you

Thomas Weise [汤卫思]
tweise@hfuu.edu.cn

http://www.it-weise.de

Hefei University, South Campus 2
Institute of Applied Optimization
Shushan District, Hefei, Anhui,

China

Distributed Computing Thomas Weise 39/41

mailto:tweise@hfuu.edu.cn
mailto:http://www.it-weise.de


Bibliography

Distributed Computing Thomas Weise 40/41



Bibliography I

1. Thilina Gunarathne. Hadoop MapReduce v2 Cookbook. Birmingham, UK: Packt Publishing Limited – ebooks Account, 2nd
revised edition, January 2015. ISBN 978-1783285471.

2. Donald Miner and Adam Shook. MapReduce Design Patterns – Building Effective Algorithms and Analytics for Hadoop and
Other Systems. Sebastopol, CA, USA: O’Reilly Media, Inc., 2012. ISBN 978-1-4493-2717-0. URL
http://filepi.com/i/VhKExiV.

3. Tom White. Hadoop: The Definitive Guide – Storage and Analysis at Internet Scale. Sebastopol, CA, USA: O’Reilly Media,
Inc., 4th edition, March 2015. ISBN 978-1-4919-0163-2.

4. Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data processing on large clusters. Technical report, Google, Inc.,
2004. URL
http://static.googleusercontent.com/media/research.google.com/es/us/archive/mapreduce-osdi04.pdf.
Appeared in OSDI’04: Sixth Symposium on Operating System Design and Implementation, San Francisco, CA, December,
2004 and Communications of the ACM – 50th anniversary issue: 1958-2008 CACM Homepage archive. 51(1):107–113,
January 2008, ACM New York, NY, USA.

5. Jimmy Lin. Cloud Computing Lecture – #1 What is Cloud Computing? (and an intro to parallel/distributed processing).
College Park, MD, USA: University of Maryland, The iSchool, September 3, 2008. URL
http://www.umiacs.umd.edu/~jimmylin/cloud-2008-Fall/Session1.ppt.

6. Amr Awadallah. Stanford ee380 computer systems colloquium – introducing apache hadoop: The modern data operating
system, November 16, 2011. URL http://web.stanford.edu/class/ee380/Abstracts/111116-slides.pdf.

Distributed Computing Thomas Weise 41/41

http://filepi.com/i/VhKExiV
http://static.googleusercontent.com/media/research.google.com/es/us/archive/mapreduce-osdi04.pdf
http://www.umiacs.umd.edu/~jimmylin/cloud-2008-Fall/Session1.ppt
http://web.stanford.edu/class/ee380/Abstracts/111116-slides.pdf

	Outline
	Overview
	MapReduce & Hadoop
	HTTP/Web Services/Java Servlet Use Case
	MPI Use Case
	Other Scenario
	Use Cases
	MapReduce with Hadoop
	Divide & Conquer
	MapReduce
	Hadoop

	Examples
	Word Count
	WordCount Mapper
	
	WordCount Reducer
	
	WordCount Driver
	Driver Class
	Maven Setup
	pom.xml
	pom.xml
	pom.xml
	pom.xml
	pom.xml
	pom.xml
	pom.xml
	pom.xml
	Executing the Example
	Web Finder Count
	Web Finder Mapper
	
	Web Finder Reducer
	
	WebFinder Driver
	The Driver Class
	Executing the Example
	Summary

	Presentation End
	Bibliography

