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Overview

• Discuss the requirements of scientific and engineering computing

• Consider the algorithm and the hardware perspective

• Get to know MPI as an example framework for using cluster
computing

• Learn about the basic components and data structures in MPI

• Apply it by yourself in a homework
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Introduction

• Research and Engineering often require enormous amonts of
computing power

• Many problems require large-scale computations or simulations, e.g.,
• weather forecast,
• weather survey: National Oceanic and Atmospheric Administration

(NOAA) has more than 20PB of data and processes 80TB/day [1, 2],
• CERN’s LHC produces about 15PB per year,
• heat flow simulations for engines,
• Data mining [3, 4], and
• solving optimization prolems [5–8]
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TOP 500 Super Computers

• Tianhe-1A: #2 in top 500 super computers 2011 [9]

• Nebulae: #4 in top 500 super computers 2011 [9], at the National

Supercomputing Centre in Shenzhen (NSCS), Xeon X5650 6C 2.66GHz, Infiniband

QDR, NVIDIA 2050, 120 640 cores, 1 271 000 GFlops/s in Linpack
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TOP 500 Super Computers

• Tianhe-1A: #2 in top 500 super computers 2011 [9]

• Tianhe-2
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TOP 500 Super Computers

• Tianhe-1A: #2 in top 500 super computers 2011 [9]

• Tianhe-2: fastest super computer in 2015, fully Intel-based USA moved super

computing center + NUDT + Tianhe center on ‘Denial List’[10]. . . . . . now wants

to build faster super computer using Intel tech[11]
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Scalability

• One argument for distributed computing is scalability, i.e.,
more computers = more computing power = more work can be done
at the same time

• Let’s say we have a large-scale simulation of the air over China for
predicting the weather.

• Let’s make it faster!

• But how fast can we get at most?

• Does using p computers mean we can solve a task in 1

p
of the time on

a single computer?

Distributed Computing Thomas Weise 8/84



No.

• Of course not.

Distributed Computing Thomas Weise 9/84



No.

• Of course not.

• We need communication

Distributed Computing Thomas Weise 9/84



No.

• Of course not.

• We need communication: Data must be sent to each computer and
the computers must send back their results [13].

Distributed Computing Thomas Weise 9/84



No.

• Of course not.

• We need communication: Data must be sent to each computer and
the computers must send back their results [13]. This takes time.

Distributed Computing Thomas Weise 9/84



No.

• Of course not.

• We need communication: Data must be sent to each computer and
the computers must send back their results [13]. This takes time.

• Some things cannot be parallelized.

Distributed Computing Thomas Weise 9/84



No.

• Of course not.

• We need communication: Data must be sent to each computer and
the computers must send back their results [13]. This takes time.

• Some things cannot be parallelized. E.g. loading of files, initialization
of variables. . .

Distributed Computing Thomas Weise 9/84



No.

• Of course not.

• We need communication: Data must be sent to each computer and
the computers must send back their results [13]. This takes time.

• Some things cannot be parallelized. E.g. loading of files, initialization
of variables. . .

• Thus, even with p → ∞ processors, we cannot finish a task in 0
time. . .

Distributed Computing Thomas Weise 9/84



No.

• Of course not.

• We need communication: Data must be sent to each computer and
the computers must send back their results [13]. This takes time.

• Some things cannot be parallelized. E.g. loading of files, initialization
of variables. . .

• Thus, even with p → ∞ processors, we cannot finish a task in 0
time. . .

• This is true for any distributed application. . .

Distributed Computing Thomas Weise 9/84



No.

• Of course not.

• We need communication: Data must be sent to each computer and
the computers must send back their results [13]. This takes time.

• Some things cannot be parallelized. E.g. loading of files, initialization
of variables. . .

• Thus, even with p → ∞ processors, we cannot finish a task in 0
time. . .

• This is true for any distributed application. . .

• But how much faster can we go, if we include the time needed for
communication into our considerations?
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S =
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=
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Amdahl’s Law

S =
1

α+ cp ∗ β + 1−α−β
p

(2)

(5)
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(3)
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S =
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p

(2)

lim
β→0

S =
1

α+ 1−α
p

(classical Amdahl’s Law [14])
ignore communication, β → 0

(3)

β = 0 ⇒ lim
p→∞

S =
1

α
no communication ∧ ∞ processors (4)

β 6= 0 ⇒ lim
p→∞

S = 0 communication ∧ ∞ processors (5)
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Amdahl’s Law: Consequences

• Speedup can be high but is always limited

• Two lessons valid for every parallel or distributed application:
• Try to communicate as little as possible
• Try to minimize the fraction of sequential code and increase fraction of

the code that can run in parallel
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Algorithm Perspective

• There are two basic use cases for parallelization [15]

1 A set of unrelated jobs is handed to several different threads, each one
carrying out one distinct job
Example: n different experiments or simulations with a certain
algorithm

2 Each job can somehow be broken into pieces which can be solved
cooperatively by different computers
Example: Evolutionary Algorithm with a population distributed over
several threads/processors/computers [6, 16, 17]
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Algorithm Perspective

• Especially the latter scenario is interesting for us here (the other is
trivial).

• We can distinguish four kinds of problems [18]:

1 Parallel Problems
2 Regular Problems
3 Irregular Problems
4 Any combination of the above: division into parts of the above types
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Parallel Problems

• The problem can be broken down into parts

• The parts are independent from each other (similar to the first case in
the introduction)

• Communication only needed for sending the parts to different
workstations and finally gathering the results

• Almost linear speed-up can be expected (Amdahl’s Law [14])

• This is the ideal case!

• Examples: simple matrix-vector products, rendering of fractals (→ see your

homework)
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Estimation of π

• Simple way to estimate the value of π [18, 19]

As = (2r)2 = 4r2 (6)

Ac = πr2 (7)

π = 4
Ac

As

= 4 ∗

(

πr2

4r2

)

(8)

• Randomly generate n points in a square

• Count the number c of points falling into the circle

π ≈
4c

n
(9)
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Parallel Estimation of π

• Ideal for parallelization and distribution [18, 19]
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• Ideal for parallelization and distribution [18, 19]:
• Let p threads each create n

p
random points. . .
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• Ideal for parallelization and distribution [18, 19]:
• Let p threads each create n

p
random points. . .

• . . . and combine the results.

Distributed Computing Thomas Weise 18/84



Parallel Estimation of π

• Ideal for parallelization and distribution [18, 19]:
• Let p threads each create n

p
random points. . .

• . . . and combine the results.

• No communication between workers necessary!
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Listing: Server program estimating π (PiServer.java).

import java.io.ByteArrayInputStream; import java.io.ByteArrayOutputStream; import

java.io.DataInputStream;

import java.io.DataOutputStream; import java.io.OutputStream; import

java.net.DatagramPacket;

import java.net.DatagramSocket; import java.net.InetAddress;

public class PiServer {

public static final void main(final String [] args) {

DatagramSocket server; DatagramPacket p, answer;

ByteArrayInputStream bis; DataInputStream dis;

byte[] data; String s;

long n, c; double d;

n=0;c=0;//try to approximate PI

try {

server = new DatagramSocket (9992);// create server socket

data = new byte [16]; // create package: 2* 8 byte long ints must fit

for (;;) {// forever

p = new DatagramPacket(data , data.length);// create new package

server.receive(p); //wait for and receive incoming data

bis = new ByteArrayInputStream(data , 0, p.getLength ());//wrap data into stream

dis = new DataInputStream(bis);// unmarshall data

n += dis.readLong (); // update total number of random points sampled from unit square

c += dis.readLong (); // update number of these points that fell into the unit circle

d = ((4.0 * c) / n);// approximate PI

System.out.println(d + " " + (d - Math.PI)); // print approximation and error

}

} catch (Throwable t) {

t.printStackTrace ();

}

}

}
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Listing: Client/Slave program for doing the work when computing π (PiClient.java).

import java.io.ByteArrayInputStream; import java.io.ByteArrayOutputStream; import

java.io.DataInputStream; import java.io.DataOutputStream;

import java.net.DatagramPacket; import java.net.DatagramSocket; import

java.net.InetAddress;

public class PiClient { //the worker part of the example for approximating the number of pi

public static final void main(final String [] args) {

DatagramSocket client; InetAddress ia;

ByteArrayOutputStream bos; DataOutputStream dos;

DatagramPacket p; byte[] data;

long c, n; double x, y;

c = 0;//work: approximate fraction of points in unit square which are in unit circle

for(n = 1; n <= 100000000; n++) {// create a lot of random points in [0, 1)

x = Math.random (); //x-coordinate of point

y = Math.random (); //y-coordinate of point

if(Math.sqrt((x*x) + (y*y)) <= 1d){ //is the point inside the unit circle?

c++; // count

}

}

try {

ia = InetAddress.getByName("localhost");//get local host address

client = new DatagramSocket (); // create UDP/datagram socket

bos = new ByteArrayOutputStream ();// create buffered output stream

dos = new DataOutputStream(bos);// marshall computed data

dos.writeLong(n);// store the number of generated points in unit square

dos.writeLong(c);// store the number of points in unit circle

dos.close();// close and flush

data = bos.toByteArray ();//get data

p = new DatagramPacket(data , data.length , ia , 9992);// create data package

client.send(p);//send the package to the server

client.close ();//close connection

} catch (Throwable t) {

t.printStackTrace ();

}

}
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m2,1 m2,2 m2,3 m2,4

m3,1 m3,2 m3,3 m3,4

m4,1 m4,2 m4,3 m4,4









×









v1
v2
v3
v4









=








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


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• Ideal for parallelization and distribution [18]

1 the root thread hands each row of matrix M and the whole vector v to
one worker

2 the worker computes the product of the row and v and
3 hands back the result to root

4 root assembles the result vector ~r
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Regular Problems

• Same algorithm applied to all data
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Regular Problems

• Same algorithm applied to all data

• Synchronous communication (or close to): each processor finishes its
task at the same time

• Local (neighbour to neighbour) and collective (combine final results)
communication

• Speed-up largely based on the computation to communication ratio
(

1−α−β
p

in Amdahl’s Law [14]

)

=⇒ if it is large: good speed-up

• Examples: Parallel Evolutionary Algorithms, Finding low-energy molecule

states in chemistry, Cellular Automata-based simulations, discrete time

simulation of ion movements, multi-player games with large worlds
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Heat Dissemination Simulation
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Heat Dissemination Simulation

• Heat equations describe temperature change over time based on a
given initial situation and boundary conditions [19]

• Finite differencing approximation, numerical, based on a rectangular
grid

Tx,y(t+1) = Tx,y(t)+ cx (Tx−1,y(t) + Tx+1,y(t)− 2Tx,y(t))+
cy (Tx,y−1(t) + Tx,y+1(t)− 2Tx,y(t))

(12)
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Distributed Heat Dissemination Simulation
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Distributed Heat Dissemination Simulation

• Divide data into several pieces and simulate in parallel [19]

• But: After each time step, exchange data on boundary between
“neighboring” threads
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Irregular Problems

• Irregular algorithm which cannot be parallelized/distributed efficiently
except with high communication overhead
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Irregular Problems

• Irregular algorithm which cannot be parallelized/distributed efficiently
except with high communication overhead

• Communication often asynchronous, complex, may require load
balancing

• Often dynamic repartitioning of data between processors is required

• Examples: calculate Fibonacci Numbers [20] by using

F (n) = F (n− 1) + F (n− 2), multi-player games or simulations with strong

interaction, such as car racing
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What to do?

• If problem suitable for parallelization and computational resources are
available, then parallelize!
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What to do?

• If problem suitable for parallelization and computational resources are
available, then parallelize!

• In many cases, simple parallelization (multiple threads) will be good
enough

• If problem is huge and can be parallelized, distribute! (but remember
Amdahl’s Law [14])

• How to deal with communication?

1 Use sockets? −→ a bit complex and much work to do (e.g.,
marshalling data), what about interoperability, maintenance, . . .

2 Use stuff such as RPC, CORBA, Web Services (i.e.,
business/corporate-focused frameworks)? −→ not suitable for long
computations, massive parallel computations, large data volumes, and
high performance requirements
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What to do?

• How to deal with stuff such as group communication,
synchronization, termination detection?
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What to do?

• How to deal with stuff such as group communication,
synchronization, termination detection?

1 Implement your own, specialized algorithms? −→ not always suitable,
large codebase, maybe make errors

2 Use several existing implementations? −→ software will become too
hetergeneous, complicated, many libraries, hard to maintain

• We want a uniform programming interface and implementations
which provide the services we need.
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Messare Passing Interface

• Messare Passing Interface (MPI) [21–24] is a standard [25, 26] for the
message exchange and synchronization in parallel computations on
distributed computing systems
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Messare Passing Interface

• Messare Passing Interface (MPI) [21–24] is a standard [25, 26] for the
message exchange and synchronization in parallel computations on
distributed computing systems

• Developed since 1992, predecessors: PVM [27, 28], PARMACS [28], P4 [28],
Chameleon, and Zipcode

• It provides a set of operations and their semantics, i.e., a
programming interface

• It does not define a specific protocol or implementation

• All definitions are hardware-independent
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Typical Structure

• A typical MPI application
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Typical Structure

• A typical MPI application:
• a set of communicating processes
• started in parallel possibly on

1 multiple different computers e.g., in a cluster or
2 dedicated parallel computers

• processes work together on one problem
• processes use messages for information exchange
• Basic paradigms: message-based (no streams), group communication,

reliable [26]
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Typical Structure
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. . . but in our experiments. . .
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Standard

• The current version of the MPI standard is 2.2 [25]
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Standard

• The current version of the MPI standard is 2.2 [25]

• MPI 1:
• Point-to-Point Communication (Unicast)
• Global communication (Broadcast)
• Groups, Contexts, and Communicators
• Environment
• Profiling Interface
• Language binding for C and Fortran

• MPI 2:
• Parallel File IO
• Dynamic Process Management
• Access to memory of other processes
• Language Binding for C++ and Fortran

• More than 200 functions, but we need only a few of them
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Implementations

• C/C++/Fortran
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Implementations

• C/C++/Fortran:

1 MPICH [29, 30]

2 LAM/MPI [31]. not continued, development now focussed on:
3 Open MPI [32]

4 DeinoMPI [33]

• C#: MPI.NET [34]

• Python: pyMPI [35]
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MPI

• As said, MPI defines many different functions
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Simple Program

Listing: Care bones of MPI program (bareBones.c).
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int main(int argc , char **argv) {

MPI_Init (&argc , &argv); // initialize MPI

MPI_Finalize (); // shut down MPI

return 0;

}

• MPI_Init starts the MPI subsystem

• MPI_Finalize shuts down the MPI subsystem

• Similar to WSAStartup and WSACleanup in the sockets lecture
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• int MPI_Init(int *argc, char ***argv) executes all actions which are

necessary for communication later, such as

1 establishing connections
2 initialization of variables
3 explore the network
4 maybe initializing WinSock etc.
5 . . .

• MPI_Finalize() is the last MPI call in a program
• all communication must be finished before that

• All MPI routines return an int with the result status, MPI_SUCCESS

means everything went OK
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• MPI programs need information about

1 “themselves” and
2 the current system of processes

• How many processes are there?
• MPI_Comm_size(MPI_Comm *comm, int *size)

• Which ID do I have?
• MPI_Comm_rank(MPI_Comm *comm, int *rank)

• rank ∈ {0 . . . size− 1}
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Communicators

• Basis for group communication:
• communicators are special MPI constructs that
• hold a subset of processes and
• is passed as parameter for communication
• communicators can be created by MPI processes

• For now, we just use MPI_COMM_WORLD

• which contains all MPI processes, i.e., does broadcast
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Listing: Extended MPI Program (basicInfo.c)

#include <mpi.h> // import MPI header

#include <stdio.h> // import for printf

int main(int argc , char **argv) {

int size , rank;

MPI_Init (&argc , &argv); // initialize MPI

MPI_Comm_size(MPI_COMM_WORLD , &size); // get number of program instances

MPI_Comm_rank(MPI_COMM_WORLD , &rank); // get own ID/address

// often , an MPI application has a master and some slaves

// master distributes tasks and combine partial results to final results

// slaves receive partial task , compute partial result , and send to master

if(rank == 0) { // the instance with rank=0 is often chosen as master

printf("Hi from Master\n");

} else { // the others are often slaves

printf("Just Slave %d out of %d\n", rank , size);

}

MPI_Finalize (); // finalize = shut down MPI

return 0;

}
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Blocking Send: MPI Send

int MPI_Send(void *buf, int count, MPI_Datatype datatype, int dest, int tag, MPI_Comm comm)

• Performs a blocking send
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int MPI_Send(void *buf, int count, MPI_Datatype datatype, int dest, int tag, MPI_Comm comm)

• Performs a blocking send:
• Will block until message has been copied to OS/network stack buffers
• May block until message has received at destination process
• Buffer can be overwritten after function returns

• Input Parameters
• buf . . . initial address of send buffer
• count . . . number of elements in send buffer

• datatype . . . datatype of each send buffer element

• dest . . . rank/id of destination process
• tag . . . message tag: which send belongs to which receive

• comm dotsthe communicator to use
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Blocking Receive: MPI Recv

int MPI_Recv(void *buf, int count, MPI_Datatype datatype, int source, int tag, MPI_Comm comm,

MPI_Status *status)

• Performs a blocking receive: Waits until a message has been received
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MPI_Status *status)

• Performs a blocking receive: Waits until a message has been received

• Input Parameters
• count . . . maximum number of elements in receive buffer

• datatype . . . datatype of each receive buffer element

• source . . . rank/id of source
• tag . . . message tag – must match to tag specified when sending

• comm . . . the communicator to use

• Output Parameters
• buf . . . initial address of receive buffer
• status . . . status object
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MPI Send and MPI Recv
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Synchronized Send: MPI Ssend

int MPI_Ssend(void *buf, int count, MPI_Datatype datatype, int dest, int tag, MPI_Comm comm)

• Performs a blocking and synchronized send
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Listing: A Point-to-Point communication example (simplePointToPoint1.c)

#include <mpi.h> // import MPI header

#include <stdio.h> // needed for printf

int main(int argc , char **argv) {

int size , rank , s_msg , r_msg , next , prev;

MPI_Status status;

MPI_Init (&argc , &argv); // initialize MPI

MPI_Comm_size(MPI_COMM_WORLD , &size); // get number of program instances

MPI_Comm_rank(MPI_COMM_WORLD , &rank); // get own ID/address

next = ((rank + 1) % size); // next higher id, wrap from size -1 to 0

prev = ((rank + size - 1) % size); // next lower id, wrap from 0 to size -1

s_msg = ((size * rank) + next); // the example message , just some number

if((rank % 2) == 0) { // even rank: message to next , receive from prev

MPI_Send (&s_msg , 1, MPI_INT , next , 42, MPI_COMM_WORLD);

MPI_Recv (&r_msg , 1, MPI_INT , prev , 42, MPI_COMM_WORLD , &status);

} else { // otherwise: receive from rev , send to next

MPI_Recv (&r_msg , 1, MPI_INT , prev , 42, MPI_COMM_WORLD , &status);

MPI_Send (&s_msg , 1, MPI_INT , next , 42, MPI_COMM_WORLD);

}

printf("id: %d, next: %d, prev: %d, send: %d, recv: %d\n", rank , next , prev , s_msg ,

r_msg);

MPI_Finalize (); // shut down MPI

return 0;

}
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Listing: A Point-to-Point communication example (simplePointToPoint2.c)

#include <mpi.h> // import MPI header

#include <stdio.h> // needed for printf

#include <string.h> // needed for strlen

int main(int argc , char *argv []) {

char message [20]; // char array big enough to hold message

int rank; // own rank

MPI_Status status; // status variable

MPI_Init (&argc , &argv); // initialize mpi

MPI_Comm_rank(MPI_COMM_WORLD , &rank); // get own rank

if (rank == 0) { // if we have rank 0...

strcpy(message , "Hello , there"); /// ... create and send message to rank 1

MPI_Send(message , strlen(message)+1, MPI_CHAR , 1, 42, MPI_COMM_WORLD);

printf("sent: \"%s\"\n", message); // print the message that was sent

} else { // if we are rank 1, receive message coming from rank 0

MPI_Recv(message , 20, MPI_CHAR , 0, 42, MPI_COMM_WORLD , &status);

printf("received: \"%s\"\n", message); // print message

}

MPI_Finalize (); // shut down MPI

return 0;

}
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Listing: Computing Pi with Point-to-Point communication example (piPointToPoint.c)

#include <mpi.h>

#include <stdlib.h>

#include <stdio.h>

#include <time.h>

int main(int argc , char **argv) {

int i, size , rank; double x, y;

long long int root[2], worker [2]; MPI_Status status;

MPI_Init (&argc , &argv); // initialize MPI

MPI_Comm_size(MPI_COMM_WORLD , &size); //get the number of processes in the global communicator

MPI_Comm_rank(MPI_COMM_WORLD , &rank); //get the rank of this process within the global communicator

root [0] = root [1] = worker [0] = worker [1] = 0LL; // clear the data buffer

if(rank == 0) { // check if we are root

for(i = size; (--i) > 0; ) { // receive data from the workers

MPI_Recv (& worker [0], 2, MPI_LONG_LONG_INT , i, 42, MPI_COMM_WORLD , &status); //do receive

root [0] += worker [0]; //get the received sample size (number of points)

root [1] += worker [1]; //get the number of samples (points) inside the unit circle

printf("worker %d sends estimate %G (based on %lld samples), total estimate now is %G (based on %lld samples).\n", i,

((4.0 * worker [1]) / worker [0]), worker [0], ((4.0 * root [1]) / root [0]), root [0]);

fflush(stdout); // flush the standard out

}

} else { //ok , we are a worker

srand(time(NULL));

for(worker [0] = 1; worker [0] < (rank * 100000000 LL); worker [0]++) { //make 100 000 000 samples

x = (rand() / (( double)RAND_MAX)); // random x-coordinate in [0,1]

y = (rand() / (( double)RAND_MAX)); // random y-coordinate in [0,1]

if( ((x*x) + (y*y)) <= 1.0 ) { //did it fall into the inner circle?

worker [1]++; //yes , it did - increase counter

}

}

MPI_Send (& worker [0], 2, MPI_LONG_LONG_INT , 0, 42, MPI_COMM_WORLD); //send worker result synchronously

}

MPI_Finalize (); // finish the MPI stuff

return 0;

}
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Listing: Point-to-Point with error (deadlock.c)

#include <mpi.h> // import MPI header

#include <stdio.h> // needed for printf

#include <string.h> // needed for strlen

int main(int argc , char **argv) {

int rank , size , prev , next;

MPI_Status status;

char messageIn [20], messageOut [20];

MPI_Init (&argc , &argv); // initialize MPI

MPI_Comm_rank(MPI_COMM_WORLD , &rank); // get own rank/ID

MPI_Comm_size(MPI_COMM_WORLD , &size); // get total number of processes

prev = ((size + rank - 1) % size); // get rank of process to receive from , wrap at 0

MPI_Recv(messageIn , 20, MPI_CHAR , prev , 0, MPI_COMM_WORLD , &status); // receive msg

printf("Process %d received message %s from process %d.\n", rank , messageIn , prev);

next = ((rank + 1) % size); // get rank of process to send message to

strcpy(messageOut , "Important message!"); // construct message

printf("Process %d is sending message %s to process %d.\n", rank , messageOut , next);

MPI_Send(messageOut , 20, MPI_CHAR , next , 0, MPI_COMM_WORLD); // send message

MPI_Finalize (); // shut down MPI

return 0;

}
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Non-blocking Operations

• Sometimes, we want to keep calculating while sending/receiving is
going on: non-blocking operations
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Non-blocking Operations

• If we start an asynchronous operation, like sending or receiving. . .

• . . . how do we know when we can change the data (being sent) or use
the data (being received) if the operation returns immediately?

int MPI_Test(MPI_Request* request, int* flag, ...)

• check operation status

• stores flag=1 if operation is finished, flag=0 if it is ongoing

int MPI_Wait(MPI_Request* request, MPI_Status* status)

• blocks until operation has finished

int MPI_Waitany(int count, ..., int *index, ...)

• blocks until one of the count operations in array_of_requests has
finished

• returns index of finished operation in index
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MPI Isend and MPI Irecv
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Listing: Non-blocking Point-to-Point communication [33] (nonBlockingPointToPoint.c)

#include <mpi.h> // import MPI header

#include <stdio.h> // needed for printf

int main(int argc , char *argv []) {

int rank , size , prev , next;

char receiveBuffer [30], sendBuffer [30];

MPI_Request receiveRequest , sendRequest;

MPI_Status status;

MPI_Init (&argc ,&argv); // initialize MPI

MPI_Comm_size(MPI_COMM_WORLD , &size); // get own rank / ID

MPI_Comm_rank(MPI_COMM_WORLD , &rank); // get total number of processes

next = ((rank + 1) % size); // get rank of process to receive from

// _initiate_ receive operation , but do not wait for its completion

MPI_Irecv(receiveBuffer , 30, MPI_CHAR , prev , 42, MPI_COMM_WORLD , &receiveRequest);

prev = ((rank + size - 1) % size); // get rank of process to send to

sprintf(sendBuffer , "Non -blocking from %d!", rank);

// _initiate_ send operation , but do not wait for its completion

MPI_Isend(sendBuffer , 30, MPI_CHAR , next , 42, MPI_COMM_WORLD , &sendRequest);

MPI_Wait (& receiveRequest , &status); // wait for receive to complete

printf("%d received \"%s\"\n", rank , receiveBuffer); // print received msg

MPI_Wait (& sendRequest , &status); // wait for send to complete

MPI_Finalize (); // shut down MPI

return 0;

}
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Listing: An asynchronous Pi computation (piNonBlockingPointToPoint.c)

#include <mpi.h>

#include <stdlib.h>

#include <string.h>

#include <time.h>

#include <stdio.h>

int main(int argc , char **argv) {

int i, j, size , rank; double x, y;

long long int *data; MPI_Status status;

MPI_Request *req;

MPI_Init (&argc , &argv); // initialize MPI

MPI_Comm_size(MPI_COMM_WORLD , &size); //get the number of processes in the global communicator

MPI_Comm_rank(MPI_COMM_WORLD , &rank); //get the rank of this process within the global communicator

data = (long long int*) malloc(sizeof(long long int) * size * 2);// allocate data (ok, waste some memory in the workers)

memset(data , 0, (sizeof(sizeof(long long int)) * 2 * size)); //clear the data buffer

if(rank == 0) { // check if we are root

req = (MPI_Request *) malloc(sizeof(MPI_Request) * size); // allocate request list

for(i = size; (--i) > 0; ) { // initiate receives from the workers

MPI_Irecv (&data [2*i], 2, MPI_LONG_LONG_INT , i, 42, MPI_COMM_WORLD , &req[i]);

}

for(i = size -2; i >= 0; i--) { //for each unfulfilled receive request

MPI_Waitany(size -1, &req[1], &j, &status); //now wait until something has been received from any worker

j++;

data [0] += data [2*j]; //get the received sample size (number of points)

data [1] += data [2*j + 1]; //get the number of samples (points) inside the unit circle

printf("worker %d sends estimate %G (based on %lld samples), total estimate now is %G (based on %lld samples).\n", j,

((4.0 * data [2*j + 1]) / data [2*j]), data [2*j], ((4.0 * data [1]) / data [0]), data [0]);

fflush(stdout); // flush the standard out

}

} else { //ok , we are a worker

srand(time(NULL));

for(data [0] = 1; data [0] < (rank * 100000000 LL); data [0]++) { //make 100 000 000 samples

x = (rand() / (( double)RAND_MAX)); // random x-coordinate in [0,1]

y = (rand() / (( double)RAND_MAX)); // random y-coordinate in [0,1]

if( ((x*x) + (y*y)) <= 1.0 ) { //did it fall into the inner circle?

data [1]++; //yes , it did - increase counter

}

}

MPI_Send (&data[0], 2, MPI_LONG_LONG_INT , 0, 42, MPI_COMM_WORLD); //send worker result synchronously

}

MPI_Finalize (); // finish the MPI stuff

return 0;

}
Distributed Computing Thomas Weise 54/84



So far. . .

• So far: data transfer using “classical point-to-point communication”

Distributed Computing Thomas Weise 55/84



So far. . .

• So far: data transfer using “classical point-to-point communication”

• MPI_Send , MPI_Ssend , MPI_Isend , . . . MPI_Recv , MPI_Irecv , . . .

Distributed Computing Thomas Weise 55/84



So far. . .

• So far: data transfer using “classical point-to-point communication”

• MPI_Send , MPI_Ssend , MPI_Isend , . . . MPI_Recv , MPI_Irecv , . . .

• Addressing using the “ rank ”

Distributed Computing Thomas Weise 55/84



So far. . .

• So far: data transfer using “classical point-to-point communication”

• MPI_Send , MPI_Ssend , MPI_Isend , . . . MPI_Recv , MPI_Irecv , . . .

• Addressing using the “ rank ”

• blocking/non-blocking

Distributed Computing Thomas Weise 55/84
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• So far: data transfer using “classical point-to-point communication”

• MPI_Send , MPI_Ssend , MPI_Isend , . . . MPI_Recv , MPI_Irecv , . . .

• Addressing using the “ rank ”

• blocking/non-blocking

• synchronized/non-synchronized
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Process Groups

• MPI supports process groups
• Processes can be members of arbirary groups
• For each group it is member of, a process has a specific rank (relative

to that group)

• So far, we only used the pre-defined group (communicator)
MPI_COMM_WORLD of all processes
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Communicators and Process Groups

• Communicators and process groups are closely related
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Communicators and Process Groups

• Communicators and process groups are closely related

• But: MPI-communicators and MPI-groups are different constructs!

• A communicator always belongs to exactly one group

• But: A group can associated with multiple communicators
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• At startup, there are two communicators
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Predefined Groups/Communicators

• At startup, there are two communicators:

1 MPI_COMM_WORLD . . . corresponds to all processes

2 MPI_COMM_SELF . . . corresponds to the calling process itself

• New process groups and communicators can be created at runtime
with methods such as MPI_Group_union , MPI_Group_intersection ,

MPI_Group_difference , . . .

Distributed Computing Thomas Weise 58/84



Collective Communication

• All processes within a communicator can exchange information at the
same time
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Collective Communication

• All processes within a communicator can exchange information at the
same time

• There are different semantics for the information exchange
• Either all processes or pair-wise

• Synchronization usually implicitly contained

• Every collective operation can also be expressed with
MPI_Send / MPI_Recv
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Broadcast
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• Simplest way to do collective communication is broadcast

Distributed Computing Thomas Weise 60/84



Broadcast

int MPI_Bcast(void *buffer, int count, MPI_Datatype datatype, int root, MPI_Comm comm)

• Simplest way to do collective communication is broadcast

• Broadcast a message from the process with rank root to all other
processes of the communicator

Distributed Computing Thomas Weise 60/84



Broadcast

int MPI_Bcast(void *buffer, int count, MPI_Datatype datatype, int root, MPI_Comm comm)

• Simplest way to do collective communication is broadcast

• Broadcast a message from the process with rank root to all other
processes of the communicator

• Input/Output Parameter
• buffer . . . starting address of the buffer used for input (at root ) or

output (other processes)

Distributed Computing Thomas Weise 60/84



Broadcast

int MPI_Bcast(void *buffer, int count, MPI_Datatype datatype, int root, MPI_Comm comm)

• Simplest way to do collective communication is broadcast

• Broadcast a message from the process with rank root to all other
processes of the communicator

• Input/Output Parameter
• buffer . . . starting address of the buffer used for input (at root ) or

output (other processes)

• Input Parameters
• count . . . number of entries in buffer

• datatype . . . data type of buffer

• root . . . rank of broadcast root (must be the same for all processes
calling this function)

• comm . . . the communicator
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Broadcast

Listing: Broadcast (broadcast.c)

#include <mpi.h> // import MPI header

#include <stdio.h> // import for printf

int main(int argc , char *argv []) {

char message [60]; // space allocated for the message

int rank; // variable for process id

MPI_Init (&argc , &argv); // initialize MPI

MPI_Comm_rank(MPI_COMM_WORLD , &rank); // get own rank

if (rank == 0) { // create message if process is "root" (rank = 0)

sprintf(message , "Message from root (rank %d).", rank);

}

// broadcast: send message to all if rank==0, otherwise receive

MPI_Bcast(message , 60, MPI_CHAR , 0, MPI_COMM_WORLD);

printf("The message sent/received at node %d is \"%s\"\n", rank , message);

MPI_Finalize (); // shutdown MPI

return 0;

}
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Scatter
int MPI_Scatter(void *sendbuf, int sendcnt, MPI_Datatype sendtype, void *recvbuf, int recvcnt,

MPI_Datatype recvtype, int root, MPI_Comm comm)

• Divides an array of sendcnt elements into n pieces, where n is the
number of processes in a communicator
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• Divides an array of sendcnt elements into n pieces, where n is the
number of processes in a communicator

• If root: sends the pieces to each of the n processes (including itself)

• If not root: receive a data piece
• Input Parameters

• sendbuf . . . address of send buffer (only relevant at root )

• sendcount . . . number of elements sent to each process (only relevant
at root )
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Gather
int MPI_Gather(void *sendbuf, int sendcnt, MPI_Datatype sendtype, void *recvbuf, int recvcnt, MPI_Datatype

recvtype, int root, MPI_Comm comm)

• Complement to MPI_Scatter
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Gather

int MPI_Gather(...

• Complement to MPI_Scatter

• Receives data in small arrays from all processes in a communicator

• If root: combines all the data into one array (order like in
MPI_Gather )

• Input Parameters
• sendbuf . . . address of send buffer

• sendcount . . . number of elements in the send buffer

• sendtype . . . data type of send buffer elements
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Gather

int MPI_Gather(...

• Complement to MPI_Scatter

• Receives data in small arrays from all processes in a communicator

• If root: combines all the data into one array (order like in
MPI_Gather )

• Input Parameters
• sendbuf . . . address of send buffer

• sendcount . . . number of elements in the send buffer

• sendtype . . . data type of send buffer elements

• recvcount . . . number of elements in receive buffer (only relevant at
root )

• recvtype . . . data type of receive buffer elements (only relevant at

root )
• root . . . rank of receiving process
• comm . . . the communicator to use

• Output Parameter
• recvbuf . . . address of receive buffer (only relevant at root )
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Broadcast, Scatter, & Gather
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Listing: Gather/Scatter: bare bones (gatherScatterBareBones.c)

#include <mpi.h> // import MPI header

#include <stdio.h> // needed for printf

#define DATA_SIZE 1024 // the data size

int main(int argc , char *argv []) {

int send[DATA_SIZE], recv[DATA_SIZE ];

int rank , size , count , root , res;

MPI_Status status;

MPI_Init (&argc , &argv); // initialize MPI

MPI_Comm_rank(MPI_COMM_WORLD , &rank); // get own rank/ID

MPI_Comm_size(MPI_COMM_WORLD , &size); // get total number of processes

if(rank == 0) { //If root: Generate data to be distributed.

}

//Send data to all nodes. here: an integer array of length "count ".

count = (DATA_SIZE / size); // each receive gets chunk of same size

// scatter: if rank=0, send data (and get own share); otherwise: receive data

MPI_Scatter(send , count , MPI_INT , recv , count , MPI_INT , 0, MPI_COMM_WORLD);

// Each node processes its share of data and sends the result (here: int "res") to

root.

MPI_Gather (&res , 1, MPI_INT , recv , 1, MPI_INT , 0, MPI_COMM_WORLD);

if(rank == 0) { //If root: process the received data.

}

MPI_Finalize (); // shut down MPI

return 0;

}
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Listing: Gather/Scatter: Count Primes (gatherScatterPrimes.c)

#include <mpi.h> // import MPI header

#include <stdio.h> // needed for printf

#include <math.h> // needed for sqrt

#define DATA_SIZE 1024 // let's count the primes among the first 1024 numbers

int main(int argc , char *argv []) {

int send[DATA_SIZE], recv[DATA_SIZE ];

int rank , size , count , root , res , i, j;

MPI_Status status;

MPI_Init (&argc , &argv); // initialize MPI

MPI_Comm_rank(MPI_COMM_WORLD , &rank); // get own rank/ID

MPI_Comm_size(MPI_COMM_WORLD , &size); // get total number of processes

if(rank == 0) { // generate data (i.e., the first DATA_SIZE natural numbers) if root

for(i = DATA_SIZE; (--i) >=0; ) { send[i] = (i + 1); }

}

count = (DATA_SIZE / size); // divide the data among _all_ processes

// scatter: if rank=0, send data (and get own share); otherwise: receive data

MPI_Scatter(send , count , MPI_INT , recv , count , MPI_INT , 0, MPI_COMM_WORLD);

// each node now processes its share of the numbers

res = count; //here: count how many prime numbers are contained in the array

for(i = count; (--i) >= 0; ) { //j: test all odd numbers 1<j<sqrt(j)|1

for(j = ((int)(sqrt(recv[i]))|1); j>1; j -= 2) {

if((recv[i] % j) == 0) { // if a number can be divided by j

res --; // it cannot be a prime number , reduce number of primes

break; } // break inner loop to test next number

}

}

printf("Process %d discovered %d primes in the numbers from %d to %d.\n", rank , res , recv[0], recv[count -1]);

// gather: all processes send data to root , only root receives data

MPI_Gather (&res , 1, MPI_INT , recv , 1, MPI_INT , 0, MPI_COMM_WORLD);

if(rank == 0) { //if root , process the received data

res = 0;

for(i = size; (--i) >= 0; ) { //add up the prime number counts

res += recv[i];

}

printf("The total number of primes in the first %d natural numbers is %d.\n", (count*size), res);

}

MPI_Finalize ();

return 0;

}
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Listing: Gather/Scatter: Pi (piGatherScatter.c)

#include <mpi.h> // import MPI header

#include <stdio.h> // needed for printf

#include <stdlib.h> // for rand and RAND_MAX

#include <string.h> // for memset

#include <time.h> // for srand(time(NULL));

int main(int argc , char **argv) {

int i, size , rank; double x, y;

long long int *data , worker [2]; MPI_Status status;

MPI_Init (&argc , &argv); // initialize MPI

MPI_Comm_size(MPI_COMM_WORLD , &size); //get the number of processes in the global communicator

MPI_Comm_rank(MPI_COMM_WORLD , &rank); //get the rank of this process within the global communicator

if(rank != 0) {

worker [0] = worker [1] = 0LL; //the local worker array

srand(time(NULL));

for(worker [0] = 1; worker [0] < (rank * 100000000 LL); worker [0]++) { //make 100 000 000 samples

x = (rand() / (( double)RAND_MAX)); // random x-coordinate in [0,1]

y = (rand() / (( double)RAND_MAX)); // random y-coordinate in [0,1]

if( ((x*x) + (y*y)) <= 1.0 ) { //did it fall into the inner circle?

worker [1]++; //yes , it did - increase counter

}

}

}

data = (long long int*) malloc(sizeof(long long int) * size * 2); // allocate data (ok, waste some memory in the workers)

memset(data , 0, (sizeof(data [0]) * 2 * size)); // clear the data buffer

MPI_Gather(worker , 2, MPI_LONG_LONG_INT , data , 2, MPI_LONG_LONG_INT , 0, MPI_COMM_WORLD); // gather results

if(rank == 0) { //root now evaluates results

for(i = size; (--i) > 0; ) { // receive data from the workers

data [0] += data [2*i]; //get the received sample size (number of points)

data [1] += data [2*i+1]; //get the number of samples (points) inside the unit circle

printf("worker %d sends estimate %G (based on %lld samples), total estimate now is %G (based on %lld samples).\n", i,

((4.0 * data [2*i + 1]) / data [2*i]), data [2*i], ((4.0 * data [1]) / data [0]), data [0]);

}

}

MPI_Finalize (); // finish the MPI stuff

return 0;

}

Distributed Computing Thomas Weise 67/84



Reduce

int MPI_Reduce (void *sendbuf, void *recvbuf, int count, MPI_Datatype type, MPI_Op op, int root,

MPI_Comm comm)

• Similar to MPI_Gather
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Reduce

int MPI_Reduce(...

• Similar to MPI_Gather , but

• Data is aggregated by applying a specific reduction operation op

• Therefore, volume of data transmission is reduced (not all needs to be
sent)

• Values for op

• MPI_LAND / MPI_BAND . . . logical/bitwise and

• MPI_LOR / MPI_BOR . . . logical/bitwise or

• MPI_LXOR / MPI_BXOR . . . logical/bitwise xor

• MPI_MAX . . . compute the maximum

• MPI_MIN . . . compute the minimum

• MPI_SUM . . . compute the sum

• MPI_PROD . . . compute the product
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Listing: Scatter/Reduce: Count Primes (reducePrimes.c)

#include <mpi.h> // import MPI header

#include <stdio.h> // needed for printf

#include <math.h> // needed for sqrt

#define DATA_SIZE 1024 // let's count the primes among the first 1024 numbers

int main(int argc , char *argv []) {

int send[DATA_SIZE], recv[DATA_SIZE ];

int rank , size , count , root , res , i, j;

MPI_Status status;

MPI_Init (&argc , &argv); // initialize MPI

MPI_Comm_rank(MPI_COMM_WORLD , &rank); // get own rank/ID

MPI_Comm_size(MPI_COMM_WORLD , &size); // get total number of processes

if(rank == 0) { // generate data (i.e., the first DATA_SIZE natural numbers) if root

for(i = DATA_SIZE; (--i) >=0; ) { send[i] = (i + 1); }

}

count = (DATA_SIZE / size); // divide the data among _all_ processes

// scatter: if rank=0, send data (and get own share); otherwise: receive data

MPI_Scatter(send , count , MPI_INT , recv , count , MPI_INT , 0, MPI_COMM_WORLD);

// each node now processes its share of the numbers

res = count; //here: count how many prime numbers are contained in the array

for(i = count; (--i) >= 0; ) { //j: test all odd numbers 1<j<sqrt(j)|1

for(j = ((int)(sqrt(recv[i]))|1); j>1; j -= 2) {

if((recv[i] % j) == 0) { // if a number can be divided by j

res --; // it cannot be a prime number , reduce number of primes

break; } // break inner loop to test next number

}

}

printf("Process %d discovered %d primes in the numbers from %d to %d.\n", rank , res , recv[0], recv[count -1]);

// reduce: each node takes results , applies operator MPI_SUM locally , sends result to root , where MPI_SUM is

// applied again. (here: locally summing up does not matter , as only 1 number). The final result is returned.

MPI_Reduce (&res , recv , 1, MPI_INT , MPI_SUM , 0, MPI_COMM_WORLD);

if(rank == 0) { //if root , print

printf("The total number of primes in the first %d natural numbers is %d.\n", (count*size), recv [0]);

}

MPI_Finalize (); // shut down MPI

return 0;

}

Distributed Computing Thomas Weise 69/84



Ways to distribute

1 Can my problem be parallelized?
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Ways to distribute

1 Can my problem be parallelized?
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Good Distribution

• Utilize available resources as good as possiblee.g.,

• No processor should be idle for a longer time

• Waiting time caused by communication should be reduced

• Synchronization should be used as little as possible
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• For your operating system, you therefore need:

1 C or C++ compiler
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Windows

• Original choices for Windows:
1 MinGW: Minimalist GNU for Windows [36]

• GCC, G++, Bourne Shell and that alike
• Website: http://www.mingw.org/

2 MPICH 2 [29]

• High-performance and widely portable implementation of both MPI-1
and MPI-2

• Website: http://www.mcs.anl.gov/research/projects/mpich2/

• Reasons:

1 Available for both Linux and Windows
2 Relatively easy to use
3 MPICH even works with Visual Studio (but don’t ask me how)
4 Stable technology for quite a few years [37]

5 But this is no longer possible: MPICH is no longer available for
Windows, I could not get the Microsoft MPI to work.
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Installation: Linux

• sudo apt-get install mpich libmpich-dev

• mpicc myprogram.cpp -o myprogram

• mpirun -np 4 ./myprogram
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Caspar David Friedrich, “Der Wanderer über dem Nebelmeer”, 1818
http://en.wikipedia.org/wiki/Wanderer_above_the_Sea_of_Fog

谢谢谢谢谢谢
Thank you
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Postgraduate School, 2006. Ljubljana, Slovenia: Jožef Stefan Institute. URL
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