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Overview

• How can we run procedures on a different computer?

• What are remote procedure calls and remote method invocation?

• What different technologies exist for that purpose?

• Example implementation in Java
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Local Procedure Call

• Procedural programming languages like Java and C offer us the
concept of function calls: e.g., double compute(double a, double b)
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Local Procedure Call

• Procedural programming languages like Java and C offer us the
concept of function calls: e.g., double compute(double a, double b)

• Such a local function call (normally) has the following features:
• executed in the calling Thread and therefore
• blocking until the function is finished

• What are procedure/function calls good for?
• Modular software development [1, 2]

• Smaller programs
• Separation of concerns (SoC) [3, 4]
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Remote Procedure Call

• Execute a procedure on another computer. . .Why?
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Remote Procedure Call

• Execute a procedure on another computer. . .Why?
• Implement functionality (e.g., application logic) in a program that can

be accessed from another program (e.g., front end) running on a
different computer

• Code of the procedure resides on other computer, is unknown to our
computer (we just know procedure’s signature), and must be executed
there

• Combine advantages of modular programming with client/server
systems, e.g.,

• Perform a location-dependent service
• Centralized maintenance and updating
• Platform independent binding of services
• . . .
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Remote Procedure Call
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Remote Procedure Call

• Execute a procedure on another computer. . .Why?

• Remote Procedure Call (RPC) [5]:
• call/execute a function in another process (usually on another

computer)
• necessary communication offered by software framework
• from programmer’s perspective: looks exactly like local procedure call
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Principle
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Principle

• The basic principle behind RPC are “Function Proxies”

• Say, we want to perform a remote invocation of a function

double calculate(double x, double y)

• Goals
• Function which is implemented on another computer is actually

executed on that other computer, but triggered by our process
• From the programmer’s and program’s perspective, it looks like it is

called in the current process
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Remember

• We can use sockets to realize some sort of remote procedure call. . .
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Listing: [TCPServerStructuredData.java]: A server perform a specific “method”.

import java.io.DataInputStream; import java.io.DataOutputStream;

import java.net.ServerSocket; import java.net.Socket;

public class TCPServerStructuredData {

public static final void main(final String [] args) {

ServerSocket server; Socket client;

DataOutputStream dos; DataInputStream dis;

String s; long a, b,r;

try {

server = new ServerSocket (9996);// 1 + 2)

for (int j = 5; (--j) >= 0;) { // process only 5 clients , so I can show 5) below

client = server.accept (); // 3)

dis = new DataInputStream(client.getInputStream ()); // 4 + 3

s = dis.readUTF (); //read an UTF -encoded string: the operation

r = a = dis.readLong (); //read a 64 bit long integer

b = dis.readLong (); //read another 64 bit long int

if ("add".equalsIgnoreCase(s)) { r += b; } else { // add

if ("sub".equalsIgnoreCase(s)) { r -= b; } // subtract

} // 4 + 3)

System.out.println(s + "(" + a + ", " + b + ") = " + r + " to " +

client.getRemoteSocketAddress ());

dos = new DataOutputStream(client.getOutputStream ()); // marshall output

dos.writeLong(r); //write 64bit long integer: 4 + 3)

dos.close(); // flush and close

client.close(); // 4)

}

server.close (); // 5)

} catch (Throwable t) {

t.printStackTrace ();

}

}

}
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Client Part of the Example

Listing: [TCPClientStructuredData.java]: A client asking the server to perform a specific “method”.

import java.io.DataInputStream; import java.io.DataOutputStream;

import java.net.InetAddress; import java.net.Socket;

public class TCPClientStructuredData {

public static final void main(final String [] args) {

Socket client; InetAddress ia;

DataOutputStream dos; DataInputStream dis;

try {

ia = InetAddress.getByName("localhost");

client = new Socket(ia, 9996); // 1+2)

dos = new DataOutputStream(client.getOutputStream ()); // marshall data

dos.writeUTF("sub"); //send operation name 3)

dos.writeLong (9876); //send 64bit long integer

dos.writeLong (1234); //send another 64bit long integer

dos.flush(); //flush is important , otherwise stuff may just be buffered!

dis = new DataInputStream(client.getInputStream ()); // unmashall input

System.out.println("Result: " + dis.readLong ()); // 3)

client.close (); // 4)

} catch (Throwable t) {

t.printStackTrace ();

}

}

}
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Basic Idea

• Making a RPC framework by itself is not hard
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Basic Idea

• Making a RPC framework by itself is not hard

• Client side: function stub (proxy) that can be called “normally”
• send the procedure name
• send the procedure parameters
• wait for result. . .

• Server side: a skeleton function that
• receives procedure name
• finds the procedure implementation/pointer to code that fits to the

name
• sends error message back if none found
• receives the procedure parameters
• checks whether parameter types fits to procedure (send error if it

doesn’t fit)
• calls the procedure
• sends back the result
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RMI

• Remote Method Invocation (RMI): RPC for distributed objects

• Stub: implements object interface [6, 7] and marshalls calls

• Skeleton: unmarshalls calls and delegates them to real object
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RMI: Pros and Cons

• What are the reasons, advantages, and disadvantages of remote
method invocation?
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RMI: Pros and Cons

• What are the reasons, advantages, and disadvantages of remote
method invocation?

• Reasons
• Advantages
• Disadvantages

• security
• always much slower than a local invocation
• complex implementation
• messages may get lost/modified/doubled
• distributed garbage collection
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• Common Object Request Broker Architecture (CORBA) [8–13]
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Examples

• Common Object Request Broker Architecture (CORBA) [8–13]

• Distributed Component Object Model (DCOM) [14]

• .NET Remoting [15]

• Java Remote Method Invocation (RMI) [13, 16, 17]

• XPCOM (Cross Platform Component Object Model) [18]

• . . .
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RMI: CORBA

Common Object Request Broker Architecture (CORBA) [9–13]
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• remote access to objects distributed over the system

• Interface Definition Language (IDL) to specify object interfaces

• mapping of IDL to programming languages: Code Generation

• application interacts with objects through Object Request Broker
(ORB)

• naming service: maps names to locations

• standardized by Object Management Group (OMG)

• fast, mature technology, language/Os independent, strong data types

• very complex, standard very verbose: “design by committee”

• incompatibilities between implementations

• firewalls may block protocol
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RMI: DCOM

Distributed Component Object Model (DCOM) [14]
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Environment (DCE) and Compound Object Model (COM)

• memory management via reference counting

• interfaces described via IDL

• fast, mature technology, strong data types

• bound to Microsoft, supported mainly by Microsoft programming
languages
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• Servant object (on server side) implements the functionality

• A name is assigned to the Servant and managed by a registry

• Client can request access to the object from the registry

• Stub on client side is an automatically generated instance of the
interface

• Client can now access the object exactly as if it was a local object
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RemotePrintInterface

Listing: [RemotePrintInterface.java]: The interface specifying the functionality.

import java.rmi.Remote;

import java.rmi.RemoteException;

// the RemotePrint interface

public interface RemotePrintInterface extends Remote {

/** A method to be remote -accessible

* @param what the string to print

* @throws RemoteException a possible exception */

public abstract void print(final String what) throws

RemoteException;

}
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RemotePrintServer

Listing: [RemotePrintServer.java]: The server implementing the functionality.

import java.rmi.RemoteException; import java.rmi.registry.LocateRegistry;

import java.rmi.registry.Registry; import java.rmi.server.UnicastRemoteObject;

public class RemotePrintServer extends UnicastRemoteObject implements

RemotePrintInterface {

RemotePrintServer () throws RemoteException {

super();

}

// the actual implementation of the method specified by RemotePrintInterface

@Override

public void print(final String what) throws RemoteException {

System.out.println(what);

}

public static final void main(final String args []) {

Registry registry;

try {

// create the (local) object registry

registry = LocateRegistry.createRegistry (9999);

// bind the object to the name "server"

registry.rebind("server", new RemotePrintServer ());

} catch (Throwable t) {

t.printStackTrace ();

}

}

}
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RemotePrintClient

Listing: [RemotePrintClient.java]: The client remotely using the functionality.

import java.rmi.registry.LocateRegistry; import java.rmi.registry.Registry;

public class RemotePrintClient { // the remote print rmi client

public static final void main(final String args []) {

RemotePrintInterface rmiServer; Registry registry;

try {

// find the (local) object registry

registry = LocateRegistry.getRegistry (9999);

// find the server object

rmiServer = (RemotePrintInterface) (registry.lookup("server"));

rmiServer.print("Hello World"); //$NON -NLS -1$

} catch (Throwable t) {

t.printStackTrace ();

}

}

}
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RemotePrintClientErroneous

Listing: [RemotePrintClientErroneous.java]: The client remotely using the functionality wrongly.

import java.rmi.registry.LocateRegistry; import java.rmi.registry.Registry;

public class RemotePrintClientErroneous { // the erroneous remote print client

public static final void main(final String args []) {

RemotePrintInterface rmiServer; Registry registry;

try {

// find the (local) object registry

registry = LocateRegistry.getRegistry (9999);

//! invalid cast to server class !

rmiServer = (( RemotePrintServer)(registry.lookup("server")));

rmiServer.print("Hello World"); //$NON -NLS -1$

} catch (Throwable t) {

t.printStackTrace ();

}

}

}
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• Why?
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• Because the object instance returned by registry.lookup is a proxy

• The real object instance (servant) exists in another JVM / on another
computer

• The proxy on the client side is a dynamically created object
implementing the RemotePrintInterface interface

• It has a class different from RemotePrintServer

• And thus, cannot be cast to RemotePrintServer
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Summary

• RPC: call a procedure on another computer

• RMI: call a method (i.e., access an object) on a different computer

• Many different technologies

• Java RMI: quite simple to use
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Caspar David Friedrich, “Der Wanderer über dem Nebelmeer”, 1818
http://en.wikipedia.org/wiki/Wanderer_above_the_Sea_of_Fog
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