
Distributed Computing
Lesson 22: MPI

Thomas Weise · 汤卫思

tweise@hfuu.edu.cn · http://www.it-weise.de

Hefei University, South Campus 2 合肥学院 南艳湖校区/南2区
Faculty of Computer Science and Technology 计算机科学与技术系

Institute of Applied Optimization 应用优化研究所

230601 Shushan District, Hefei, Anhui, China 中国 安徽省 合肥市 蜀山区 230601
Econ. & Tech. Devel. Zone, Jinxiu Dadao 99 经济技术开发区 锦绣大道99号

mailto:tweise@hfuu.edu.cn
http://www.it-weise.de

Outline

1 Scalability and Its Limits

2 Algorithm Perspective

3 MPI

4 Programming with MPI

5 Point-to-Point

6 Groups and Communicators

7 Collective Communication

8 How to Distribute
Distributed Computing Thomas Weise 2/84

w
e
b
s
it
e

Overview

• Discuss the requirements of scientific and engineering computing

• Consider the algorithm and the hardware perspective

• Get to know MPI as an example framework for using cluster
computing

• Learn about the basic components and data structures in MPI

• Apply it by yourself in a homework

Distributed Computing Thomas Weise 3/84

Introduction

• Research and Engineering often require enormous amonts of
computing power

Distributed Computing Thomas Weise 4/84

Introduction

• Research and Engineering often require enormous amonts of
computing power

• Many problems require large-scale computations or simulations

Distributed Computing Thomas Weise 4/84

Introduction

• Research and Engineering often require enormous amonts of
computing power

• Many problems require large-scale computations or simulations, e.g.,
• weather forecast

Distributed Computing Thomas Weise 4/84

Introduction

• Research and Engineering often require enormous amonts of
computing power

• Many problems require large-scale computations or simulations, e.g.,
• weather forecast,

Distributed Computing Thomas Weise 4/84

Introduction

• Research and Engineering often require enormous amonts of
computing power

• Many problems require large-scale computations or simulations, e.g.,
• weather forecast,
• weather survey: National Oceanic and Atmospheric Administration

(NOAA) has more than 20PB of data and processes 80TB/day [1, 2]

Distributed Computing Thomas Weise 4/84

Introduction

• Research and Engineering often require enormous amonts of
computing power

• Many problems require large-scale computations or simulations, e.g.,
• weather forecast,
• weather survey: National Oceanic and Atmospheric Administration

(NOAA) has more than 20PB of data and processes 80TB/day [1, 2],
• CERN’s LHC produces about 15PB per year

Distributed Computing Thomas Weise 4/84

Introduction

• Research and Engineering often require enormous amonts of
computing power

• Many problems require large-scale computations or simulations, e.g.,
• weather forecast,
• weather survey: National Oceanic and Atmospheric Administration

(NOAA) has more than 20PB of data and processes 80TB/day [1, 2],
• CERN’s LHC produces about 15PB per year,
• heat flow simulations for engines

Distributed Computing Thomas Weise 4/84

Introduction

• Research and Engineering often require enormous amonts of
computing power

• Many problems require large-scale computations or simulations, e.g.,
• weather forecast,
• weather survey: National Oceanic and Atmospheric Administration

(NOAA) has more than 20PB of data and processes 80TB/day [1, 2],
• CERN’s LHC produces about 15PB per year,
• heat flow simulations for engines,
• Data mining [3, 4]

Distributed Computing Thomas Weise 4/84

Introduction

• Research and Engineering often require enormous amonts of
computing power

• Many problems require large-scale computations or simulations, e.g.,
• weather forecast,
• weather survey: National Oceanic and Atmospheric Administration

(NOAA) has more than 20PB of data and processes 80TB/day [1, 2],
• CERN’s LHC produces about 15PB per year,
• heat flow simulations for engines,
• Data mining [3, 4], and
• solving optimization prolems [5–8]

Distributed Computing Thomas Weise 4/84

TOP 500 Super Computers

Distributed Computing Thomas Weise 5/84

image source: [9]

TOP 500 Super Computers

Distributed Computing Thomas Weise 5/84

image source: [9]

TOP 500 Super Computers

Distributed Computing Thomas Weise 6/84

image source: [9]

TOP 500 Super Computers

• Tianhe-1A

Distributed Computing Thomas Weise 6/84

image source: [9]

TOP 500 Super Computers

• Tianhe-1A: #2 in top 500 super computers 2011 [9], at the NUDT in Tianjin,

Xeon X5670 6C 2.93 GHz, NVIDIA 2050

Distributed Computing Thomas Weise 6/84

image source: [9]

TOP 500 Super Computers

• Tianhe-1A: #2 in top 500 super computers 2011 [9], at the NUDT in Tianjin,

Xeon X5670 6C 2.93 GHz, NVIDIA 2050, 186 368 cores

Distributed Computing Thomas Weise 6/84

image source: [9]

TOP 500 Super Computers

• Tianhe-1A: #2 in top 500 super computers 2011 [9], at the NUDT in Tianjin,

Xeon X5670 6C 2.93 GHz, NVIDIA 2050, 186 368 cores, 2 566 000 GFlops/s in

Linpack

Distributed Computing Thomas Weise 6/84

image source: [9]

TOP 500 Super Computers

• Tianhe-1A: #2 in top 500 super computers 2011 [9]

• Nebulae

Distributed Computing Thomas Weise 6/84

image source: [9]

TOP 500 Super Computers

• Tianhe-1A: #2 in top 500 super computers 2011 [9]

• Nebulae: #4 in top 500 super computers 2011 [9], at the National

Supercomputing Centre in Shenzhen (NSCS), Xeon X5650 6C 2.66GHz, Infiniband

QDR, NVIDIA 2050

Distributed Computing Thomas Weise 6/84

image source: [9]

TOP 500 Super Computers

• Tianhe-1A: #2 in top 500 super computers 2011 [9]

• Nebulae: #4 in top 500 super computers 2011 [9], at the National

Supercomputing Centre in Shenzhen (NSCS), Xeon X5650 6C 2.66GHz, Infiniband

QDR, NVIDIA 2050, 120 640 cores

Distributed Computing Thomas Weise 6/84

image source: [9]

TOP 500 Super Computers

• Tianhe-1A: #2 in top 500 super computers 2011 [9]

• Nebulae: #4 in top 500 super computers 2011 [9], at the National

Supercomputing Centre in Shenzhen (NSCS), Xeon X5650 6C 2.66GHz, Infiniband

QDR, NVIDIA 2050, 120 640 cores, 1 271 000 GFlops/s in Linpack

Distributed Computing Thomas Weise 6/84

image source: [9]

TOP 500 Super Computers

• Tianhe-1A: #2 in top 500 super computers 2011 [9]

• Tianhe-2

Distributed Computing Thomas Weise 6/84

image source: [9]

TOP 500 Super Computers

• Tianhe-1A: #2 in top 500 super computers 2011 [9]

• Tianhe-2: fastest super computer in 2015, fully Intel-based

Distributed Computing Thomas Weise 6/84

image source: [9]

TOP 500 Super Computers

• Tianhe-1A: #2 in top 500 super computers 2011 [9]

• Tianhe-2: fastest super computer in 2015, fully Intel-based USA moved super

computing center + NUDT + Tianhe center on ‘Denial List’[10]. now wants

to build faster super computer using Intel tech[11]

Distributed Computing Thomas Weise 6/84

image source: [9]

Divide & Conquer

• For large-scale problems, a single thread of execution may be slow

Distributed Computing Thomas Weise 7/84

Divide & Conquer

• For large-scale problems, a single thread of execution may be too
slow. . .

Distributed Computing Thomas Weise 7/84

Divide & Conquer

• For large-scale problems, a single thread of execution may be too
slow. . .

Distributed Computing Thomas Weise 7/84

image source: [12]

Scalability

• One argument for distributed computing is scalability

Distributed Computing Thomas Weise 8/84

Scalability

• One argument for distributed computing is scalability, i.e.,
more computers = more computing power = more work can be done
at the same time

Distributed Computing Thomas Weise 8/84

Scalability

• One argument for distributed computing is scalability, i.e.,
more computers = more computing power = more work can be done
at the same time

• Let’s say we have a large-scale simulation of the air over China for
predicting the weather.

Distributed Computing Thomas Weise 8/84

Scalability

• One argument for distributed computing is scalability, i.e.,
more computers = more computing power = more work can be done
at the same time

• Let’s say we have a large-scale simulation of the air over China for
predicting the weather.

• Let’s make it faster!

Distributed Computing Thomas Weise 8/84

Scalability

• One argument for distributed computing is scalability, i.e.,
more computers = more computing power = more work can be done
at the same time

• Let’s say we have a large-scale simulation of the air over China for
predicting the weather.

• Let’s make it faster!

• But how fast can we get at most?

Distributed Computing Thomas Weise 8/84

Scalability

• One argument for distributed computing is scalability, i.e.,
more computers = more computing power = more work can be done
at the same time

• Let’s say we have a large-scale simulation of the air over China for
predicting the weather.

• Let’s make it faster!

• But how fast can we get at most?

• Does using p computers mean we can solve a task in 1

p
of the time on

a single computer?

Distributed Computing Thomas Weise 8/84

No.

• Of course not.

Distributed Computing Thomas Weise 9/84

No.

• Of course not.

• We need communication

Distributed Computing Thomas Weise 9/84

No.

• Of course not.

• We need communication: Data must be sent to each computer and
the computers must send back their results [13].

Distributed Computing Thomas Weise 9/84

No.

• Of course not.

• We need communication: Data must be sent to each computer and
the computers must send back their results [13]. This takes time.

Distributed Computing Thomas Weise 9/84

No.

• Of course not.

• We need communication: Data must be sent to each computer and
the computers must send back their results [13]. This takes time.

• Some things cannot be parallelized.

Distributed Computing Thomas Weise 9/84

No.

• Of course not.

• We need communication: Data must be sent to each computer and
the computers must send back their results [13]. This takes time.

• Some things cannot be parallelized. E.g. loading of files, initialization
of variables. . .

Distributed Computing Thomas Weise 9/84

No.

• Of course not.

• We need communication: Data must be sent to each computer and
the computers must send back their results [13]. This takes time.

• Some things cannot be parallelized. E.g. loading of files, initialization
of variables. . .

• Thus, even with p → ∞ processors, we cannot finish a task in 0
time. . .

Distributed Computing Thomas Weise 9/84

No.

• Of course not.

• We need communication: Data must be sent to each computer and
the computers must send back their results [13]. This takes time.

• Some things cannot be parallelized. E.g. loading of files, initialization
of variables. . .

• Thus, even with p → ∞ processors, we cannot finish a task in 0
time. . .

• This is true for any distributed application. . .

Distributed Computing Thomas Weise 9/84

No.

• Of course not.

• We need communication: Data must be sent to each computer and
the computers must send back their results [13]. This takes time.

• Some things cannot be parallelized. E.g. loading of files, initialization
of variables. . .

• Thus, even with p → ∞ processors, we cannot finish a task in 0
time. . .

• This is true for any distributed application. . .

• But how much faster can we go, if we include the time needed for
communication into our considerations?

Distributed Computing Thomas Weise 9/84

Limits of Scalability

• Speed-up S means: we can be S times faster!

Distributed Computing Thomas Weise 10/84

Limits of Scalability

• Speed-up S means: we can be S times faster!

S (1)

S. . . the speed-up

Distributed Computing Thomas Weise 10/84

Limits of Scalability

• Speed-up S means: we can be S times faster!

S =
Tseq

Tpar

(1)

S. . . the speed-up
Tseq. . . runtime when sequential

Distributed Computing Thomas Weise 10/84

Limits of Scalability

• Speed-up S means: we can be S times faster!

S =
Tseq

Tpar

=
Tseq

Tseq

[

α+ cp ∗ β + 1−α−β
p

] (1)

S. . . the speed-up
Tseq. . . runtime when sequential Tpar. . . runtime when parallelized

α. . . fraction of sequential instruc-
tions, e.g., for start-up

β. . . fraction of instructions needed for
communication

cp. . . value depending on communica-
tion model

p. . . number of nodes/processors

Distributed Computing Thomas Weise 10/84

Limits of Scalability

• Speed-up S means: we can be S times faster!

S =
Tseq

Tpar

=
1

α+ cp ∗ β + 1−α−β
p

(1)

S. . . the speed-up
Tseq. . . runtime when sequential Tpar. . . runtime when parallelized

α. . . fraction of sequential instruc-
tions, e.g., for start-up

β. . . fraction of instructions needed for
communication

cp. . . value depending on communica-
tion model

p. . . number of nodes/processors

Distributed Computing Thomas Weise 10/84

Limits of Scalability

• Speed-up S means: we can be S times faster!

S =
Tseq

Tpar

=
1

α+ cp ∗ β + 1−α−β
p

(1)

S. . . the speed-up
Tseq. . . runtime when sequential Tpar. . . runtime when parallelized

α. . . fraction of sequential instruc-
tions, e.g., for start-up

β. . . fraction of instructions needed for
communication

cp. . . value depending on communica-
tion model

p. . . number of nodes/processors

Distributed Computing Thomas Weise 10/84

Limits of Scalability

• Speed-up S means: we can be S times faster!

S =
Tseq

Tpar

=
1

α+ cp ∗ β + 1−α−β
p

(1)

S. . . the speed-up
Tseq. . . runtime when sequential Tpar. . . runtime when parallelized

α. . . fraction of sequential instruc-
tions, e.g., for start-up

β. . . fraction of instructions needed for
communication

cp. . . value depending on communica-
tion model

p. . . number of nodes/processors

Distributed Computing Thomas Weise 10/84

Limits of Scalability

• Speed-up S means: we can be S times faster!

S =
Tseq

Tpar

=
1

α+ cp ∗ β + 1−α−β
p

(1)

S. . . the speed-up
Tseq. . . runtime when sequential Tpar. . . runtime when parallelized

α. . . fraction of sequential instruc-
tions, e.g., for start-up

β. . . fraction of instructions needed for
communication

cp. . . value depending on communica-
tion model

p. . . number of nodes/processors

Distributed Computing Thomas Weise 10/84

Limits of Scalability

• Speed-up S means: we can be S times faster!

S =
Tseq

Tpar

=
1

α+ cp ∗ β + 1−α−β
p

(1)

S. . . the speed-up
Tseq. . . runtime when sequential Tpar. . . runtime when parallelized

α. . . fraction of sequential instruc-
tions, e.g., for start-up

β. . . fraction of instructions needed for
communication

cp. . . value depending on communica-
tion model

p. . . number of nodes/processors

Distributed Computing Thomas Weise 10/84

Limits of Scalability

• Speed-up S means: we can be S times faster!

S =
Tseq

Tpar

=
1

α+ cp ∗ β + 1−α−β
p

(1)

S. . . the speed-up
Tseq. . . runtime when sequential

α. . . fraction of sequential instruc-
tions, e.g., for start-up

cp. . . value depending on communica-
tion model

Distributed Computing Thomas Weise 10/84

unicast: cp = 2p

Limits of Scalability

• Speed-up S means: we can be S times faster!

S =
Tseq

Tpar

=
1

α+ cp ∗ β + 1−α−β
p

(1)

S. . . the speed-up
Tseq. . . runtime when sequential

α. . . fraction of sequential instruc-
tions, e.g., for start-up

cp. . . value depending on communica-
tion model

Distributed Computing Thomas Weise 10/84

multicast: cp = 1 + p

Amdahl’s Law

S =
1

α+ cp ∗ β + 1−α−β
p

(2)

(5)

Distributed Computing Thomas Weise 11/84

α. . . fraction of sequential instructions
β. . . fraction of instructions needed for communication
cp. . . value depending on communication model
p. . . number of nodes/processors

Amdahl’s Law

S =
1

α+ cp ∗ β + 1−α−β
p

(2)

lim
β→0

S =
1

α+ 1−α
p

(classical Amdahl’s Law [14])
ignore communication, β → 0

(3)

(5)

Distributed Computing Thomas Weise 11/84

α. . . fraction of sequential instructions
β. . . fraction of instructions needed for communication
cp. . . value depending on communication model
p. . . number of nodes/processors

Amdahl’s Law

S =
1

α+ cp ∗ β + 1−α−β
p

(2)

lim
β→0

S =
1

α+ 1−α
p

(classical Amdahl’s Law [14])
ignore communication, β → 0

(3)

β = 0 ⇒ lim
p→∞

S =
1

α
no communication ∧ ∞ processors (4)

(5)

Distributed Computing Thomas Weise 11/84

α. . . fraction of sequential instructions
β. . . fraction of instructions needed for communication
cp. . . value depending on communication model
p. . . number of nodes/processors

Amdahl’s Law

S =
1

α+ cp ∗ β + 1−α−β
p

(2)

lim
β→0

S =
1

α+ 1−α
p

(classical Amdahl’s Law [14])
ignore communication, β → 0

(3)

β = 0 ⇒ lim
p→∞

S =
1

α
no communication ∧ ∞ processors (4)

β 6= 0 ⇒ lim
p→∞

S = 0 communication ∧ ∞ processors (5)

Distributed Computing Thomas Weise 11/84

α. . . fraction of sequential instructions
β. . . fraction of instructions needed for communication
cp. . . value depending on communication model
p. . . number of nodes/processors

Amdahl’s Law

Distributed Computing Thomas Weise 12/84

Amdahl’s Law

Distributed Computing Thomas Weise 12/84

Amdahl’s Law

Distributed Computing Thomas Weise 12/84

Amdahl’s Law: Consequences

• Speedup can be high but is always limited

Distributed Computing Thomas Weise 13/84

Amdahl’s Law: Consequences

• Speedup can be high but is always limited

• Two lessons valid for every parallel or distributed application

Distributed Computing Thomas Weise 13/84

Amdahl’s Law: Consequences

• Speedup can be high but is always limited

• Two lessons valid for every parallel or distributed application:
• Try to communicate as little as possible

Distributed Computing Thomas Weise 13/84

Amdahl’s Law: Consequences

• Speedup can be high but is always limited

• Two lessons valid for every parallel or distributed application:
• Try to communicate as little as possible
• Try to minimize the fraction of sequential code and increase fraction of

the code that can run in parallel

Distributed Computing Thomas Weise 13/84

Algorithm Perspective

• There are two basic use cases for parallelization [15]

Distributed Computing Thomas Weise 14/84

Algorithm Perspective

• There are two basic use cases for parallelization [15]

1 A set of unrelated jobs is handed to several different threads, each one
carrying out one distinct job

Distributed Computing Thomas Weise 14/84

Algorithm Perspective

• There are two basic use cases for parallelization [15]

1 A set of unrelated jobs is handed to several different threads, each one
carrying out one distinct job
Example: n different experiments or simulations with a certain
algorithm

Distributed Computing Thomas Weise 14/84

Algorithm Perspective

• There are two basic use cases for parallelization [15]

1 A set of unrelated jobs is handed to several different threads, each one
carrying out one distinct job
Example: n different experiments or simulations with a certain
algorithm

2 Each job can somehow be broken into pieces which can be solved
cooperatively by different computers

Distributed Computing Thomas Weise 14/84

Algorithm Perspective

• There are two basic use cases for parallelization [15]

1 A set of unrelated jobs is handed to several different threads, each one
carrying out one distinct job
Example: n different experiments or simulations with a certain
algorithm

2 Each job can somehow be broken into pieces which can be solved
cooperatively by different computers
Example: Evolutionary Algorithm with a population distributed over
several threads/processors/computers [6, 16, 17]

Distributed Computing Thomas Weise 14/84

Algorithm Perspective

• Especially the latter scenario is interesting for us here (the other is
trivial).

Distributed Computing Thomas Weise 15/84

Algorithm Perspective

• Especially the latter scenario is interesting for us here (the other is
trivial).

• We can distinguish four kinds of problems [18]

Distributed Computing Thomas Weise 15/84

Algorithm Perspective

• Especially the latter scenario is interesting for us here (the other is
trivial).

• We can distinguish four kinds of problems [18]:

1 Parallel Problems
2 Regular Problems
3 Irregular Problems

Distributed Computing Thomas Weise 15/84

Algorithm Perspective

• Especially the latter scenario is interesting for us here (the other is
trivial).

• We can distinguish four kinds of problems [18]:

1 Parallel Problems
2 Regular Problems
3 Irregular Problems
4 Any combination of the above: division into parts of the above types

Distributed Computing Thomas Weise 15/84

Parallel Problems

• The problem can be broken down into parts

Distributed Computing Thomas Weise 16/84

Parallel Problems

• The problem can be broken down into parts

• The parts are independent from each other (similar to the first case in
the introduction)

Distributed Computing Thomas Weise 16/84

Parallel Problems

• The problem can be broken down into parts

• The parts are independent from each other (similar to the first case in
the introduction)

• Communication only needed for sending the parts to different
workstations and finally gathering the results

Distributed Computing Thomas Weise 16/84

Parallel Problems

• The problem can be broken down into parts

• The parts are independent from each other (similar to the first case in
the introduction)

• Communication only needed for sending the parts to different
workstations and finally gathering the results

• Almost linear speed-up can be expected (Amdahl’s Law [14])

Distributed Computing Thomas Weise 16/84

Parallel Problems

• The problem can be broken down into parts

• The parts are independent from each other (similar to the first case in
the introduction)

• Communication only needed for sending the parts to different
workstations and finally gathering the results

• Almost linear speed-up can be expected (Amdahl’s Law [14])

• This is the ideal case!

Distributed Computing Thomas Weise 16/84

Parallel Problems

• The problem can be broken down into parts

• The parts are independent from each other (similar to the first case in
the introduction)

• Communication only needed for sending the parts to different
workstations and finally gathering the results

• Almost linear speed-up can be expected (Amdahl’s Law [14])

• This is the ideal case!

• Examples: simple matrix-vector products, rendering of fractals (→ see your

homework)

Distributed Computing Thomas Weise 16/84

Estimation of π

• Simple way to estimate the value of π [18, 19]

Distributed Computing Thomas Weise 17/84

Estimation of π

• Simple way to estimate the value of π [18, 19]

As = (2r)2 = 4r2

(8)

Distributed Computing Thomas Weise 17/84

Estimation of π

• Simple way to estimate the value of π [18, 19]

As = (2r)2 = 4r2 (6)

Ac = πr2

(8)

Distributed Computing Thomas Weise 17/84

Estimation of π

• Simple way to estimate the value of π [18, 19]

As = (2r)2 = 4r2 (6)

Ac = πr2 (7)

π = 4
Ac

As

= 4 ∗

(

πr2

4r2

)

(8)

Distributed Computing Thomas Weise 17/84

Estimation of π

• Simple way to estimate the value of π [18, 19]

As = (2r)2 = 4r2 (6)

Ac = πr2 (7)

π = 4
Ac

As

= 4 ∗

(

πr2

4r2

)

(8)

• Randomly generate n points in a square

Distributed Computing Thomas Weise 17/84

Estimation of π

• Simple way to estimate the value of π [18, 19]

As = (2r)2 = 4r2 (6)

Ac = πr2 (7)

π = 4
Ac

As

= 4 ∗

(

πr2

4r2

)

(8)

• Randomly generate n points in a square

• Count the number c of points falling into the circle

π ≈
4c

n
(9)

Distributed Computing Thomas Weise 17/84

Parallel Estimation of π

• Ideal for parallelization and distribution [18, 19]

Distributed Computing Thomas Weise 18/84

Parallel Estimation of π

• Ideal for parallelization and distribution [18, 19]:
• Let p threads each create n

p
random points. . .

Distributed Computing Thomas Weise 18/84

Parallel Estimation of π

• Ideal for parallelization and distribution [18, 19]:
• Let p threads each create n

p
random points. . .

• . . . and combine the results.

Distributed Computing Thomas Weise 18/84

Parallel Estimation of π

• Ideal for parallelization and distribution [18, 19]:
• Let p threads each create n

p
random points. . .

• . . . and combine the results.

• No communication between workers necessary!

Distributed Computing Thomas Weise 18/84

Listing: Server program estimating π (PiServer.java).

import java.io.ByteArrayInputStream; import java.io.ByteArrayOutputStream; import

java.io.DataInputStream;

import java.io.DataOutputStream; import java.io.OutputStream; import

java.net.DatagramPacket;

import java.net.DatagramSocket; import java.net.InetAddress;

public class PiServer {

public static final void main(final String [] args) {

DatagramSocket server; DatagramPacket p, answer;

ByteArrayInputStream bis; DataInputStream dis;

byte[] data; String s;

long n, c; double d;

n=0;c=0;//try to approximate PI

try {

server = new DatagramSocket (9992);// create server socket

data = new byte [16]; // create package: 2* 8 byte long ints must fit

for (;;) {// forever

p = new DatagramPacket(data , data.length);// create new package

server.receive(p); //wait for and receive incoming data

bis = new ByteArrayInputStream(data , 0, p.getLength ());//wrap data into stream

dis = new DataInputStream(bis);// unmarshall data

n += dis.readLong (); // update total number of random points sampled from unit square

c += dis.readLong (); // update number of these points that fell into the unit circle

d = ((4.0 * c) / n);// approximate PI

System.out.println(d + " " + (d - Math.PI)); // print approximation and error

}

} catch (Throwable t) {

t.printStackTrace ();

}

}

}

Distributed Computing Thomas Weise 19/84

Listing: Client/Slave program for doing the work when computing π (PiClient.java).

import java.io.ByteArrayInputStream; import java.io.ByteArrayOutputStream; import

java.io.DataInputStream; import java.io.DataOutputStream;

import java.net.DatagramPacket; import java.net.DatagramSocket; import

java.net.InetAddress;

public class PiClient { //the worker part of the example for approximating the number of pi

public static final void main(final String [] args) {

DatagramSocket client; InetAddress ia;

ByteArrayOutputStream bos; DataOutputStream dos;

DatagramPacket p; byte[] data;

long c, n; double x, y;

c = 0;//work: approximate fraction of points in unit square which are in unit circle

for(n = 1; n <= 100000000; n++) {// create a lot of random points in [0, 1)

x = Math.random (); //x-coordinate of point

y = Math.random (); //y-coordinate of point

if(Math.sqrt((x*x) + (y*y)) <= 1d){ //is the point inside the unit circle?

c++; // count

}

}

try {

ia = InetAddress.getByName("localhost");//get local host address

client = new DatagramSocket (); // create UDP/datagram socket

bos = new ByteArrayOutputStream ();// create buffered output stream

dos = new DataOutputStream(bos);// marshall computed data

dos.writeLong(n);// store the number of generated points in unit square

dos.writeLong(c);// store the number of points in unit circle

dos.close();// close and flush

data = bos.toByteArray ();//get data

p = new DatagramPacket(data , data.length , ia , 9992);// create data package

client.send(p);//send the package to the server

client.close ();//close connection

} catch (Throwable t) {

t.printStackTrace ();

}

}

} Distributed Computing Thomas Weise 20/84

Matrix-Vector Product

~M × ~v = ~r

(11)

Distributed Computing Thomas Weise 21/84

Matrix-Vector Product

~M × ~v = ~r (10)








m1,1 m1,2 m1,3 m1,4

m2,1 m2,2 m2,3 m2,4

m3,1 m3,2 m3,3 m3,4

m4,1 m4,2 m4,3 m4,4









×









v1
v2
v3
v4









=









r1
r2
r3
r4









(11)

Distributed Computing Thomas Weise 21/84

Matrix-Vector Product

~M × ~v = ~r (10)








m1,1 m1,2 m1,3 m1,4

m2,1 m2,2 m2,3 m2,4

m3,1 m3,2 m3,3 m3,4

m4,1 m4,2 m4,3 m4,4









×









v1
v2
v3
v4









=









m1,1v1 +m1,2v2 +m1,3v3 +m1,4v4

m2,1v1 +m2,2v2 +m2,3v3 +m2,4v4

m3,1v1 +m3,2v2 +m3,3v3 +m3,4v4

m4,1v1 +m4,2v2 +m4,3v3 +m4,4v4









(11)

Distributed Computing Thomas Weise 21/84

Matrix-Vector Product

~M × ~v = ~r (10)








m1,1 m1,2 m1,3 m1,4

m2,1 m2,2 m2,3 m2,4

m3,1 m3,2 m3,3 m3,4

m4,1 m4,2 m4,3 m4,4









×









v1
v2
v3
v4









=









m1,1v1 +m1,2v2 +m1,3v3 +m1,4v4

m2,1v1 +m2,2v2 +m2,3v3 +m2,4v4

m3,1v1 +m3,2v2 +m3,3v3 +m3,4v4

m4,1v1 +m4,2v2 +m4,3v3 +m4,4v4









(11)

• Ideal for parallelization and distribution [18]

Distributed Computing Thomas Weise 21/84

Matrix-Vector Product

~M × ~v = ~r (10)








m1,1 m1,2 m1,3 m1,4

m2,1 m2,2 m2,3 m2,4

m3,1 m3,2 m3,3 m3,4

m4,1 m4,2 m4,3 m4,4









×









v1
v2
v3
v4









=









m1,1v1 +m1,2v2 +m1,3v3 +m1,4v4

m2,1v1 +m2,2v2 +m2,3v3 +m2,4v4

m3,1v1 +m3,2v2 +m3,3v3 +m3,4v4

m4,1v1 +m4,2v2 +m4,3v3 +m4,4v4









(11)

• Ideal for parallelization and distribution [18]

1 the root thread hands each row of matrix M and the whole vector v to
one worker

2 the worker computes the product of the row and v and

Distributed Computing Thomas Weise 21/84

Matrix-Vector Product

~M × ~v = ~r (10)








m1,1 m1,2 m1,3 m1,4

m2,1 m2,2 m2,3 m2,4

m3,1 m3,2 m3,3 m3,4

m4,1 m4,2 m4,3 m4,4









×









v1
v2
v3
v4









=









m1,1v1 +m1,2v2 +m1,3v3 +m1,4v4

m2,1v1 +m2,2v2 +m2,3v3 +m2,4v4

m3,1v1 +m3,2v2 +m3,3v3 +m3,4v4

m4,1v1 +m4,2v2 +m4,3v3 +m4,4v4









(11)

• Ideal for parallelization and distribution [18]

1 the root thread hands each row of matrix M and the whole vector v to
one worker

2 the worker computes the product of the row and v and
3 hands back the result to root

Distributed Computing Thomas Weise 21/84

Matrix-Vector Product

~M × ~v = ~r (10)








m1,1 m1,2 m1,3 m1,4

m2,1 m2,2 m2,3 m2,4

m3,1 m3,2 m3,3 m3,4

m4,1 m4,2 m4,3 m4,4









×









v1
v2
v3
v4









=









m1,1v1 +m1,2v2 +m1,3v3 +m1,4v4

m2,1v1 +m2,2v2 +m2,3v3 +m2,4v4

m3,1v1 +m3,2v2 +m3,3v3 +m3,4v4

m4,1v1 +m4,2v2 +m4,3v3 +m4,4v4









(11)

• Ideal for parallelization and distribution [18]

1 the root thread hands each row of matrix M and the whole vector v to
one worker

2 the worker computes the product of the row and v and
3 hands back the result to root

4 root assembles the result vector ~r

Distributed Computing Thomas Weise 21/84

Regular Problems

• Same algorithm applied to all data

Distributed Computing Thomas Weise 22/84

Regular Problems

• Same algorithm applied to all data

• Synchronous communication (or close to): each processor finishes its
task at the same time

Distributed Computing Thomas Weise 22/84

Regular Problems

• Same algorithm applied to all data

• Synchronous communication (or close to): each processor finishes its
task at the same time

• Local (neighbour to neighbour) and collective (combine final results)
communication

Distributed Computing Thomas Weise 22/84

Regular Problems

• Same algorithm applied to all data

• Synchronous communication (or close to): each processor finishes its
task at the same time

• Local (neighbour to neighbour) and collective (combine final results)
communication

• Speed-up largely based on the computation to communication ratio
(

1−α−β
p

in Amdahl’s Law [14]

)

=⇒ if it is large: good speed-up

Distributed Computing Thomas Weise 22/84

Regular Problems

• Same algorithm applied to all data

• Synchronous communication (or close to): each processor finishes its
task at the same time

• Local (neighbour to neighbour) and collective (combine final results)
communication

• Speed-up largely based on the computation to communication ratio
(

1−α−β
p

in Amdahl’s Law [14]

)

=⇒ if it is large: good speed-up

• Examples: Parallel Evolutionary Algorithms, Finding low-energy molecule

states in chemistry, Cellular Automata-based simulations, discrete time

simulation of ion movements, multi-player games with large worlds

Distributed Computing Thomas Weise 22/84

Heat Dissemination Simulation

Distributed Computing Thomas Weise 23/84

Heat Dissemination Simulation

• Heat equations describe temperature change over time based on a
given initial situation and boundary conditions [19]

Distributed Computing Thomas Weise 23/84

Heat Dissemination Simulation

Distributed Computing Thomas Weise 23/84

Heat Dissemination Simulation

• Heat equations describe temperature change over time based on a
given initial situation and boundary conditions [19]

• Finite differencing approximation, numerical, based on a rectangular
grid

Tx,y(t+1) = Tx,y(t)+ cx (Tx−1,y(t) + Tx+1,y(t)− 2Tx,y(t))+
cy (Tx,y−1(t) + Tx,y+1(t)− 2Tx,y(t))

(12)

Distributed Computing Thomas Weise 23/84

Distributed Heat Dissemination Simulation

Distributed Computing Thomas Weise 24/84

Distributed Heat Dissemination Simulation

Distributed Computing Thomas Weise 24/84

Distributed Heat Dissemination Simulation

• Divide data into several pieces and simulate in parallel [19]

Distributed Computing Thomas Weise 24/84

Distributed Heat Dissemination Simulation

• Divide data into several pieces and simulate in parallel [19]

• But: After each time step, exchange data on boundary between
“neighboring” threads

Distributed Computing Thomas Weise 24/84

Distributed Heat Dissemination Simulation

Distributed Computing Thomas Weise 24/84

Irregular Problems

• Irregular algorithm which cannot be parallelized/distributed efficiently
except with high communication overhead

Distributed Computing Thomas Weise 25/84

Irregular Problems

• Irregular algorithm which cannot be parallelized/distributed efficiently
except with high communication overhead

• Communication often asynchronous, complex, may require load
balancing

Distributed Computing Thomas Weise 25/84

Irregular Problems

• Irregular algorithm which cannot be parallelized/distributed efficiently
except with high communication overhead

• Communication often asynchronous, complex, may require load
balancing

• Often dynamic repartitioning of data between processors is required

Distributed Computing Thomas Weise 25/84

Irregular Problems

• Irregular algorithm which cannot be parallelized/distributed efficiently
except with high communication overhead

• Communication often asynchronous, complex, may require load
balancing

• Often dynamic repartitioning of data between processors is required

• Examples: calculate Fibonacci Numbers [20] by using

F (n) = F (n− 1) + F (n− 2), multi-player games or simulations with strong

interaction, such as car racing

Distributed Computing Thomas Weise 25/84

What to do?

• If problem suitable for parallelization and computational resources are
available, then parallelize!

Distributed Computing Thomas Weise 26/84

What to do?

• If problem suitable for parallelization and computational resources are
available, then parallelize!

• In many cases, simple parallelization (multiple threads) will be good
enough

Distributed Computing Thomas Weise 26/84

What to do?

• If problem suitable for parallelization and computational resources are
available, then parallelize!

• In many cases, simple parallelization (multiple threads) will be good
enough

• If problem is huge and can be parallelized, distribute!

Distributed Computing Thomas Weise 26/84

What to do?

• If problem suitable for parallelization and computational resources are
available, then parallelize!

• In many cases, simple parallelization (multiple threads) will be good
enough

• If problem is huge and can be parallelized, distribute! (but remember
Amdahl’s Law [14])

Distributed Computing Thomas Weise 26/84

What to do?

• If problem suitable for parallelization and computational resources are
available, then parallelize!

• In many cases, simple parallelization (multiple threads) will be good
enough

• If problem is huge and can be parallelized, distribute! (but remember
Amdahl’s Law [14])

• How to deal with communication?

Distributed Computing Thomas Weise 26/84

What to do?

• If problem suitable for parallelization and computational resources are
available, then parallelize!

• In many cases, simple parallelization (multiple threads) will be good
enough

• If problem is huge and can be parallelized, distribute! (but remember
Amdahl’s Law [14])

• How to deal with communication?

1 Use sockets?

Distributed Computing Thomas Weise 26/84

What to do?

• If problem suitable for parallelization and computational resources are
available, then parallelize!

• In many cases, simple parallelization (multiple threads) will be good
enough

• If problem is huge and can be parallelized, distribute! (but remember
Amdahl’s Law [14])

• How to deal with communication?

1 Use sockets? −→ a bit complex and much work to do (e.g.,
marshalling data), what about interoperability, maintenance, . . .

Distributed Computing Thomas Weise 26/84

What to do?

• If problem suitable for parallelization and computational resources are
available, then parallelize!

• In many cases, simple parallelization (multiple threads) will be good
enough

• If problem is huge and can be parallelized, distribute! (but remember
Amdahl’s Law [14])

• How to deal with communication?

1 Use sockets? −→ a bit complex and much work to do (e.g.,
marshalling data), what about interoperability, maintenance, . . .

2 Use stuff such as RPC, CORBA, Web Services (i.e.,
business/corporate-focused frameworks)?

Distributed Computing Thomas Weise 26/84

What to do?

• If problem suitable for parallelization and computational resources are
available, then parallelize!

• In many cases, simple parallelization (multiple threads) will be good
enough

• If problem is huge and can be parallelized, distribute! (but remember
Amdahl’s Law [14])

• How to deal with communication?

1 Use sockets? −→ a bit complex and much work to do (e.g.,
marshalling data), what about interoperability, maintenance, . . .

2 Use stuff such as RPC, CORBA, Web Services (i.e.,
business/corporate-focused frameworks)? −→ not suitable for long
computations, massive parallel computations, large data volumes, and
high performance requirements

Distributed Computing Thomas Weise 26/84

What to do?

• How to deal with stuff such as group communication,
synchronization, termination detection?

Distributed Computing Thomas Weise 27/84

What to do?

• How to deal with stuff such as group communication,
synchronization, termination detection?

1 Implement your own, specialized algorithms?

Distributed Computing Thomas Weise 27/84

What to do?

• How to deal with stuff such as group communication,
synchronization, termination detection?

1 Implement your own, specialized algorithms? −→ not always suitable,
large codebase, maybe make errors

Distributed Computing Thomas Weise 27/84

What to do?

• How to deal with stuff such as group communication,
synchronization, termination detection?

1 Implement your own, specialized algorithms? −→ not always suitable,
large codebase, maybe make errors

2 Use several existing implementations?

Distributed Computing Thomas Weise 27/84

What to do?

• How to deal with stuff such as group communication,
synchronization, termination detection?

1 Implement your own, specialized algorithms? −→ not always suitable,
large codebase, maybe make errors

2 Use several existing implementations? −→ software will become too
hetergeneous, complicated, many libraries, hard to maintain

Distributed Computing Thomas Weise 27/84

What to do?

• How to deal with stuff such as group communication,
synchronization, termination detection?

1 Implement your own, specialized algorithms? −→ not always suitable,
large codebase, maybe make errors

2 Use several existing implementations? −→ software will become too
hetergeneous, complicated, many libraries, hard to maintain

• We want a uniform programming interface and implementations
which provide the services we need.

Distributed Computing Thomas Weise 27/84

Messare Passing Interface

• Messare Passing Interface (MPI) [21–24] is a standard [25, 26] for the
message exchange and synchronization in parallel computations on
distributed computing systems

Distributed Computing Thomas Weise 28/84

Messare Passing Interface

• Messare Passing Interface (MPI) [21–24] is a standard [25, 26] for the
message exchange and synchronization in parallel computations on
distributed computing systems

• Developed since 1992, predecessors: PVM [27, 28], PARMACS [28], P4 [28],
Chameleon, and Zipcode

Distributed Computing Thomas Weise 28/84

Messare Passing Interface

• Messare Passing Interface (MPI) [21–24] is a standard [25, 26] for the
message exchange and synchronization in parallel computations on
distributed computing systems

• Developed since 1992, predecessors: PVM [27, 28], PARMACS [28], P4 [28],
Chameleon, and Zipcode

• It provides a set of operations and their semantics, i.e., a
programming interface

Distributed Computing Thomas Weise 28/84

Messare Passing Interface

• Messare Passing Interface (MPI) [21–24] is a standard [25, 26] for the
message exchange and synchronization in parallel computations on
distributed computing systems

• Developed since 1992, predecessors: PVM [27, 28], PARMACS [28], P4 [28],
Chameleon, and Zipcode

• It provides a set of operations and their semantics, i.e., a
programming interface

• It does not define a specific protocol or implementation

Distributed Computing Thomas Weise 28/84

Messare Passing Interface

• Messare Passing Interface (MPI) [21–24] is a standard [25, 26] for the
message exchange and synchronization in parallel computations on
distributed computing systems

• Developed since 1992, predecessors: PVM [27, 28], PARMACS [28], P4 [28],
Chameleon, and Zipcode

• It provides a set of operations and their semantics, i.e., a
programming interface

• It does not define a specific protocol or implementation

• All definitions are hardware-independent

Distributed Computing Thomas Weise 28/84

Typical Structure

• A typical MPI application

Distributed Computing Thomas Weise 29/84

Typical Structure

• A typical MPI application:
• a set of communicating processes

Distributed Computing Thomas Weise 29/84

Typical Structure

• A typical MPI application:
• a set of communicating processes
• started in parallel possibly on

Distributed Computing Thomas Weise 29/84

Typical Structure

• A typical MPI application:
• a set of communicating processes
• started in parallel possibly on

1 multiple different computers e.g., in a cluster

Distributed Computing Thomas Weise 29/84

Typical Structure

• A typical MPI application:
• a set of communicating processes
• started in parallel possibly on

1 multiple different computers e.g., in a cluster or
2 dedicated parallel computers

Distributed Computing Thomas Weise 29/84

Typical Structure

• A typical MPI application:
• a set of communicating processes
• started in parallel possibly on

1 multiple different computers e.g., in a cluster or
2 dedicated parallel computers

• processes work together on one problem

Distributed Computing Thomas Weise 29/84

Typical Structure

• A typical MPI application:
• a set of communicating processes
• started in parallel possibly on

1 multiple different computers e.g., in a cluster or
2 dedicated parallel computers

• processes work together on one problem
• processes use messages for information exchange

Distributed Computing Thomas Weise 29/84

Typical Structure

• A typical MPI application:
• a set of communicating processes
• started in parallel possibly on

1 multiple different computers e.g., in a cluster or
2 dedicated parallel computers

• processes work together on one problem
• processes use messages for information exchange
• Basic paradigm: message-based (no streams)

Distributed Computing Thomas Weise 29/84

Typical Structure

• A typical MPI application:
• a set of communicating processes
• started in parallel possibly on

1 multiple different computers e.g., in a cluster or
2 dedicated parallel computers

• processes work together on one problem
• processes use messages for information exchange
• Basic paradigms: message-based (no streams), group communication

Distributed Computing Thomas Weise 29/84

Typical Structure

• A typical MPI application:
• a set of communicating processes
• started in parallel possibly on

1 multiple different computers e.g., in a cluster or
2 dedicated parallel computers

• processes work together on one problem
• processes use messages for information exchange
• Basic paradigms: message-based (no streams), group communication,

reliable [26]

Distributed Computing Thomas Weise 29/84

Typical Structure

Distributed Computing Thomas Weise 30/84

. . . but in our experiments. . .

Distributed Computing Thomas Weise 31/84

Standard

• The current version of the MPI standard is 2.2 [25]

Distributed Computing Thomas Weise 32/84

Standard

• The current version of the MPI standard is 2.2 [25]

• MPI 1

Distributed Computing Thomas Weise 32/84

Standard

• The current version of the MPI standard is 2.2 [25]

• MPI 1:
• Point-to-Point Communication (Unicast)

Distributed Computing Thomas Weise 32/84

Standard

• The current version of the MPI standard is 2.2 [25]

• MPI 1:
• Point-to-Point Communication (Unicast)
• Global communication (Broadcast)

Distributed Computing Thomas Weise 32/84

Standard

• The current version of the MPI standard is 2.2 [25]

• MPI 1:
• Point-to-Point Communication (Unicast)
• Global communication (Broadcast)
• Groups, Contexts, and Communicators

Distributed Computing Thomas Weise 32/84

Standard

• The current version of the MPI standard is 2.2 [25]

• MPI 1:
• Point-to-Point Communication (Unicast)
• Global communication (Broadcast)
• Groups, Contexts, and Communicators
• Environment

Distributed Computing Thomas Weise 32/84

Standard

• The current version of the MPI standard is 2.2 [25]

• MPI 1:
• Point-to-Point Communication (Unicast)
• Global communication (Broadcast)
• Groups, Contexts, and Communicators
• Environment
• Profiling Interface

Distributed Computing Thomas Weise 32/84

Standard

• The current version of the MPI standard is 2.2 [25]

• MPI 1:
• Point-to-Point Communication (Unicast)
• Global communication (Broadcast)
• Groups, Contexts, and Communicators
• Environment
• Profiling Interface
• Language binding for C and Fortran

Distributed Computing Thomas Weise 32/84

Standard

• The current version of the MPI standard is 2.2 [25]

• MPI 1:
• Point-to-Point Communication (Unicast)
• Global communication (Broadcast)
• Groups, Contexts, and Communicators
• Environment
• Profiling Interface
• Language binding for C and Fortran

• MPI 2

Distributed Computing Thomas Weise 32/84

Standard

• The current version of the MPI standard is 2.2 [25]

• MPI 1:
• Point-to-Point Communication (Unicast)
• Global communication (Broadcast)
• Groups, Contexts, and Communicators
• Environment
• Profiling Interface
• Language binding for C and Fortran

• MPI 2:
• Parallel File IO

Distributed Computing Thomas Weise 32/84

Standard

• The current version of the MPI standard is 2.2 [25]

• MPI 1:
• Point-to-Point Communication (Unicast)
• Global communication (Broadcast)
• Groups, Contexts, and Communicators
• Environment
• Profiling Interface
• Language binding for C and Fortran

• MPI 2:
• Parallel File IO
• Dynamic Process Management

Distributed Computing Thomas Weise 32/84

Standard

• The current version of the MPI standard is 2.2 [25]

• MPI 1:
• Point-to-Point Communication (Unicast)
• Global communication (Broadcast)
• Groups, Contexts, and Communicators
• Environment
• Profiling Interface
• Language binding for C and Fortran

• MPI 2:
• Parallel File IO
• Dynamic Process Management
• Access to memory of other processes

Distributed Computing Thomas Weise 32/84

Standard

• The current version of the MPI standard is 2.2 [25]

• MPI 1:
• Point-to-Point Communication (Unicast)
• Global communication (Broadcast)
• Groups, Contexts, and Communicators
• Environment
• Profiling Interface
• Language binding for C and Fortran

• MPI 2:
• Parallel File IO
• Dynamic Process Management
• Access to memory of other processes
• Language Binding for C++ and Fortran

Distributed Computing Thomas Weise 32/84

Standard

• The current version of the MPI standard is 2.2 [25]

• MPI 1:
• Point-to-Point Communication (Unicast)
• Global communication (Broadcast)
• Groups, Contexts, and Communicators
• Environment
• Profiling Interface
• Language binding for C and Fortran

• MPI 2:
• Parallel File IO
• Dynamic Process Management
• Access to memory of other processes
• Language Binding for C++ and Fortran

• More than 200 functions

Distributed Computing Thomas Weise 32/84

Standard

• The current version of the MPI standard is 2.2 [25]

• MPI 1:
• Point-to-Point Communication (Unicast)
• Global communication (Broadcast)
• Groups, Contexts, and Communicators
• Environment
• Profiling Interface
• Language binding for C and Fortran

• MPI 2:
• Parallel File IO
• Dynamic Process Management
• Access to memory of other processes
• Language Binding for C++ and Fortran

• More than 200 functions, but we need only a few of them

Distributed Computing Thomas Weise 32/84

Implementations

• C/C++/Fortran

Distributed Computing Thomas Weise 33/84

Implementations

• C/C++/Fortran:

1 MPICH [29, 30]

Distributed Computing Thomas Weise 33/84

Implementations

• C/C++/Fortran:

1 MPICH [29, 30]

2 LAM/MPI [31]. not continued

Distributed Computing Thomas Weise 33/84

Implementations

• C/C++/Fortran:

1 MPICH [29, 30]

2 LAM/MPI [31]. not continued, development now focussed on:
3 Open MPI [32]

Distributed Computing Thomas Weise 33/84

Implementations

• C/C++/Fortran:

1 MPICH [29, 30]

2 LAM/MPI [31]. not continued, development now focussed on:
3 Open MPI [32]

4 DeinoMPI [33]

Distributed Computing Thomas Weise 33/84

Implementations

• C/C++/Fortran:

1 MPICH [29, 30]

2 LAM/MPI [31]. not continued, development now focussed on:
3 Open MPI [32]

4 DeinoMPI [33]

• C#: MPI.NET [34]

Distributed Computing Thomas Weise 33/84

Implementations

• C/C++/Fortran:

1 MPICH [29, 30]

2 LAM/MPI [31]. not continued, development now focussed on:
3 Open MPI [32]

4 DeinoMPI [33]

• C#: MPI.NET [34]

• Python: pyMPI [35]

Distributed Computing Thomas Weise 33/84

MPI

• As said, MPI defines many different functions

Distributed Computing Thomas Weise 34/84

http://www.lam-mpi.org/tutorials/
http://www.mcs.anl.gov/research/projects/mpi/tutorial/
http://www.mpitutorial.com/
http://www.mpi-forum.org/docs/
http://www.mcs.anl.gov/research/projects/mpich2/documentation/

MPI

• As said, MPI defines many different functions

• Here we can only discuss a few

Distributed Computing Thomas Weise 34/84

http://www.lam-mpi.org/tutorials/
http://www.mcs.anl.gov/research/projects/mpi/tutorial/
http://www.mpitutorial.com/
http://www.mpi-forum.org/docs/
http://www.mcs.anl.gov/research/projects/mpich2/documentation/

MPI

• As said, MPI defines many different functions

• Here we can only discuss a few

• We will focus on key aspects and on some simple examples

Distributed Computing Thomas Weise 34/84

http://www.lam-mpi.org/tutorials/
http://www.mcs.anl.gov/research/projects/mpi/tutorial/
http://www.mpitutorial.com/
http://www.mpi-forum.org/docs/
http://www.mcs.anl.gov/research/projects/mpich2/documentation/

MPI

• As said, MPI defines many different functions

• Here we can only discuss a few

• We will focus on key aspects and on some simple examples

• For more information and examples, you can look into. . .

Distributed Computing Thomas Weise 34/84

http://www.lam-mpi.org/tutorials/
http://www.mcs.anl.gov/research/projects/mpi/tutorial/
http://www.mpitutorial.com/
http://www.mpi-forum.org/docs/
http://www.mcs.anl.gov/research/projects/mpich2/documentation/

MPI

• As said, MPI defines many different functions

• Here we can only discuss a few

• We will focus on key aspects and on some simple examples

• For more information and examples, you can look into

1 any of [21–26, 29, 30]

2 Tutorials:
• http://www.lam-mpi.org/tutorials/

• http://www.mcs.anl.gov/research/projects/mpi/tutorial/

• http://www.mpitutorial.com/

Distributed Computing Thomas Weise 34/84

http://www.lam-mpi.org/tutorials/
http://www.mcs.anl.gov/research/projects/mpi/tutorial/
http://www.mpitutorial.com/
http://www.mpi-forum.org/docs/
http://www.mcs.anl.gov/research/projects/mpich2/documentation/

MPI

• As said, MPI defines many different functions

• Here we can only discuss a few

• We will focus on key aspects and on some simple examples

• For more information and examples, you can look into

1 any of [21–26, 29, 30]

2 Tutorials:
• http://www.lam-mpi.org/tutorials/

• http://www.mcs.anl.gov/research/projects/mpi/tutorial/

• http://www.mpitutorial.com/

3 Documentation:

• http://www.mpi-forum.org/docs/

• http://www.mcs.anl.gov/research/projects/mpich2/documentation/

Distributed Computing Thomas Weise 34/84

http://www.lam-mpi.org/tutorials/
http://www.mcs.anl.gov/research/projects/mpi/tutorial/
http://www.mpitutorial.com/
http://www.mpi-forum.org/docs/
http://www.mcs.anl.gov/research/projects/mpich2/documentation/

Simple Program

Listing: Care bones of MPI program (bareBones.c).

#include <mpi.h> // import MPI header

int main(int argc , char **argv) {

MPI_Init (&argc , &argv); // initialize MPI

MPI_Finalize (); // shut down MPI

return 0;

}

Distributed Computing Thomas Weise 35/84

Simple Program

Listing: Care bones of MPI program (bareBones.c).

#include <mpi.h> // import MPI header

int main(int argc , char **argv) {

MPI_Init (&argc , &argv); // initialize MPI

MPI_Finalize (); // shut down MPI

return 0;

}

• MPI_Init starts the MPI subsystem

Distributed Computing Thomas Weise 35/84

Simple Program

Listing: Care bones of MPI program (bareBones.c).

#include <mpi.h> // import MPI header

int main(int argc , char **argv) {

MPI_Init (&argc , &argv); // initialize MPI

MPI_Finalize (); // shut down MPI

return 0;

}

• MPI_Init starts the MPI subsystem

• MPI_Finalize shuts down the MPI subsystem

Distributed Computing Thomas Weise 35/84

Simple Program

Listing: Care bones of MPI program (bareBones.c).

#include <mpi.h> // import MPI header

int main(int argc , char **argv) {

MPI_Init (&argc , &argv); // initialize MPI

MPI_Finalize (); // shut down MPI

return 0;

}

• MPI_Init starts the MPI subsystem

• MPI_Finalize shuts down the MPI subsystem

• Similar to WSAStartup and WSACleanup in the sockets lecture

Distributed Computing Thomas Weise 35/84

MPI Init and MPI Finalize

• int MPI_Init(int *argc, char ***argv) executes all actions which are

necessary for communication later

Distributed Computing Thomas Weise 36/84

MPI Init and MPI Finalize

• int MPI_Init(int *argc, char ***argv) executes all actions which are

necessary for communication later, such as

1 establishing connections

Distributed Computing Thomas Weise 36/84

MPI Init and MPI Finalize

• int MPI_Init(int *argc, char ***argv) executes all actions which are

necessary for communication later, such as

1 establishing connections
2 initialization of variables

Distributed Computing Thomas Weise 36/84

MPI Init and MPI Finalize

• int MPI_Init(int *argc, char ***argv) executes all actions which are

necessary for communication later, such as

1 establishing connections
2 initialization of variables
3 explore the network

Distributed Computing Thomas Weise 36/84

MPI Init and MPI Finalize

• int MPI_Init(int *argc, char ***argv) executes all actions which are

necessary for communication later, such as

1 establishing connections
2 initialization of variables
3 explore the network
4 maybe initializing WinSock etc.
5 . . .

Distributed Computing Thomas Weise 36/84

MPI Init and MPI Finalize

• int MPI_Init(int *argc, char ***argv) executes all actions which are

necessary for communication later, such as

1 establishing connections
2 initialization of variables
3 explore the network
4 maybe initializing WinSock etc.
5 . . .

• MPI_Finalize() is the last MPI call in a program

Distributed Computing Thomas Weise 36/84

MPI Init and MPI Finalize

• int MPI_Init(int *argc, char ***argv) executes all actions which are

necessary for communication later, such as

1 establishing connections
2 initialization of variables
3 explore the network
4 maybe initializing WinSock etc.
5 . . .

• MPI_Finalize() is the last MPI call in a program
• all communication must be finished before that

Distributed Computing Thomas Weise 36/84

MPI Init and MPI Finalize

• int MPI_Init(int *argc, char ***argv) executes all actions which are

necessary for communication later, such as

1 establishing connections
2 initialization of variables
3 explore the network
4 maybe initializing WinSock etc.
5 . . .

• MPI_Finalize() is the last MPI call in a program
• all communication must be finished before that

• All MPI routines return an int with the result status, MPI_SUCCESS

means everything went OK

Distributed Computing Thomas Weise 36/84

Important Runtime Parameters

• MPI programs need information

Distributed Computing Thomas Weise 37/84

Important Runtime Parameters

• MPI programs need information about

1 “themselves”

Distributed Computing Thomas Weise 37/84

Important Runtime Parameters

• MPI programs need information about

1 “themselves” and
2 the current system of processes

Distributed Computing Thomas Weise 37/84

Important Runtime Parameters

• MPI programs need information about

1 “themselves” and
2 the current system of processes

Distributed Computing Thomas Weise 37/84

Important Runtime Parameters

• MPI programs need information about

1 “themselves” and
2 the current system of processes

• How many processes are there?

Distributed Computing Thomas Weise 37/84

Important Runtime Parameters

• MPI programs need information about

1 “themselves” and
2 the current system of processes

• How many processes are there?
• MPI_Comm_size(MPI_Comm *comm, int *size)

Distributed Computing Thomas Weise 37/84

Important Runtime Parameters

• MPI programs need information about

1 “themselves” and
2 the current system of processes

• How many processes are there?
• MPI_Comm_size(MPI_Comm *comm, int *size)

• Which ID do I have?

Distributed Computing Thomas Weise 37/84

Important Runtime Parameters

• MPI programs need information about

1 “themselves” and
2 the current system of processes

• How many processes are there?
• MPI_Comm_size(MPI_Comm *comm, int *size)

• Which ID do I have?
• MPI_Comm_rank(MPI_Comm *comm, int *rank)

Distributed Computing Thomas Weise 37/84

Important Runtime Parameters

• MPI programs need information about

1 “themselves” and
2 the current system of processes

• How many processes are there?
• MPI_Comm_size(MPI_Comm *comm, int *size)

• Which ID do I have?
• MPI_Comm_rank(MPI_Comm *comm, int *rank)

• rank ∈ {0 . . . size− 1}

Distributed Computing Thomas Weise 37/84

Communicators

• Basis for group communication

Distributed Computing Thomas Weise 38/84

Communicators

• Basis for group communication:
• communicators are special MPI constructs

Distributed Computing Thomas Weise 38/84

Communicators

• Basis for group communication:
• communicators are special MPI constructs
• hold a subset of processes

Distributed Computing Thomas Weise 38/84

Communicators

• Basis for group communication:
• communicators are special MPI constructs that
• hold a subset of processes
• is passed as parameter for communication

Distributed Computing Thomas Weise 38/84

Communicators

• Basis for group communication:
• communicators are special MPI constructs that
• hold a subset of processes and
• is passed as parameter for communication
• communicators can be created by MPI processes

Distributed Computing Thomas Weise 38/84

Communicators

• Basis for group communication:
• communicators are special MPI constructs that
• hold a subset of processes and
• is passed as parameter for communication
• communicators can be created by MPI processes

• For now, we just use MPI_COMM_WORLD

Distributed Computing Thomas Weise 38/84

Communicators

• Basis for group communication:
• communicators are special MPI constructs that
• hold a subset of processes and
• is passed as parameter for communication
• communicators can be created by MPI processes

• For now, we just use MPI_COMM_WORLD

• which contains all MPI processes, i.e., does broadcast

Distributed Computing Thomas Weise 38/84

Listing: Extended MPI Program (basicInfo.c)

#include <mpi.h> // import MPI header

#include <stdio.h> // import for printf

int main(int argc , char **argv) {

int size , rank;

MPI_Init (&argc , &argv); // initialize MPI

MPI_Comm_size(MPI_COMM_WORLD , &size); // get number of program instances

MPI_Comm_rank(MPI_COMM_WORLD , &rank); // get own ID/address

// often , an MPI application has a master and some slaves

// master distributes tasks and combine partial results to final results

// slaves receive partial task , compute partial result , and send to master

if(rank == 0) { // the instance with rank=0 is often chosen as master

printf("Hi from Master\n");

} else { // the others are often slaves

printf("Just Slave %d out of %d\n", rank , size);

}

MPI_Finalize (); // finalize = shut down MPI

return 0;

}

Distributed Computing Thomas Weise 39/84

Blocking Send: MPI Send

int MPI_Send(void *buf, int count, MPI_Datatype datatype, int dest, int tag, MPI_Comm comm)

• Performs a blocking send

Distributed Computing Thomas Weise 40/84

Blocking Send: MPI Send

int MPI_Send(void *buf, int count, MPI_Datatype datatype, int dest, int tag, MPI_Comm comm)

• Performs a blocking send:
• Will block until message has been copied to OS/network stack buffers

Distributed Computing Thomas Weise 40/84

Blocking Send: MPI Send

int MPI_Send(void *buf, int count, MPI_Datatype datatype, int dest, int tag, MPI_Comm comm)

• Performs a blocking send:
• Will block until message has been copied to OS/network stack buffers
• May block until message has received at destination process

Distributed Computing Thomas Weise 40/84

Blocking Send: MPI Send

int MPI_Send(void *buf, int count, MPI_Datatype datatype, int dest, int tag, MPI_Comm comm)

• Performs a blocking send:
• Will block until message has been copied to OS/network stack buffers
• May block until message has received at destination process
• Buffer can be overwritten after function returns

Distributed Computing Thomas Weise 40/84

Blocking Send: MPI Send

int MPI_Send(void *buf, int count, MPI_Datatype datatype, int dest, int tag, MPI_Comm comm)

• Performs a blocking send:
• Will block until message has been copied to OS/network stack buffers
• May block until message has received at destination process
• Buffer can be overwritten after function returns

• Input Parameters
• buf . . . initial address of send buffer
• count . . . number of elements in send buffer

• datatype . . . datatype of each send buffer element

• dest . . . rank/id of destination process
• tag . . . message tag: which send belongs to which receive

• comm dotsthe communicator to use

Distributed Computing Thomas Weise 40/84

Blocking Receive: MPI Recv

int MPI_Recv(void *buf, int count, MPI_Datatype datatype, int source, int tag, MPI_Comm comm,

MPI_Status *status)

• Performs a blocking receive: Waits until a message has been received

Distributed Computing Thomas Weise 41/84

Blocking Receive: MPI Recv

int MPI_Recv(void *buf, int count, MPI_Datatype datatype, int source, int tag, MPI_Comm comm,

MPI_Status *status)

• Performs a blocking receive: Waits until a message has been received

• Input Parameters
• count . . . maximum number of elements in receive buffer

• datatype . . . datatype of each receive buffer element

• source . . . rank/id of source
• tag . . . message tag – must match to tag specified when sending

• comm . . . the communicator to use

Distributed Computing Thomas Weise 41/84

Blocking Receive: MPI Recv

int MPI_Recv(void *buf, int count, MPI_Datatype datatype, int source, int tag, MPI_Comm comm,

MPI_Status *status)

• Performs a blocking receive: Waits until a message has been received

• Input Parameters
• count . . . maximum number of elements in receive buffer

• datatype . . . datatype of each receive buffer element

• source . . . rank/id of source
• tag . . . message tag – must match to tag specified when sending

• comm . . . the communicator to use

• Output Parameters
• buf . . . initial address of receive buffer
• status . . . status object

Distributed Computing Thomas Weise 41/84

MPI Send and MPI Recv

Distributed Computing Thomas Weise 42/84

MPI Send and MPI Recv

Distributed Computing Thomas Weise 43/84

Synchronized Send: MPI Ssend

int MPI_Ssend(void *buf, int count, MPI_Datatype datatype, int dest, int tag, MPI_Comm comm)

• Performs a blocking and synchronized send

Distributed Computing Thomas Weise 44/84

Synchronized Send: MPI Ssend

int MPI_Ssend(void *buf, int count, MPI_Datatype datatype, int dest, int tag, MPI_Comm comm)

• Performs a blocking and synchronized send:
• Will block until message has been copied to OS/network stack buffers

Distributed Computing Thomas Weise 44/84

Synchronized Send: MPI Ssend

int MPI_Ssend(void *buf, int count, MPI_Datatype datatype, int dest, int tag, MPI_Comm comm)

• Performs a blocking and synchronized send:
• Will block until message has been copied to OS/network stack buffers
• Will block until message has received at destination process

Distributed Computing Thomas Weise 44/84

MPI Ssend and MPI Recv

Distributed Computing Thomas Weise 45/84

Listing: A Point-to-Point communication example (simplePointToPoint1.c)

#include <mpi.h> // import MPI header

#include <stdio.h> // needed for printf

int main(int argc , char **argv) {

int size , rank , s_msg , r_msg , next , prev;

MPI_Status status;

MPI_Init (&argc , &argv); // initialize MPI

MPI_Comm_size(MPI_COMM_WORLD , &size); // get number of program instances

MPI_Comm_rank(MPI_COMM_WORLD , &rank); // get own ID/address

next = ((rank + 1) % size); // next higher id, wrap from size -1 to 0

prev = ((rank + size - 1) % size); // next lower id, wrap from 0 to size -1

s_msg = ((size * rank) + next); // the example message , just some number

if((rank % 2) == 0) { // even rank: message to next , receive from prev

MPI_Send (&s_msg , 1, MPI_INT , next , 42, MPI_COMM_WORLD);

MPI_Recv (&r_msg , 1, MPI_INT , prev , 42, MPI_COMM_WORLD , &status);

} else { // otherwise: receive from rev , send to next

MPI_Recv (&r_msg , 1, MPI_INT , prev , 42, MPI_COMM_WORLD , &status);

MPI_Send (&s_msg , 1, MPI_INT , next , 42, MPI_COMM_WORLD);

}

printf("id: %d, next: %d, prev: %d, send: %d, recv: %d\n", rank , next , prev , s_msg ,

r_msg);

MPI_Finalize (); // shut down MPI

return 0;

}

Distributed Computing Thomas Weise 46/84

Listing: A Point-to-Point communication example (simplePointToPoint2.c)

#include <mpi.h> // import MPI header

#include <stdio.h> // needed for printf

#include <string.h> // needed for strlen

int main(int argc , char *argv []) {

char message [20]; // char array big enough to hold message

int rank; // own rank

MPI_Status status; // status variable

MPI_Init (&argc , &argv); // initialize mpi

MPI_Comm_rank(MPI_COMM_WORLD , &rank); // get own rank

if (rank == 0) { // if we have rank 0...

strcpy(message , "Hello , there"); /// ... create and send message to rank 1

MPI_Send(message , strlen(message)+1, MPI_CHAR , 1, 42, MPI_COMM_WORLD);

printf("sent: \"%s\"\n", message); // print the message that was sent

} else { // if we are rank 1, receive message coming from rank 0

MPI_Recv(message , 20, MPI_CHAR , 0, 42, MPI_COMM_WORLD , &status);

printf("received: \"%s\"\n", message); // print message

}

MPI_Finalize (); // shut down MPI

return 0;

}

Distributed Computing Thomas Weise 47/84

Listing: Computing Pi with Point-to-Point communication example (piPointToPoint.c)

#include <mpi.h>

#include <stdlib.h>

#include <stdio.h>

#include <time.h>

int main(int argc , char **argv) {

int i, size , rank; double x, y;

long long int root[2], worker [2]; MPI_Status status;

MPI_Init (&argc , &argv); // initialize MPI

MPI_Comm_size(MPI_COMM_WORLD , &size); //get the number of processes in the global communicator

MPI_Comm_rank(MPI_COMM_WORLD , &rank); //get the rank of this process within the global communicator

root [0] = root [1] = worker [0] = worker [1] = 0LL; // clear the data buffer

if(rank == 0) { // check if we are root

for(i = size; (--i) > 0;) { // receive data from the workers

MPI_Recv (& worker [0], 2, MPI_LONG_LONG_INT , i, 42, MPI_COMM_WORLD , &status); //do receive

root [0] += worker [0]; //get the received sample size (number of points)

root [1] += worker [1]; //get the number of samples (points) inside the unit circle

printf("worker %d sends estimate %G (based on %lld samples), total estimate now is %G (based on %lld samples).\n", i,

((4.0 * worker [1]) / worker [0]), worker [0], ((4.0 * root [1]) / root [0]), root [0]);

fflush(stdout); // flush the standard out

}

} else { //ok , we are a worker

srand(time(NULL));

for(worker [0] = 1; worker [0] < (rank * 100000000 LL); worker [0]++) { //make 100 000 000 samples

x = (rand() / ((double)RAND_MAX)); // random x-coordinate in [0,1]

y = (rand() / ((double)RAND_MAX)); // random y-coordinate in [0,1]

if(((x*x) + (y*y)) <= 1.0) { //did it fall into the inner circle?

worker [1]++; //yes , it did - increase counter

}

}

MPI_Send (& worker [0], 2, MPI_LONG_LONG_INT , 0, 42, MPI_COMM_WORLD); //send worker result synchronously

}

MPI_Finalize (); // finish the MPI stuff

return 0;

}

Distributed Computing Thomas Weise 48/84

Listing: Point-to-Point with error (deadlock.c)

#include <mpi.h> // import MPI header

#include <stdio.h> // needed for printf

#include <string.h> // needed for strlen

int main(int argc , char **argv) {

int rank , size , prev , next;

MPI_Status status;

char messageIn [20], messageOut [20];

MPI_Init (&argc , &argv); // initialize MPI

MPI_Comm_rank(MPI_COMM_WORLD , &rank); // get own rank/ID

MPI_Comm_size(MPI_COMM_WORLD , &size); // get total number of processes

prev = ((size + rank - 1) % size); // get rank of process to receive from , wrap at 0

MPI_Recv(messageIn , 20, MPI_CHAR , prev , 0, MPI_COMM_WORLD , &status); // receive msg

printf("Process %d received message %s from process %d.\n", rank , messageIn , prev);

next = ((rank + 1) % size); // get rank of process to send message to

strcpy(messageOut , "Important message!"); // construct message

printf("Process %d is sending message %s to process %d.\n", rank , messageOut , next);

MPI_Send(messageOut , 20, MPI_CHAR , next , 0, MPI_COMM_WORLD); // send message

MPI_Finalize (); // shut down MPI

return 0;

}

Distributed Computing Thomas Weise 49/84

Non-blocking Operations

• Sometimes, we want to keep calculating while sending/receiving is
going on: non-blocking operations

Distributed Computing Thomas Weise 50/84

Non-blocking Operations

• Sometimes, we want to keep calculating while sending/receiving is
going on: non-blocking operations

int MPI_Isend(void* buf, int count, MPI_Datatype datatype, int dest, int tag, MPI_Comm

comm, MPI_Request* request)

int MPI_Irecv(void* buf, int count, MPI_Datatype datatype, int source, int tag, MPI_Comm

comm, MPI_Request* request)

Distributed Computing Thomas Weise 50/84

Non-blocking Operations

• Sometimes, we want to keep calculating while sending/receiving is
going on: non-blocking operations

int MPI_Isend(void* buf, int count, MPI_Datatype datatype, int dest, int tag, MPI_Comm

comm, MPI_Request* request)

int MPI_Irecv(void* buf, int count, MPI_Datatype datatype, int source, int tag, MPI_Comm

comm, MPI_Request* request)

• Return immediately, i.e., do not wait until data is copied (will be done
in background)

• request . . . address of a data structure for information about the
operation

Distributed Computing Thomas Weise 50/84

Non-blocking Operations

• Sometimes, we want to keep calculating while sending/receiving is
going on: non-blocking operations

int MPI_Isend(...MPI_Request* request)

int MPI_Irecv(...MPI_Request* request)

• Return immediately, i.e., do not wait until data is copied (will be done
in background)

• request . . . address of a data structure for information about the
operation

Distributed Computing Thomas Weise 50/84

Non-blocking Operations

• If we start an asynchronous operation, like sending or receiving. . .

Distributed Computing Thomas Weise 51/84

Non-blocking Operations

• If we start an asynchronous operation, like sending or receiving. . .

• . . . how do we know when we can change the data (being sent) or use
the data (being received) if the operation returns immediately?

Distributed Computing Thomas Weise 51/84

Non-blocking Operations

• If we start an asynchronous operation, like sending or receiving. . .

• . . . how do we know when we can change the data (being sent) or use
the data (being received) if the operation returns immediately?

int MPI_Test(MPI_Request* request, int* flag, MPI_Status* status)

Distributed Computing Thomas Weise 51/84

Non-blocking Operations

• If we start an asynchronous operation, like sending or receiving. . .

• . . . how do we know when we can change the data (being sent) or use
the data (being received) if the operation returns immediately?

int MPI_Test(MPI_Request* request, int* flag, ...)

• check operation status

• stores flag=1 if operation is finished, flag=0 if it is ongoing

Distributed Computing Thomas Weise 51/84

Non-blocking Operations

• If we start an asynchronous operation, like sending or receiving. . .

• . . . how do we know when we can change the data (being sent) or use
the data (being received) if the operation returns immediately?

int MPI_Test(MPI_Request* request, int* flag, ...)

• check operation status

• stores flag=1 if operation is finished, flag=0 if it is ongoing

int MPI_Wait(MPI_Request* request, MPI_Status* status)

Distributed Computing Thomas Weise 51/84

Non-blocking Operations

• If we start an asynchronous operation, like sending or receiving. . .

• . . . how do we know when we can change the data (being sent) or use
the data (being received) if the operation returns immediately?

int MPI_Test(MPI_Request* request, int* flag, ...)

• check operation status

• stores flag=1 if operation is finished, flag=0 if it is ongoing

int MPI_Wait(MPI_Request* request, MPI_Status* status)

• blocks until operation has finished

Distributed Computing Thomas Weise 51/84

Non-blocking Operations

• If we start an asynchronous operation, like sending or receiving. . .

• . . . how do we know when we can change the data (being sent) or use
the data (being received) if the operation returns immediately?

int MPI_Test(MPI_Request* request, int* flag, ...)

• check operation status

• stores flag=1 if operation is finished, flag=0 if it is ongoing

int MPI_Wait(MPI_Request* request, MPI_Status* status)

• blocks until operation has finished

int MPI_Waitany(int count, MPI_Request array_of_requests[], int *index, MPI_Status *status)

Distributed Computing Thomas Weise 51/84

Non-blocking Operations

• If we start an asynchronous operation, like sending or receiving. . .

• . . . how do we know when we can change the data (being sent) or use
the data (being received) if the operation returns immediately?

int MPI_Test(MPI_Request* request, int* flag, ...)

• check operation status

• stores flag=1 if operation is finished, flag=0 if it is ongoing

int MPI_Wait(MPI_Request* request, MPI_Status* status)

• blocks until operation has finished

int MPI_Waitany(int count, ..., int *index, ...)

• blocks until one of the count operations in array_of_requests has
finished

Distributed Computing Thomas Weise 51/84

Non-blocking Operations

• If we start an asynchronous operation, like sending or receiving. . .

• . . . how do we know when we can change the data (being sent) or use
the data (being received) if the operation returns immediately?

int MPI_Test(MPI_Request* request, int* flag, ...)

• check operation status

• stores flag=1 if operation is finished, flag=0 if it is ongoing

int MPI_Wait(MPI_Request* request, MPI_Status* status)

• blocks until operation has finished

int MPI_Waitany(int count, ..., int *index, ...)

• blocks until one of the count operations in array_of_requests has
finished

• returns index of finished operation in index

Distributed Computing Thomas Weise 51/84

MPI Isend and MPI Irecv

Distributed Computing Thomas Weise 52/84

Listing: Non-blocking Point-to-Point communication [33] (nonBlockingPointToPoint.c)

#include <mpi.h> // import MPI header

#include <stdio.h> // needed for printf

int main(int argc , char *argv []) {

int rank , size , prev , next;

char receiveBuffer [30], sendBuffer [30];

MPI_Request receiveRequest , sendRequest;

MPI_Status status;

MPI_Init (&argc ,&argv); // initialize MPI

MPI_Comm_size(MPI_COMM_WORLD , &size); // get own rank / ID

MPI_Comm_rank(MPI_COMM_WORLD , &rank); // get total number of processes

next = ((rank + 1) % size); // get rank of process to receive from

// _initiate_ receive operation , but do not wait for its completion

MPI_Irecv(receiveBuffer , 30, MPI_CHAR , prev , 42, MPI_COMM_WORLD , &receiveRequest);

prev = ((rank + size - 1) % size); // get rank of process to send to

sprintf(sendBuffer , "Non -blocking from %d!", rank);

// _initiate_ send operation , but do not wait for its completion

MPI_Isend(sendBuffer , 30, MPI_CHAR , next , 42, MPI_COMM_WORLD , &sendRequest);

MPI_Wait (& receiveRequest , &status); // wait for receive to complete

printf("%d received \"%s\"\n", rank , receiveBuffer); // print received msg

MPI_Wait (& sendRequest , &status); // wait for send to complete

MPI_Finalize (); // shut down MPI

return 0;

}

Distributed Computing Thomas Weise 53/84

Listing: An asynchronous Pi computation (piNonBlockingPointToPoint.c)

#include <mpi.h>

#include <stdlib.h>

#include <string.h>

#include <time.h>

#include <stdio.h>

int main(int argc , char **argv) {

int i, j, size , rank; double x, y;

long long int *data; MPI_Status status;

MPI_Request *req;

MPI_Init (&argc , &argv); // initialize MPI

MPI_Comm_size(MPI_COMM_WORLD , &size); //get the number of processes in the global communicator

MPI_Comm_rank(MPI_COMM_WORLD , &rank); //get the rank of this process within the global communicator

data = (long long int*) malloc(sizeof(long long int) * size * 2);// allocate data (ok, waste some memory in the workers)

memset(data , 0, (sizeof(sizeof(long long int)) * 2 * size)); //clear the data buffer

if(rank == 0) { // check if we are root

req = (MPI_Request *) malloc(sizeof(MPI_Request) * size); // allocate request list

for(i = size; (--i) > 0;) { // initiate receives from the workers

MPI_Irecv (&data [2*i], 2, MPI_LONG_LONG_INT , i, 42, MPI_COMM_WORLD , &req[i]);

}

for(i = size -2; i >= 0; i--) { //for each unfulfilled receive request

MPI_Waitany(size -1, &req[1], &j, &status); //now wait until something has been received from any worker

j++;

data [0] += data [2*j]; //get the received sample size (number of points)

data [1] += data [2*j + 1]; //get the number of samples (points) inside the unit circle

printf("worker %d sends estimate %G (based on %lld samples), total estimate now is %G (based on %lld samples).\n", j,

((4.0 * data [2*j + 1]) / data [2*j]), data [2*j], ((4.0 * data [1]) / data [0]), data [0]);

fflush(stdout); // flush the standard out

}

} else { //ok , we are a worker

srand(time(NULL));

for(data [0] = 1; data [0] < (rank * 100000000 LL); data [0]++) { //make 100 000 000 samples

x = (rand() / ((double)RAND_MAX)); // random x-coordinate in [0,1]

y = (rand() / ((double)RAND_MAX)); // random y-coordinate in [0,1]

if(((x*x) + (y*y)) <= 1.0) { //did it fall into the inner circle?

data [1]++; //yes , it did - increase counter

}

}

MPI_Send (&data[0], 2, MPI_LONG_LONG_INT , 0, 42, MPI_COMM_WORLD); //send worker result synchronously

}

MPI_Finalize (); // finish the MPI stuff

return 0;

}
Distributed Computing Thomas Weise 54/84

So far. . .

• So far: data transfer using “classical point-to-point communication”

Distributed Computing Thomas Weise 55/84

So far. . .

• So far: data transfer using “classical point-to-point communication”

• MPI_Send , MPI_Ssend , MPI_Isend , . . . MPI_Recv , MPI_Irecv , . . .

Distributed Computing Thomas Weise 55/84

So far. . .

• So far: data transfer using “classical point-to-point communication”

• MPI_Send , MPI_Ssend , MPI_Isend , . . . MPI_Recv , MPI_Irecv , . . .

• Addressing using the “ rank ”

Distributed Computing Thomas Weise 55/84

So far. . .

• So far: data transfer using “classical point-to-point communication”

• MPI_Send , MPI_Ssend , MPI_Isend , . . . MPI_Recv , MPI_Irecv , . . .

• Addressing using the “ rank ”

• blocking/non-blocking

Distributed Computing Thomas Weise 55/84

So far. . .

• So far: data transfer using “classical point-to-point communication”

• MPI_Send , MPI_Ssend , MPI_Isend , . . . MPI_Recv , MPI_Irecv , . . .

• Addressing using the “ rank ”

• blocking/non-blocking

• synchronized/non-synchronized

Distributed Computing Thomas Weise 55/84

Process Groups

• MPI supports process groups

Distributed Computing Thomas Weise 56/84

Process Groups

• MPI supports process groups
• Processes can be members of arbirary groups

Distributed Computing Thomas Weise 56/84

Process Groups

• MPI supports process groups
• Processes can be members of arbirary groups
• For each group it is member of, a process has a specific rank (relative

to that group)

Distributed Computing Thomas Weise 56/84

Process Groups

• MPI supports process groups
• Processes can be members of arbirary groups
• For each group it is member of, a process has a specific rank (relative

to that group)

• So far, we only used the pre-defined group (communicator)
MPI_COMM_WORLD of all processes

Distributed Computing Thomas Weise 56/84

Communicators and Process Groups

• Communicators and process groups are closely related

Distributed Computing Thomas Weise 57/84

Communicators and Process Groups

• Communicators and process groups are closely related

• But: MPI-communicators and MPI-groups are different constructs!

Distributed Computing Thomas Weise 57/84

Communicators and Process Groups

• Communicators and process groups are closely related

• But: MPI-communicators and MPI-groups are different constructs!

• A communicator always belongs to exactly one group

Distributed Computing Thomas Weise 57/84

Communicators and Process Groups

• Communicators and process groups are closely related

• But: MPI-communicators and MPI-groups are different constructs!

• A communicator always belongs to exactly one group

• But: A group can associated with multiple communicators

Distributed Computing Thomas Weise 57/84

Predefined Groups/Communicators

• At startup, there are two communicators

Distributed Computing Thomas Weise 58/84

Predefined Groups/Communicators

• At startup, there are two communicators:

1 MPI_COMM_WORLD . . . corresponds to all processes

Distributed Computing Thomas Weise 58/84

Predefined Groups/Communicators

• At startup, there are two communicators:

1 MPI_COMM_WORLD . . . corresponds to all processes

2 MPI_COMM_SELF . . . corresponds to the calling process itself

Distributed Computing Thomas Weise 58/84

Predefined Groups/Communicators

• At startup, there are two communicators:

1 MPI_COMM_WORLD . . . corresponds to all processes

2 MPI_COMM_SELF . . . corresponds to the calling process itself

• New process groups and communicators can be created at runtime
with methods such as MPI_Group_union , MPI_Group_intersection ,

MPI_Group_difference , . . .

Distributed Computing Thomas Weise 58/84

Collective Communication

• All processes within a communicator can exchange information at the
same time

Distributed Computing Thomas Weise 59/84

Collective Communication

• All processes within a communicator can exchange information at the
same time

• There are different semantics for the information exchange

Distributed Computing Thomas Weise 59/84

Collective Communication

• All processes within a communicator can exchange information at the
same time

• There are different semantics for the information exchange
• Either all processes or pair-wise

Distributed Computing Thomas Weise 59/84

Collective Communication

• All processes within a communicator can exchange information at the
same time

• There are different semantics for the information exchange
• Either all processes or pair-wise

• Synchronization usually implicitly contained

Distributed Computing Thomas Weise 59/84

Collective Communication

• All processes within a communicator can exchange information at the
same time

• There are different semantics for the information exchange
• Either all processes or pair-wise

• Synchronization usually implicitly contained

• Every collective operation can also be expressed with
MPI_Send / MPI_Recv

Distributed Computing Thomas Weise 59/84

Broadcast

int MPI_Bcast(void *buffer, int count, MPI_Datatype datatype, int root, MPI_Comm comm)

• Simplest way to do collective communication is broadcast

Distributed Computing Thomas Weise 60/84

Broadcast

int MPI_Bcast(void *buffer, int count, MPI_Datatype datatype, int root, MPI_Comm comm)

• Simplest way to do collective communication is broadcast

• Broadcast a message from the process with rank root to all other
processes of the communicator

Distributed Computing Thomas Weise 60/84

Broadcast

int MPI_Bcast(void *buffer, int count, MPI_Datatype datatype, int root, MPI_Comm comm)

• Simplest way to do collective communication is broadcast

• Broadcast a message from the process with rank root to all other
processes of the communicator

• Input/Output Parameter
• buffer . . . starting address of the buffer used for input (at root) or

output (other processes)

Distributed Computing Thomas Weise 60/84

Broadcast

int MPI_Bcast(void *buffer, int count, MPI_Datatype datatype, int root, MPI_Comm comm)

• Simplest way to do collective communication is broadcast

• Broadcast a message from the process with rank root to all other
processes of the communicator

• Input/Output Parameter
• buffer . . . starting address of the buffer used for input (at root) or

output (other processes)

• Input Parameters
• count . . . number of entries in buffer

• datatype . . . data type of buffer

• root . . . rank of broadcast root (must be the same for all processes
calling this function)

• comm . . . the communicator

Distributed Computing Thomas Weise 60/84

Broadcast

Listing: Broadcast (broadcast.c)

#include <mpi.h> // import MPI header

#include <stdio.h> // import for printf

int main(int argc , char *argv []) {

char message [60]; // space allocated for the message

int rank; // variable for process id

MPI_Init (&argc , &argv); // initialize MPI

MPI_Comm_rank(MPI_COMM_WORLD , &rank); // get own rank

if (rank == 0) { // create message if process is "root" (rank = 0)

sprintf(message , "Message from root (rank %d).", rank);

}

// broadcast: send message to all if rank==0, otherwise receive

MPI_Bcast(message , 60, MPI_CHAR , 0, MPI_COMM_WORLD);

printf("The message sent/received at node %d is \"%s\"\n", rank , message);

MPI_Finalize (); // shutdown MPI

return 0;

}

Distributed Computing Thomas Weise 61/84

Scatter
int MPI_Scatter(void *sendbuf, int sendcnt, MPI_Datatype sendtype, void *recvbuf, int recvcnt,

MPI_Datatype recvtype, int root, MPI_Comm comm)

• Divides an array of sendcnt elements into n pieces, where n is the
number of processes in a communicator

Distributed Computing Thomas Weise 62/84

Scatter
int MPI_Scatter(void *sendbuf, int sendcnt, MPI_Datatype sendtype, void *recvbuf, int recvcnt,

MPI_Datatype recvtype, int root, MPI_Comm comm)

• Divides an array of sendcnt elements into n pieces, where n is the
number of processes in a communicator

• If root: sends the pieces to each of the n processes (including itself)

Distributed Computing Thomas Weise 62/84

Scatter
int MPI_Scatter(void *sendbuf, int sendcnt, MPI_Datatype sendtype, void *recvbuf, int recvcnt,

MPI_Datatype recvtype, int root, MPI_Comm comm)

• Divides an array of sendcnt elements into n pieces, where n is the
number of processes in a communicator

• If root: sends the pieces to each of the n processes (including itself)
• If not root: receive a data piece

Distributed Computing Thomas Weise 62/84

Scatter

int MPI_Scatter(...

• Divides an array of sendcnt elements into n pieces, where n is the
number of processes in a communicator

• If root: sends the pieces to each of the n processes (including itself)

• If not root: receive a data piece
• Input Parameters

• sendbuf . . . address of send buffer (only relevant at root)

• sendcount . . . number of elements sent to each process (only relevant
at root)

• sendtype . . . data type of send buffer elements (only relevant at

root)
• recvcount . . . number of elements in receive buffer
• recvtype . . . data type of receive buffer elements

• root . . . rank of sending process
• comm . . . the communicator to use

Distributed Computing Thomas Weise 62/84

Scatter

int MPI_Scatter(...

• Divides an array of sendcnt elements into n pieces, where n is the
number of processes in a communicator

• If root: sends the pieces to each of the n processes (including itself)

• If not root: receive a data piece
• Input Parameters

• sendbuf . . . address of send buffer (only relevant at root)

• sendcount . . . number of elements sent to each process (only relevant
at root)

• sendtype . . . data type of send buffer elements (only relevant at

root)
• recvcount . . . number of elements in receive buffer
• recvtype . . . data type of receive buffer elements

• root . . . rank of sending process
• comm . . . the communicator to use

• Output Parameter
• recvbuf . . . address of receive buffer

Distributed Computing Thomas Weise 62/84

Gather
int MPI_Gather(void *sendbuf, int sendcnt, MPI_Datatype sendtype, void *recvbuf, int recvcnt, MPI_Datatype

recvtype, int root, MPI_Comm comm)

• Complement to MPI_Scatter

Distributed Computing Thomas Weise 63/84

Gather
int MPI_Gather(void *sendbuf, int sendcnt, MPI_Datatype sendtype, void *recvbuf, int recvcnt, MPI_Datatype

recvtype, int root, MPI_Comm comm)

• Complement to MPI_Scatter

• Receives data in small arrays from all processes in a communicator

Distributed Computing Thomas Weise 63/84

Gather
int MPI_Gather(void *sendbuf, int sendcnt, MPI_Datatype sendtype, void *recvbuf, int recvcnt, MPI_Datatype

recvtype, int root, MPI_Comm comm)

• Complement to MPI_Scatter

• Receives data in small arrays from all processes in a communicator
• If root: combines all the data into one array (order like in

MPI_Gather)

Distributed Computing Thomas Weise 63/84

Gather

int MPI_Gather(...

• Complement to MPI_Scatter

• Receives data in small arrays from all processes in a communicator

• If root: combines all the data into one array (order like in
MPI_Gather)

• Input Parameters
• sendbuf . . . address of send buffer

• sendcount . . . number of elements in the send buffer

• sendtype . . . data type of send buffer elements

• recvcount . . . number of elements in receive buffer (only relevant at
root)

• recvtype . . . data type of receive buffer elements (only relevant at

root)
• root . . . rank of receiving process
• comm . . . the communicator to use

Distributed Computing Thomas Weise 63/84

Gather

int MPI_Gather(...

• Complement to MPI_Scatter

• Receives data in small arrays from all processes in a communicator

• If root: combines all the data into one array (order like in
MPI_Gather)

• Input Parameters
• sendbuf . . . address of send buffer

• sendcount . . . number of elements in the send buffer

• sendtype . . . data type of send buffer elements

• recvcount . . . number of elements in receive buffer (only relevant at
root)

• recvtype . . . data type of receive buffer elements (only relevant at

root)
• root . . . rank of receiving process
• comm . . . the communicator to use

• Output Parameter
• recvbuf . . . address of receive buffer (only relevant at root)

Distributed Computing Thomas Weise 63/84

Broadcast, Scatter, & Gather

Distributed Computing Thomas Weise 64/84

Listing: Gather/Scatter: bare bones (gatherScatterBareBones.c)

#include <mpi.h> // import MPI header

#include <stdio.h> // needed for printf

#define DATA_SIZE 1024 // the data size

int main(int argc , char *argv []) {

int send[DATA_SIZE], recv[DATA_SIZE];

int rank , size , count , root , res;

MPI_Status status;

MPI_Init (&argc , &argv); // initialize MPI

MPI_Comm_rank(MPI_COMM_WORLD , &rank); // get own rank/ID

MPI_Comm_size(MPI_COMM_WORLD , &size); // get total number of processes

if(rank == 0) { //If root: Generate data to be distributed.

}

//Send data to all nodes. here: an integer array of length "count ".

count = (DATA_SIZE / size); // each receive gets chunk of same size

// scatter: if rank=0, send data (and get own share); otherwise: receive data

MPI_Scatter(send , count , MPI_INT , recv , count , MPI_INT , 0, MPI_COMM_WORLD);

// Each node processes its share of data and sends the result (here: int "res") to

root.

MPI_Gather (&res , 1, MPI_INT , recv , 1, MPI_INT , 0, MPI_COMM_WORLD);

if(rank == 0) { //If root: process the received data.

}

MPI_Finalize (); // shut down MPI

return 0;

}
Distributed Computing Thomas Weise 65/84

Listing: Gather/Scatter: Count Primes (gatherScatterPrimes.c)

#include <mpi.h> // import MPI header

#include <stdio.h> // needed for printf

#include <math.h> // needed for sqrt

#define DATA_SIZE 1024 // let's count the primes among the first 1024 numbers

int main(int argc , char *argv []) {

int send[DATA_SIZE], recv[DATA_SIZE];

int rank , size , count , root , res , i, j;

MPI_Status status;

MPI_Init (&argc , &argv); // initialize MPI

MPI_Comm_rank(MPI_COMM_WORLD , &rank); // get own rank/ID

MPI_Comm_size(MPI_COMM_WORLD , &size); // get total number of processes

if(rank == 0) { // generate data (i.e., the first DATA_SIZE natural numbers) if root

for(i = DATA_SIZE; (--i) >=0;) { send[i] = (i + 1); }

}

count = (DATA_SIZE / size); // divide the data among _all_ processes

// scatter: if rank=0, send data (and get own share); otherwise: receive data

MPI_Scatter(send , count , MPI_INT , recv , count , MPI_INT , 0, MPI_COMM_WORLD);

// each node now processes its share of the numbers

res = count; //here: count how many prime numbers are contained in the array

for(i = count; (--i) >= 0;) { //j: test all odd numbers 1<j<sqrt(j)|1

for(j = ((int)(sqrt(recv[i]))|1); j>1; j -= 2) {

if((recv[i] % j) == 0) { // if a number can be divided by j

res --; // it cannot be a prime number , reduce number of primes

break; } // break inner loop to test next number

}

}

printf("Process %d discovered %d primes in the numbers from %d to %d.\n", rank , res , recv[0], recv[count -1]);

// gather: all processes send data to root , only root receives data

MPI_Gather (&res , 1, MPI_INT , recv , 1, MPI_INT , 0, MPI_COMM_WORLD);

if(rank == 0) { //if root , process the received data

res = 0;

for(i = size; (--i) >= 0;) { //add up the prime number counts

res += recv[i];

}

printf("The total number of primes in the first %d natural numbers is %d.\n", (count*size), res);

}

MPI_Finalize ();

return 0;

}
Distributed Computing Thomas Weise 66/84

Listing: Gather/Scatter: Pi (piGatherScatter.c)

#include <mpi.h> // import MPI header

#include <stdio.h> // needed for printf

#include <stdlib.h> // for rand and RAND_MAX

#include <string.h> // for memset

#include <time.h> // for srand(time(NULL));

int main(int argc , char **argv) {

int i, size , rank; double x, y;

long long int *data , worker [2]; MPI_Status status;

MPI_Init (&argc , &argv); // initialize MPI

MPI_Comm_size(MPI_COMM_WORLD , &size); //get the number of processes in the global communicator

MPI_Comm_rank(MPI_COMM_WORLD , &rank); //get the rank of this process within the global communicator

if(rank != 0) {

worker [0] = worker [1] = 0LL; //the local worker array

srand(time(NULL));

for(worker [0] = 1; worker [0] < (rank * 100000000 LL); worker [0]++) { //make 100 000 000 samples

x = (rand() / ((double)RAND_MAX)); // random x-coordinate in [0,1]

y = (rand() / ((double)RAND_MAX)); // random y-coordinate in [0,1]

if(((x*x) + (y*y)) <= 1.0) { //did it fall into the inner circle?

worker [1]++; //yes , it did - increase counter

}

}

}

data = (long long int*) malloc(sizeof(long long int) * size * 2); // allocate data (ok, waste some memory in the workers)

memset(data , 0, (sizeof(data [0]) * 2 * size)); // clear the data buffer

MPI_Gather(worker , 2, MPI_LONG_LONG_INT , data , 2, MPI_LONG_LONG_INT , 0, MPI_COMM_WORLD); // gather results

if(rank == 0) { //root now evaluates results

for(i = size; (--i) > 0;) { // receive data from the workers

data [0] += data [2*i]; //get the received sample size (number of points)

data [1] += data [2*i+1]; //get the number of samples (points) inside the unit circle

printf("worker %d sends estimate %G (based on %lld samples), total estimate now is %G (based on %lld samples).\n", i,

((4.0 * data [2*i + 1]) / data [2*i]), data [2*i], ((4.0 * data [1]) / data [0]), data [0]);

}

}

MPI_Finalize (); // finish the MPI stuff

return 0;

}

Distributed Computing Thomas Weise 67/84

Reduce

int MPI_Reduce (void *sendbuf, void *recvbuf, int count, MPI_Datatype type, MPI_Op op, int root,

MPI_Comm comm)

• Similar to MPI_Gather

Distributed Computing Thomas Weise 68/84

Reduce

int MPI_Reduce (void *sendbuf, void *recvbuf, int count, MPI_Datatype type, MPI_Op op, int root,

MPI_Comm comm)

• Similar to MPI_Gather , but

• Data is aggregated by applying a specific reduction operation op

Distributed Computing Thomas Weise 68/84

Reduce

int MPI_Reduce (void *sendbuf, void *recvbuf, int count, MPI_Datatype type, MPI_Op op, int root,

MPI_Comm comm)

• Similar to MPI_Gather , but

• Data is aggregated by applying a specific reduction operation op

• Therefore, volume of data transmission is reduced (not all needs to be
sent)

Distributed Computing Thomas Weise 68/84

Reduce

int MPI_Reduce(...

• Similar to MPI_Gather , but

• Data is aggregated by applying a specific reduction operation op

• Therefore, volume of data transmission is reduced (not all needs to be
sent)

• Values for op

• MPI_LAND / MPI_BAND . . . logical/bitwise and

• MPI_LOR / MPI_BOR . . . logical/bitwise or

• MPI_LXOR / MPI_BXOR . . . logical/bitwise xor

• MPI_MAX . . . compute the maximum

• MPI_MIN . . . compute the minimum

• MPI_SUM . . . compute the sum

• MPI_PROD . . . compute the product

Distributed Computing Thomas Weise 68/84

Listing: Scatter/Reduce: Count Primes (reducePrimes.c)

#include <mpi.h> // import MPI header

#include <stdio.h> // needed for printf

#include <math.h> // needed for sqrt

#define DATA_SIZE 1024 // let's count the primes among the first 1024 numbers

int main(int argc , char *argv []) {

int send[DATA_SIZE], recv[DATA_SIZE];

int rank , size , count , root , res , i, j;

MPI_Status status;

MPI_Init (&argc , &argv); // initialize MPI

MPI_Comm_rank(MPI_COMM_WORLD , &rank); // get own rank/ID

MPI_Comm_size(MPI_COMM_WORLD , &size); // get total number of processes

if(rank == 0) { // generate data (i.e., the first DATA_SIZE natural numbers) if root

for(i = DATA_SIZE; (--i) >=0;) { send[i] = (i + 1); }

}

count = (DATA_SIZE / size); // divide the data among _all_ processes

// scatter: if rank=0, send data (and get own share); otherwise: receive data

MPI_Scatter(send , count , MPI_INT , recv , count , MPI_INT , 0, MPI_COMM_WORLD);

// each node now processes its share of the numbers

res = count; //here: count how many prime numbers are contained in the array

for(i = count; (--i) >= 0;) { //j: test all odd numbers 1<j<sqrt(j)|1

for(j = ((int)(sqrt(recv[i]))|1); j>1; j -= 2) {

if((recv[i] % j) == 0) { // if a number can be divided by j

res --; // it cannot be a prime number , reduce number of primes

break; } // break inner loop to test next number

}

}

printf("Process %d discovered %d primes in the numbers from %d to %d.\n", rank , res , recv[0], recv[count -1]);

// reduce: each node takes results , applies operator MPI_SUM locally , sends result to root , where MPI_SUM is

// applied again. (here: locally summing up does not matter , as only 1 number). The final result is returned.

MPI_Reduce (&res , recv , 1, MPI_INT , MPI_SUM , 0, MPI_COMM_WORLD);

if(rank == 0) { //if root , print

printf("The total number of primes in the first %d natural numbers is %d.\n", (count*size), recv [0]);

}

MPI_Finalize (); // shut down MPI

return 0;

}

Distributed Computing Thomas Weise 69/84

Ways to distribute

1 Can my problem be parallelized?

Distributed Computing Thomas Weise 70/84

Ways to distribute

1 Can my problem be parallelized?
• Is it parallel by nature or regular?

Distributed Computing Thomas Weise 70/84

Ways to distribute

1 Can my problem be parallelized?
• Is it parallel by nature or regular?

2 Which part of my program should I parallelize?

Distributed Computing Thomas Weise 70/84

Ways to distribute

1 Can my problem be parallelized?
• Is it parallel by nature or regular?

2 Which part of my program should I parallelize?
• The stuff that takes the most time!

Distributed Computing Thomas Weise 70/84

Ways to distribute

1 Can my problem be parallelized?
• Is it parallel by nature or regular?

2 Which part of my program should I parallelize?
• The stuff that takes the most time!
• Test, trial, use profiler, . . .

Distributed Computing Thomas Weise 70/84

Ways to distribute

1 Can my problem be parallelized?
• Is it parallel by nature or regular?

2 Which part of my program should I parallelize?
• The stuff that takes the most time!
• Test, trial, use profiler, . . .
• Find bottlenecks (e.g., I/O)

Distributed Computing Thomas Weise 70/84

Ways to distribute

1 Can my problem be parallelized?
• Is it parallel by nature or regular?

2 Which part of my program should I parallelize?
• The stuff that takes the most time!
• Test, trial, use profiler, . . .
• Find bottlenecks (e.g., I/O)

3 Two basic parallelization schemes

Distributed Computing Thomas Weise 70/84

Ways to distribute

1 Can my problem be parallelized?
• Is it parallel by nature or regular?

2 Which part of my program should I parallelize?
• The stuff that takes the most time!
• Test, trial, use profiler, . . .
• Find bottlenecks (e.g., I/O)

3 Two basic parallelization schemes

1 data-based parallelization
2 function-based parallelization

Distributed Computing Thomas Weise 70/84

Data-based Partition

• Each worker processes a part of the data

Distributed Computing Thomas Weise 71/84

Data-based Partition

• Each worker processes a part of the data

Distributed Computing Thomas Weise 71/84

image source: [19]

Data-based Partition: 1D bib@oldcitepB2012ITPC

Distributed Computing Thomas Weise 72/84

Data-based Partition: 1D bib@oldcitepB2012ITPC

Distributed Computing Thomas Weise 72/84

Data-based Partition: 2D bib@oldcitepB2012ITPC

Distributed Computing Thomas Weise 73/84

Data-based Partition: 2D bib@oldcitepB2012ITPC

Distributed Computing Thomas Weise 73/84

Data-based Partition: 2D bib@oldcitepB2012ITPC

Distributed Computing Thomas Weise 73/84

Data-based Partition: 2D bib@oldcitepB2012ITPC

Distributed Computing Thomas Weise 73/84

Data-based Partition: 2D bib@oldcitepB2012ITPC

Distributed Computing Thomas Weise 73/84

Data-based Partition: 2D bib@oldcitepB2012ITPC

Distributed Computing Thomas Weise 73/84

Function-based Decomposition

• Distribution based on functionality, instead of data

Distributed Computing Thomas Weise 74/84

Function-based Decomposition

• Distribution based on functionality, instead of data

• Example: pipes and filters architectures

Distributed Computing Thomas Weise 74/84

Function-based Decomposition

• Distribution based on functionality, instead of data

• Example: pipes and filters architectures

Distributed Computing Thomas Weise 74/84

Function-based Decomposition

• Distribution based on functionality, instead of data

• Example: pipes and filters architectures

Distributed Computing Thomas Weise 74/84

Function-based Decomposition

• Distribution based on functionality, instead of data

• Example: pipes and filters architectures

Distributed Computing Thomas Weise 74/84

Function-based Decomposition

• Distribution based on functionality, instead of data

• Example: pipes and filters architectures

Distributed Computing Thomas Weise 74/84

Function-based Decomposition

• Distribution based on functionality, instead of data

• Example: pipes and filters architectures

Distributed Computing Thomas Weise 74/84

Function-based Decomposition

• Distribution based on functionality, instead of data

• Example: pipes and filters architectures

Distributed Computing Thomas Weise 74/84

Function-based Decomposition

• Distribution based on functionality, instead of data

• Example: pipes and filters architectures

Distributed Computing Thomas Weise 74/84

Function-based Decomposition

• Distribution based on functionality, instead of data

• Example: pipes and filters architectures

Distributed Computing Thomas Weise 74/84

Good Distribution

• Utilize available resources as good as possible

Distributed Computing Thomas Weise 75/84

Good Distribution

• Utilize available resources as good as possiblee.g.,

• No processor should be idle for a longer time

Distributed Computing Thomas Weise 75/84

Good Distribution

• Utilize available resources as good as possiblee.g.,

• No processor should be idle for a longer time

• Waiting time caused by communication should be reduced

Distributed Computing Thomas Weise 75/84

Good Distribution

• Utilize available resources as good as possiblee.g.,

• No processor should be idle for a longer time

• Waiting time caused by communication should be reduced

• Synchronization should be used as little as possible

Distributed Computing Thomas Weise 75/84

Installation

• Programming language: C or C++

• For your operating system, you therefore need

Distributed Computing Thomas Weise 76/84

Installation

• Programming language: C or C++

• For your operating system, you therefore need

Distributed Computing Thomas Weise 76/84

Installation

• Programming language: C or C++

• For your operating system, you therefore need:

1 C or C++ compiler

Distributed Computing Thomas Weise 76/84

Installation

• Programming language: C or C++

• For your operating system, you therefore need:

1 C or C++ compiler
2 MPI Implementation/Framework

Distributed Computing Thomas Weise 76/84

Windows

• Original choices for Windows

Distributed Computing Thomas Weise 77/84

http://www.mingw.org/
http://www.mcs.anl.gov/research/projects/mpich2/

Windows

• Original choices for Windows:
1 MinGW: Minimalist GNU for Windows [36]

Distributed Computing Thomas Weise 77/84

http://www.mingw.org/
http://www.mcs.anl.gov/research/projects/mpich2/

Windows

• Original choices for Windows:
1 MinGW: Minimalist GNU for Windows [36]

• GCC, G++, Bourne Shell and that alike
• Website: http://www.mingw.org/

Distributed Computing Thomas Weise 77/84

http://www.mingw.org/
http://www.mcs.anl.gov/research/projects/mpich2/

Windows

• Original choices for Windows:
1 MinGW: Minimalist GNU for Windows [36]

• GCC, G++, Bourne Shell and that alike
• Website: http://www.mingw.org/

2 MPICH 2 [29]

Distributed Computing Thomas Weise 77/84

http://www.mingw.org/
http://www.mcs.anl.gov/research/projects/mpich2/

Windows

• Original choices for Windows:
1 MinGW: Minimalist GNU for Windows [36]

• GCC, G++, Bourne Shell and that alike
• Website: http://www.mingw.org/

2 MPICH 2 [29]

• High-performance and widely portable implementation of both MPI-1
and MPI-2

• Website: http://www.mcs.anl.gov/research/projects/mpich2/

Distributed Computing Thomas Weise 77/84

http://www.mingw.org/
http://www.mcs.anl.gov/research/projects/mpich2/

Windows

• Original choices for Windows:
1 MinGW: Minimalist GNU for Windows [36]

• GCC, G++, Bourne Shell and that alike
• Website: http://www.mingw.org/

2 MPICH 2 [29]

• High-performance and widely portable implementation of both MPI-1
and MPI-2

• Website: http://www.mcs.anl.gov/research/projects/mpich2/

• Reasons

Distributed Computing Thomas Weise 77/84

http://www.mingw.org/
http://www.mcs.anl.gov/research/projects/mpich2/

Windows

• Original choices for Windows:
1 MinGW: Minimalist GNU for Windows [36]

• GCC, G++, Bourne Shell and that alike
• Website: http://www.mingw.org/

2 MPICH 2 [29]

• High-performance and widely portable implementation of both MPI-1
and MPI-2

• Website: http://www.mcs.anl.gov/research/projects/mpich2/

• Reasons:

1 Available for both Linux and Windows

Distributed Computing Thomas Weise 77/84

http://www.mingw.org/
http://www.mcs.anl.gov/research/projects/mpich2/

Windows

• Original choices for Windows:
1 MinGW: Minimalist GNU for Windows [36]

• GCC, G++, Bourne Shell and that alike
• Website: http://www.mingw.org/

2 MPICH 2 [29]

• High-performance and widely portable implementation of both MPI-1
and MPI-2

• Website: http://www.mcs.anl.gov/research/projects/mpich2/

• Reasons:

1 Available for both Linux and Windows
2 Relatively easy to use

Distributed Computing Thomas Weise 77/84

http://www.mingw.org/
http://www.mcs.anl.gov/research/projects/mpich2/

Windows

• Original choices for Windows:
1 MinGW: Minimalist GNU for Windows [36]

• GCC, G++, Bourne Shell and that alike
• Website: http://www.mingw.org/

2 MPICH 2 [29]

• High-performance and widely portable implementation of both MPI-1
and MPI-2

• Website: http://www.mcs.anl.gov/research/projects/mpich2/

• Reasons:

1 Available for both Linux and Windows
2 Relatively easy to use
3 MPICH even works with Visual Studio (but don’t ask me how)

Distributed Computing Thomas Weise 77/84

http://www.mingw.org/
http://www.mcs.anl.gov/research/projects/mpich2/

Windows

• Original choices for Windows:
1 MinGW: Minimalist GNU for Windows [36]

• GCC, G++, Bourne Shell and that alike
• Website: http://www.mingw.org/

2 MPICH 2 [29]

• High-performance and widely portable implementation of both MPI-1
and MPI-2

• Website: http://www.mcs.anl.gov/research/projects/mpich2/

• Reasons:

1 Available for both Linux and Windows
2 Relatively easy to use
3 MPICH even works with Visual Studio (but don’t ask me how)
4 Stable technology for quite a few years [37]

Distributed Computing Thomas Weise 77/84

http://www.mingw.org/
http://www.mcs.anl.gov/research/projects/mpich2/

Windows

• Original choices for Windows:
1 MinGW: Minimalist GNU for Windows [36]

• GCC, G++, Bourne Shell and that alike
• Website: http://www.mingw.org/

2 MPICH 2 [29]

• High-performance and widely portable implementation of both MPI-1
and MPI-2

• Website: http://www.mcs.anl.gov/research/projects/mpich2/

• Reasons:

1 Available for both Linux and Windows
2 Relatively easy to use
3 MPICH even works with Visual Studio (but don’t ask me how)
4 Stable technology for quite a few years [37]

5 But this is no longer possible: MPICH is no longer available for
Windows, I could not get the Microsoft MPI to work.

Distributed Computing Thomas Weise 77/84

http://www.mingw.org/
http://www.mcs.anl.gov/research/projects/mpich2/

Installation: Linux

• sudo apt-get install mpich libmpich-dev

Distributed Computing Thomas Weise 78/84

Installation: Linux

Distributed Computing Thomas Weise 78/84

Installation: Linux

Distributed Computing Thomas Weise 78/84

Installation: Linux

Distributed Computing Thomas Weise 78/84

Installation: Linux

• sudo apt-get install mpich libmpich-dev

• mpicc myprogram.cpp -o myprogram

Distributed Computing Thomas Weise 78/84

Installation: Linux

Distributed Computing Thomas Weise 78/84

Installation: Linux

• sudo apt-get install mpich libmpich-dev

• mpicc myprogram.cpp -o myprogram

• mpirun -np 4 ./myprogram

Distributed Computing Thomas Weise 78/84

Installation: Linux

Distributed Computing Thomas Weise 78/84

Installation: Linux

Distributed Computing Thomas Weise 78/84

Caspar David Friedrich, “Der Wanderer über dem Nebelmeer”, 1818
http://en.wikipedia.org/wiki/Wanderer_above_the_Sea_of_Fog

谢谢谢谢谢谢
Thank you

Thomas Weise [汤卫思]
tweise@hfuu.edu.cn

http://www.it-weise.de

Hefei University, South Campus 2
Institute of Applied Optimization
Shushan District, Hefei, Anhui,

China

Distributed Computing Thomas Weise 79/84

mailto:tweise@hfuu.edu.cn
mailto:http://www.it-weise.de

Bibliography

Distributed Computing Thomas Weise 80/84

Bibliography I

1. Caron Carlson. How noaa handles 80 tb of data a day. FierceCIO – The Executive IT Management Briefing, April 6, 2011.
URL http://www.fiercecio.com/story/how-noaa-handles-80-tb-data-day/2011-04-06.

2. David A. Robinson, David C. Bader, Donald M. Burgess, Kenneth E. Eis, Sara J. Graves, Ernest G. Hildner III, Kenneth E.
Kunkel, Mark A. Parsons, Mohan K. Ramamurthy, Deborah K. Smith, John R. G. Townshend, Paul D. Try, Steven J.
Worley, Xubin Zeng, and Ian Kraucunas. Environmental data management at noaa: Archiving, stewardship, and access.
2007. URL http://dels.nas.edu/resources/static-assets/materials-based-on-reports/reports-in-brief/

data_at_noaa_final.pdf.
3. Pu Wang, Thomas Weise, and Raymond Chiong. Novel evolutionary algorithms for supervised classification problems: An

experimental study. Evolutionary Intelligence, 4(1):3–16, January 12, 2011. doi: 10.1007/s12065-010-0047-7. URL
http://www.it-weise.de/documents/files/WWC2011NEAFSCPAES.pdf.

4. Thomas Weise and Raymond Chiong. Evolutionary data mining approaches for rule-based and tree-based classifiers. In
Fuchun Sun, Yingxu Wang, Jianhua Lu, Bo Zhang, Witold Kinsner, and Lotfi A. Zadeh, editors, Proceedings of the 9th
IEEE International Conference on Cognitive Informatics (ICCI’10), pages 696–703, Beijing, China: Tsinghua University,
2010. Los Alamitos, CA, USA: IEEE Computer Society Press. doi: 10.1109/COGINF.2010.5599821. URL
http://www.it-weise.de/documents/files/WC2010EDMAFRBATBC.pdf.

5. Thomas Weise, Raymond Chiong, and Ke Tang. Evolutionary optimization: Pitfalls and booby traps. Journal of Computer
Science and Technology (JCST), 27(5):907–936, September 2012. doi: 10.1007/s11390-012-1274-4. URL
http://www.it-weise.de/documents/files/WCT2012EOPABT.pdf. Special Issue on Evolutionary Computation, edited by
Xin Yao and Pietro S. Oliveto.

6. Thomas Weise. Global Optimization Algorithms – Theory and Application. Germany: it-weise.de (self-published), 2009.
URL http://www.it-weise.de/projects/book.pdf.

7. Thomas Weise, Michael Zapf, Raymond Chiong, and Antonio Jesús Nebro Urbaneja. Why is optimization difficult? In
Raymond Chiong, editor, Nature-Inspired Algorithms for Optimisation, volume 193/2009 of Studies in Computational
Intelligence, chapter 1, pages 1–50. Berlin/Heidelberg: Springer-Verlag, 2009. doi: 10.1007/978-3-642-00267-0 1.
URL http://www.it-weise.de/documents/files/WZCN2009WIOD.pdf.

8. Ke Tang, Xiaodong Li, Ponnuthurai Nagaratnam Suganthan, Zhenyu Yang, and Thomas Weise. Benchmark functions for
the cec’2010 special session and competition on large-scale global optimization. Technical report, Hefei, Anhui, China:
University of Science and Technology of China (USTC), School of Computer Science and Technology, Nature Inspired
Computation and Applications Laboratory (NICAL), January 8, 2010. URL
http://www.it-weise.de/documents/files/TLSYW2009BFFTCSSACOLSGO.pdf.

Distributed Computing Thomas Weise 81/84

http://www.fiercecio.com/story/how-noaa-handles-80-tb-data-day/2011-04-06
http://dels.nas.edu/resources/static-assets/materials-based-on-reports/reports-in-brief/data_at_noaa_final.pdf
http://dels.nas.edu/resources/static-assets/materials-based-on-reports/reports-in-brief/data_at_noaa_final.pdf
http://www.it-weise.de/documents/files/WWC2011NEAFSCPAES.pdf
http://www.it-weise.de/documents/files/WC2010EDMAFRBATBC.pdf
http://www.it-weise.de/documents/files/WCT2012EOPABT.pdf
http://www.it-weise.de/projects/book.pdf
http://www.it-weise.de/documents/files/WZCN2009WIOD.pdf
http://www.it-weise.de/documents/files/TLSYW2009BFFTCSSACOLSGO.pdf

Bibliography II

9. Top500 statistics, March 2012. URL http://i.top500.org/stats.
10. Uncle sam shocks intel with a ban on xeon supercomputers in china. April 7, 2015. URL

http://www.vrworld.com/2015/04/07/usa-shocks-intel-ban-on-china-xeon-supercomputers/.
11. U.s. department of energy selects intel to deliver nation’s most powerful supercomputer at argonne national laboratory,

April 9, 2015. URL http://newsroom.intel.com/community/intel_newsroom/blog/2015/04/09/

us-department-of-energy-selects-intel-to-deliver-nations-most-powerful-supercomputer-at-argonne-national-

12. Jimmy Lin. Cloud Computing Lecture – #1 What is Cloud Computing? (and an intro to parallel/distributed processing).
College Park, MD, USA: University of Maryland, The iSchool, September 3, 2008. URL
http://www.umiacs.umd.edu/~jimmylin/cloud-2008-Fall/Session1.ppt.

13. Winfried Kalfa. Betriebssysteme, volume 24 of Informatik, Kybernetik, Rechentechnik. Berlin, Germany: Akademie Verlag,
1988. ISBN 3055004779 and 9783055004773. URL http://books.google.de/books?id=Pm8mAAAACAAJ.

14. Gene M. Amdahl. Validity of the single processor approach to achieving large-scale computing capabilities. In American
Federation of Information Processing Societies: Proceedings of the Spring Joint Computer Conference (AFIPS), pages
483–485, Atlantic City, NJ, USA, 1967. New York, NY, USA: Association for Computing Machinery (ACM) and London,
New York: Academic Press. doi: 10.1145/1465482.1465560. URL
http://www-inst.eecs.berkeley.edu/~n252/paper/Amdahl.pdf.

15. Günter Rudolph. Deployment scenarios of parallelized code in stochastic optimization. In Bogdan Filipič and Jurij Šilc,
editors, Proceedings of the Second International Conference on Bioinspired Optimization Methods and their Applications
(BIOMA’06), Informacijska Družba (Information Society), pages 3–11, Ljubljana, Slovenia: Jožef Stefan International
Postgraduate School, 2006. Ljubljana, Slovenia: Jožef Stefan Institute. URL
http://bioma.ijs.si/conference/ProcBIOMA2006.pdf.

16. Thomas Weise and Kurt Geihs. Dgpf – an adaptable framework for distributed multi-objective search algorithms applied to
the genetic programming of sensor networks. In Bogdan Filipič and Jurij Šilc, editors, Proceedings of the Second
International Conference on Bioinspired Optimization Methods and their Applications (BIOMA’06), Informacijska Družba
(Information Society), pages 157–166, Ljubljana, Slovenia: Jožef Stefan International Postgraduate School, 2006.
Ljubljana, Slovenia: Jožef Stefan Institute. URL http://www.it-weise.de/documents/files/WG2006DGPFc.pdf.

17. Enrique Alba Torres. Parallel Metaheuristics: A New Class of Algorithms, volume 47 of Wiley Series on Parallel and
Distributed Computing. New York, NY, USA: John Wiley & Sons Ltd., 2005. ISBN 0471678066 and 9780471678069. URL
http://books.google.de/books?id=Tjt4V_81MBIC.

Distributed Computing Thomas Weise 82/84

http://i.top500.org/stats
http://www.vrworld.com/2015/04/07/usa-shocks-intel-ban-on-china-xeon-supercomputers/
http://newsroom.intel.com/community/intel_newsroom/blog/2015/04/09/us-department-of-energy-selects-intel-to-deliver-nations-most-powerful-supercomputer-at-argonne-national-laboratory
http://newsroom.intel.com/community/intel_newsroom/blog/2015/04/09/us-department-of-energy-selects-intel-to-deliver-nations-most-powerful-supercomputer-at-argonne-national-laboratory
http://www.umiacs.umd.edu/~jimmylin/cloud-2008-Fall/Session1.ppt
http://books.google.de/books?id=Pm8mAAAACAAJ
http://www-inst.eecs.berkeley.edu/~n252/paper/Amdahl.pdf
http://bioma.ijs.si/conference/ProcBIOMA2006.pdf
http://www.it-weise.de/documents/files/WG2006DGPFc.pdf
http://books.google.de/books?id=Tjt4V_81MBIC

Bibliography III

18. Dimitri Perrin. Message Passing Interface (MPI). Dublin, Ireland: Dublin City University (DCU), School of Computing,
November 2007. URL
http://www.computing.dcu.ie/~mcrane/CA463/MPI%20lecture%20%282007-08%29%20-%20part%201.pdf.

19. Blaise Barney. Introduction to parallel computing, February 15, 2012. URL
https://computing.llnl.gov/tutorials/parallel_comp/.

20. Leonardo Pisano Bigollo. Liber Abaci (Book of Calculation). Rome, Italy, 1202.
21. George Karniadakis and Robert M. Kirby. Parallel Scientific Computing in C++ and MPI: A Seamless Approach to Parallel

Algorithms and their Implementation. Cambridge, UK: Cambridge University Press, 2003. ISBN 0521817544 and
9780521817547. URL http://books.google.de/books?id=EnqgXI1AXAQC.

22. William Gropp, Ewing Lusk, and Anthony Skjellum. Using MPI – Portable Parallel Programming with the Message-Passing
Interface. Scientific and Engineering Computation. Cambridge, MA, USA: MIT Press, 2 edition, 1999. ISBN 0262571323
and 9780262571326. URL http://books.google.de/books?id=xpBZ0RyRb-oC.

23. William Gropp, Ewing Lusk, and Rajeev Thakur. Using MPI-2 – Advanced features of the Message-Passing Interface.
Scientific and Engineering Computation. Cambridge, MA, USA: MIT Press, 1999. URL
http://books.google.de/books?id=X6rSjwEACAAJ.

24. Peter S. Pacheco. Parallel Programming with MPI. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1997.
ISBN 1558603395 and 9781558603394. URL http://books.google.de/books?id=GufgfWSHt28C.

25. USA: Message Passing Interface Forum Urbana, IL. MPI: A Message-Passing Interface Standard. Knoxville, TN, USA:
University of Tennessee, version 2.2 edition, September 4, 2009. URL
http://www.mpi-forum.org/docs/mpi-2.2/mpi22-report.pdf.

26. Message passing interface forum (a complete issue on the mpi standard). The International Journal of High Performance
Computing Applications, 8(3–4):167–414, September 1994. doi: 10.1177/109434209400800301.

27. G. Al Geist, Adam Beguelin, Jack J. Dongarra, Weicheng Jiang, Robert Manchek, and Vaidy S. Sunderam. PVM: Parallel
Virtual Machine – A Users’ Guide and Tutorial for Networked Parallel Computing. Cambridge, MA, USA: MIT Press, 1994.
ISBN 0-262-57108-0. URL http://www.netlib.org/pvm3/book/pvm-book.html.

28. Jack J. Dongarra, G. Al Geist, Robert Manchek, and Vaidy S. Sunderam. Integrated pvm framework supports
heterogeneous network computing. Computers in Physics, 7(2):166–175, April 1993. URL
http://www.netlib.org/utk/papers/comp-phy7/comp-phy7.html.

29. MPICH2. Argonne, IL, USA: Argonne National Laboratory, Mathematics and Computer Science Division, 2012. URL
http://www.mcs.anl.gov/research/projects/mpich2/.

Distributed Computing Thomas Weise 83/84

http://www.computing.dcu.ie/~mcrane/CA463/MPI%20lecture%20%282007-08%29%20-%20part%201.pdf
https://computing.llnl.gov/tutorials/parallel_comp/
http://books.google.de/books?id=EnqgXI1AXAQC
http://books.google.de/books?id=xpBZ0RyRb-oC
http://books.google.de/books?id=X6rSjwEACAAJ
http://books.google.de/books?id=GufgfWSHt28C
http://www.mpi-forum.org/docs/mpi-2.2/mpi22-report.pdf
http://www.netlib.org/pvm3/book/pvm-book.html
http://www.netlib.org/utk/papers/comp-phy7/comp-phy7.html
http://www.mcs.anl.gov/research/projects/mpich2/

Bibliography IV

30. Frederic P. Miller, Agnes F. Vandome, and McBrewster John. MPICH. Saarbrücken, Saarland, Germany: VDM Verlag Dr.
Müller AG und Co. KG, 2010. ISBN 6130811276 and 9786130811273. URL
http://books.google.de/books?id=hrBvcAAACAAJ.

31. LAM/MPI Parallel Computing. Bloomington, IN, USA: Indiana University, Bloomington Campus, 1996. URL
http://www.lam-mpi.org/.

32. Open MPI: Open Source High Performance Computing. Bloomington, IN, USA: Indiana University, Bloomington Campus,
2004. URL http://www.open-mpi.org/.

33. David J. Ashton. DeinoMPI: The Great and Terrible Implementation of MPI-2. Sandy, UT, USA: Deino Software, 2009.
URL http://mpi.deino.net/.

34. MPI.NET: High-Performance C# Library for Message Passing. Bloomington, IN, USA: Indiana University, Bloomington
Campus, 2004. URL http://osl.iu.edu/research/mpi.net/.

35. pyMPI: Putting the py in MPI. Fairfax, VA, USA: SourceForge, 2004. URL http://pympi.sourceforge.net/.
36. MinGW – Minimalist GNU for Windows. Fairfax, VA, USA: SourceForge, 2012. URL http://www.mingw.org/.
37. Othmar Korn. Mpi under mingw – basic instructions for compiling mpi programs in windows using the free (as in speech,

not beer) mingw (minimalist gnu for windows) c/c++ compiler, August 19, 2004. URL
http://www.dehne.carleton.ca/teaching/programming-resources/mpi/mpi-under-mingw.

Distributed Computing Thomas Weise 84/84

http://books.google.de/books?id=hrBvcAAACAAJ
http://www.lam-mpi.org/
http://www.open-mpi.org/
http://mpi.deino.net/
http://osl.iu.edu/research/mpi.net/
http://pympi.sourceforge.net/
http://www.mingw.org/
http://www.dehne.carleton.ca/teaching/programming-resources/mpi/mpi-under-mingw

	Outline
	Overview
	Introduction
	TOP 500 Super Computers
	TOP 500 Super Computers
	Divide & Conquer
	Scalability and Its Limits
	Scalability
	No.
	Limits of Scalability
	Amdahl's Law
	Amdahl's Law
	Amdahl's Law: Consequences

	Algorithm Perspective
	Algorithm Perspective
	Algorithm Perspective
	Parallel Problems
	Estimation of
	Parallel Estimation of
	
	
	Matrix-Vector Product
	Regular Problems
	Heat Dissemination Simulation
	Distributed Heat Dissemination Simulation
	Irregular Problems
	What to do?
	What to do?

	MPI
	Messare Passing Interface
	Typical Structure
	Typical Structure
	…but in our experiments…
	Standard
	Implementations

	Programming with MPI
	MPI
	Simple Program
	MPI_Init and MPI_Finalize
	Important Runtime Parameters
	Communicators
	

	Point-to-Point
	Blocking Send: MPI_Send
	Blocking Receive: MPI_Recv
	MPI_Send and MPI_Recv
	MPI_Send and MPI_Recv
	Synchronized Send: MPI_Ssend
	MPI_Ssend and MPI_Recv
	
	
	
	
	Non-blocking Operations
	Non-blocking Operations
	MPI_Isend and MPI_Irecv
	
	

	Groups and Communicators
	So far…
	Process Groups
	Communicators and Process Groups
	Predefined Groups/Communicators

	Collective Communication
	Collective Communication
	Broadcast
	Broadcast
	Scatter
	Gather
	Broadcast, Scatter, & Gather
	
	
	
	Reduce
	

	How to Distribute
	Ways to distribute
	Data-based Partition
	Data-based Partition: 1D `11bib@oldcitepB2012ITPC`12
	Data-based Partition: 2D `11bib@oldcitepB2012ITPC`12
	Function-based Decomposition
	Good Distribution

	Installation
	Installation

	Installation
	Windows
	Installation: Linux

	Presentation End
	Bibliography

