
Distributed Computing
Lesson 14: Remote Method Invocation

Thomas Weise · 汤卫思

tweise@hfuu.edu.cn · http://www.it-weise.de

Hefei University, South Campus 2 合肥学院 南艳湖校区/南2区
Faculty of Computer Science and Technology 计算机科学与技术系

Institute of Applied Optimization 应用优化研究所

230601 Shushan District, Hefei, Anhui, China 中国 安徽省 合肥市 蜀山区 230601
Econ. & Tech. Devel. Zone, Jinxiu Dadao 99 经济技术开发区 锦绣大道99号

mailto:tweise@hfuu.edu.cn
http://www.it-weise.de

Outline

1 RPC

2 RMI

3 Java RMI

Distributed Computing Thomas Weise 2/29

w
e
b
s
it
e

Overview

• How can we run procedures on a different computer?

• What are remote procedure calls and remote method invocation?

• What different technologies exist for that purpose?

• Example implementation in Java

Distributed Computing Thomas Weise 3/29

Local Procedure Call

• Procedural programming languages like Java and C offer us the
concept of function calls: e.g., double compute(double a, double b)

Distributed Computing Thomas Weise 4/29

Local Procedure Call

• Procedural programming languages like Java and C offer us the
concept of function calls: e.g., double compute(double a, double b)

• Such a local function call (normally) has the following features

Distributed Computing Thomas Weise 4/29

Local Procedure Call

• Procedural programming languages like Java and C offer us the
concept of function calls: e.g., double compute(double a, double b)

• Such a local function call (normally) has the following features:
• executed in the calling Thread

Distributed Computing Thomas Weise 4/29

Local Procedure Call

• Procedural programming languages like Java and C offer us the
concept of function calls: e.g., double compute(double a, double b)

• Such a local function call (normally) has the following features:
• executed in the calling Thread and therefore
• blocking until the function is finished

Distributed Computing Thomas Weise 4/29

Local Procedure Call

• Procedural programming languages like Java and C offer us the
concept of function calls: e.g., double compute(double a, double b)

• Such a local function call (normally) has the following features:
• executed in the calling Thread and therefore
• blocking until the function is finished

• What are procedure/function calls good for?

Distributed Computing Thomas Weise 4/29

Local Procedure Call

• Procedural programming languages like Java and C offer us the
concept of function calls: e.g., double compute(double a, double b)

• Such a local function call (normally) has the following features:
• executed in the calling Thread and therefore
• blocking until the function is finished

• What are procedure/function calls good for?
• Modular software development [1, 2]

Distributed Computing Thomas Weise 4/29

Local Procedure Call

• Procedural programming languages like Java and C offer us the
concept of function calls: e.g., double compute(double a, double b)

• Such a local function call (normally) has the following features:
• executed in the calling Thread and therefore
• blocking until the function is finished

• What are procedure/function calls good for?
• Modular software development [1, 2]

• Smaller programs

Distributed Computing Thomas Weise 4/29

Local Procedure Call

• Procedural programming languages like Java and C offer us the
concept of function calls: e.g., double compute(double a, double b)

• Such a local function call (normally) has the following features:
• executed in the calling Thread and therefore
• blocking until the function is finished

• What are procedure/function calls good for?
• Modular software development [1, 2]

• Smaller programs
• Separation of concerns (SoC) [3, 4]

Distributed Computing Thomas Weise 4/29

Remote Procedure Call

• Execute a procedure on another computer. . .Why?

Distributed Computing Thomas Weise 5/29

Remote Procedure Call

• Execute a procedure on another computer. . .Why?
• Implement functionality (e.g., application logic) in a program that can

be accessed from another program (e.g., front end) running on a
different computer

Distributed Computing Thomas Weise 5/29

Remote Procedure Call

• Execute a procedure on another computer. . .Why?
• Implement functionality (e.g., application logic) in a program that can

be accessed from another program (e.g., front end) running on a
different computer

• Code of the procedure resides on other computer, is unknown to our
computer (we just know procedure’s signature), and must be executed
there

Distributed Computing Thomas Weise 5/29

Remote Procedure Call

• Execute a procedure on another computer. . .Why?
• Implement functionality (e.g., application logic) in a program that can

be accessed from another program (e.g., front end) running on a
different computer

• Code of the procedure resides on other computer, is unknown to our
computer (we just know procedure’s signature), and must be executed
there

• Combine advantages of modular programming with client/server
systems, e.g.,

Distributed Computing Thomas Weise 5/29

Remote Procedure Call

• Execute a procedure on another computer. . .Why?
• Implement functionality (e.g., application logic) in a program that can

be accessed from another program (e.g., front end) running on a
different computer

• Code of the procedure resides on other computer, is unknown to our
computer (we just know procedure’s signature), and must be executed
there

• Combine advantages of modular programming with client/server
systems, e.g.,

• Perform a location-dependent service

Distributed Computing Thomas Weise 5/29

Remote Procedure Call

• Execute a procedure on another computer. . .Why?
• Implement functionality (e.g., application logic) in a program that can

be accessed from another program (e.g., front end) running on a
different computer

• Code of the procedure resides on other computer, is unknown to our
computer (we just know procedure’s signature), and must be executed
there

• Combine advantages of modular programming with client/server
systems, e.g.,

• Perform a location-dependent service
• Centralized maintenance and updating

Distributed Computing Thomas Weise 5/29

Remote Procedure Call

• Execute a procedure on another computer. . .Why?
• Implement functionality (e.g., application logic) in a program that can

be accessed from another program (e.g., front end) running on a
different computer

• Code of the procedure resides on other computer, is unknown to our
computer (we just know procedure’s signature), and must be executed
there

• Combine advantages of modular programming with client/server
systems, e.g.,

• Perform a location-dependent service
• Centralized maintenance and updating
• Platform independent binding of services
• . . .

Distributed Computing Thomas Weise 5/29

Remote Procedure Call

• Execute a procedure on another computer. . .Why?

• Remote Procedure Call (RPC) [5]

Distributed Computing Thomas Weise 5/29

Remote Procedure Call

• Execute a procedure on another computer. . .Why?

• Remote Procedure Call (RPC) [5]:
• call/execute a function in another process (usually on another

computer)

Distributed Computing Thomas Weise 5/29

Remote Procedure Call

• Execute a procedure on another computer. . .Why?

• Remote Procedure Call (RPC) [5]:
• call/execute a function in another process (usually on another

computer)
• necessary communication offered by software framework

Distributed Computing Thomas Weise 5/29

Remote Procedure Call

• Execute a procedure on another computer. . .Why?

• Remote Procedure Call (RPC) [5]:
• call/execute a function in another process (usually on another

computer)
• necessary communication offered by software framework
• from programmer’s perspective: looks exactly like local procedure call

Distributed Computing Thomas Weise 5/29

RPC

Distributed Computing Thomas Weise 6/29

RPC

Distributed Computing Thomas Weise 6/29

RPC

Distributed Computing Thomas Weise 6/29

RPC

Distributed Computing Thomas Weise 6/29

RPC

Distributed Computing Thomas Weise 6/29

RPC

Distributed Computing Thomas Weise 6/29

RPC

Distributed Computing Thomas Weise 6/29

RPC

Distributed Computing Thomas Weise 6/29

RPC

Distributed Computing Thomas Weise 6/29

RPC

Distributed Computing Thomas Weise 6/29

RPC

Distributed Computing Thomas Weise 6/29

RPC

Distributed Computing Thomas Weise 6/29

RPC

Distributed Computing Thomas Weise 6/29

RPC

Distributed Computing Thomas Weise 6/29

RPC

Distributed Computing Thomas Weise 6/29

RPC

Distributed Computing Thomas Weise 6/29

RPC

Distributed Computing Thomas Weise 6/29

RPC

Distributed Computing Thomas Weise 6/29

RPC

Distributed Computing Thomas Weise 6/29

RPC

Distributed Computing Thomas Weise 6/29

RPC

Distributed Computing Thomas Weise 6/29

RPC

Distributed Computing Thomas Weise 6/29

RPC

Distributed Computing Thomas Weise 6/29

RPC

Distributed Computing Thomas Weise 6/29

RPC

Distributed Computing Thomas Weise 6/29

Principle

• The basic principle behind RPC are “Function Proxies”

Distributed Computing Thomas Weise 7/29

Principle

• The basic principle behind RPC are “Function Proxies”

• Say, we want to perform a remote invocation of a function

double calculate(double x, double y)

Distributed Computing Thomas Weise 7/29

Principle

• The basic principle behind RPC are “Function Proxies”

• Say, we want to perform a remote invocation of a function

double calculate(double x, double y)

• Goals

Distributed Computing Thomas Weise 7/29

Principle

• The basic principle behind RPC are “Function Proxies”

• Say, we want to perform a remote invocation of a function

double calculate(double x, double y)

• Goals
• Function which is implemented on another computer is actually

executed on that other computer, but triggered by our process

Distributed Computing Thomas Weise 7/29

Principle

• The basic principle behind RPC are “Function Proxies”

• Say, we want to perform a remote invocation of a function

double calculate(double x, double y)

• Goals
• Function which is implemented on another computer is actually

executed on that other computer, but triggered by our process
• From the programmer’s and program’s perspective, it looks like it is

called in the current process

Distributed Computing Thomas Weise 7/29

Remember

• We can use sockets to realize some sort of remote procedure call. . .

Distributed Computing Thomas Weise 8/29

Listing: [TCPServerStructuredData.java]: A server perform a specific “method”.

import java.io.DataInputStream; import java.io.DataOutputStream;

import java.net.ServerSocket; import java.net.Socket;

public class TCPServerStructuredData {

public static final void main(final String [] args) {

ServerSocket server; Socket client;

DataOutputStream dos; DataInputStream dis;

String s; long a, b,r;

try {

server = new ServerSocket (9996);// 1 + 2)

for (int j = 5; (--j) >= 0;) { // process only 5 clients , so I can show 5) below

client = server.accept (); // 3)

dis = new DataInputStream(client.getInputStream ()); // 4 + 3

s = dis.readUTF (); //read an UTF -encoded string: the operation

r = a = dis.readLong (); //read a 64 bit long integer

b = dis.readLong (); //read another 64 bit long int

if ("add".equalsIgnoreCase(s)) { r += b; } else { // add

if ("sub".equalsIgnoreCase(s)) { r -= b; } // subtract

} // 4 + 3)

System.out.println(s + "(" + a + ", " + b + ") = " + r + " to " +

client.getRemoteSocketAddress ());

dos = new DataOutputStream(client.getOutputStream ()); // marshall output

dos.writeLong(r); //write 64bit long integer: 4 + 3)

dos.close(); // flush and close

client.close(); // 4)

}

server.close (); // 5)

} catch (Throwable t) {

t.printStackTrace ();

}

}

}

Distributed Computing Thomas Weise 9/29

Client Part of the Example

Listing: [TCPClientStructuredData.java]: A client asking the server to perform a specific “method”.

import java.io.DataInputStream; import java.io.DataOutputStream;

import java.net.InetAddress; import java.net.Socket;

public class TCPClientStructuredData {

public static final void main(final String [] args) {

Socket client; InetAddress ia;

DataOutputStream dos; DataInputStream dis;

try {

ia = InetAddress.getByName("localhost");

client = new Socket(ia, 9996); // 1+2)

dos = new DataOutputStream(client.getOutputStream ()); // marshall data

dos.writeUTF("sub"); //send operation name 3)

dos.writeLong (9876); //send 64bit long integer

dos.writeLong (1234); //send another 64bit long integer

dos.flush(); //flush is important , otherwise stuff may just be buffered!

dis = new DataInputStream(client.getInputStream ()); // unmashall input

System.out.println("Result: " + dis.readLong ()); // 3)

client.close (); // 4)

} catch (Throwable t) {

t.printStackTrace ();

}

}

}

Distributed Computing Thomas Weise 10/29

Basic Idea

• Making a RPC framework by itself is not hard

Distributed Computing Thomas Weise 11/29

Basic Idea

• Making a RPC framework by itself is not hard

• Client side

Distributed Computing Thomas Weise 11/29

Basic Idea

• Making a RPC framework by itself is not hard

• Client side: function stub (proxy) that can be called “normally”

Distributed Computing Thomas Weise 11/29

Basic Idea

• Making a RPC framework by itself is not hard

• Client side: function stub (proxy) that can be called “normally”
• send the procedure name

Distributed Computing Thomas Weise 11/29

Basic Idea

• Making a RPC framework by itself is not hard

• Client side: function stub (proxy) that can be called “normally”
• send the procedure name
• send the procedure parameters

Distributed Computing Thomas Weise 11/29

Basic Idea

• Making a RPC framework by itself is not hard

• Client side: function stub (proxy) that can be called “normally”
• send the procedure name
• send the procedure parameters
• wait for result. . .

Distributed Computing Thomas Weise 11/29

Basic Idea

• Making a RPC framework by itself is not hard

• Client side: function stub (proxy) that can be called “normally”
• send the procedure name
• send the procedure parameters
• wait for result. . .

• Server side

Distributed Computing Thomas Weise 11/29

Basic Idea

• Making a RPC framework by itself is not hard

• Client side: function stub (proxy) that can be called “normally”
• send the procedure name
• send the procedure parameters
• wait for result. . .

• Server side: a skeleton function

Distributed Computing Thomas Weise 11/29

Basic Idea

• Making a RPC framework by itself is not hard

• Client side: function stub (proxy) that can be called “normally”
• send the procedure name
• send the procedure parameters
• wait for result. . .

• Server side: a skeleton function that
• receives procedure name

Distributed Computing Thomas Weise 11/29

Basic Idea

• Making a RPC framework by itself is not hard

• Client side: function stub (proxy) that can be called “normally”
• send the procedure name
• send the procedure parameters
• wait for result. . .

• Server side: a skeleton function that
• receives procedure name
• finds the procedure implementation/pointer to code that fits to the

name

Distributed Computing Thomas Weise 11/29

Basic Idea

• Making a RPC framework by itself is not hard

• Client side: function stub (proxy) that can be called “normally”
• send the procedure name
• send the procedure parameters
• wait for result. . .

• Server side: a skeleton function that
• receives procedure name
• finds the procedure implementation/pointer to code that fits to the

name
• sends error message back if none found

Distributed Computing Thomas Weise 11/29

Basic Idea

• Making a RPC framework by itself is not hard

• Client side: function stub (proxy) that can be called “normally”
• send the procedure name
• send the procedure parameters
• wait for result. . .

• Server side: a skeleton function that
• receives procedure name
• finds the procedure implementation/pointer to code that fits to the

name
• sends error message back if none found
• receives the procedure parameters

Distributed Computing Thomas Weise 11/29

Basic Idea

• Making a RPC framework by itself is not hard

• Client side: function stub (proxy) that can be called “normally”
• send the procedure name
• send the procedure parameters
• wait for result. . .

• Server side: a skeleton function that
• receives procedure name
• finds the procedure implementation/pointer to code that fits to the

name
• sends error message back if none found
• receives the procedure parameters
• checks whether parameter types fits to procedure (send error if it

doesn’t fit)

Distributed Computing Thomas Weise 11/29

Basic Idea

• Making a RPC framework by itself is not hard

• Client side: function stub (proxy) that can be called “normally”
• send the procedure name
• send the procedure parameters
• wait for result. . .

• Server side: a skeleton function that
• receives procedure name
• finds the procedure implementation/pointer to code that fits to the

name
• sends error message back if none found
• receives the procedure parameters
• checks whether parameter types fits to procedure (send error if it

doesn’t fit)
• calls the procedure

Distributed Computing Thomas Weise 11/29

Basic Idea

• Making a RPC framework by itself is not hard

• Client side: function stub (proxy) that can be called “normally”
• send the procedure name
• send the procedure parameters
• wait for result. . .

• Server side: a skeleton function that
• receives procedure name
• finds the procedure implementation/pointer to code that fits to the

name
• sends error message back if none found
• receives the procedure parameters
• checks whether parameter types fits to procedure (send error if it

doesn’t fit)
• calls the procedure
• sends back the result

Distributed Computing Thomas Weise 11/29

RMI

• Remote Method Invocation (RMI): RPC for distributed objects

• Stub: implements object interface [6, 7] and marshalls calls

• Skeleton: unmarshalls calls and delegates them to real object

Distributed Computing Thomas Weise 12/29

RMI: Pros and Cons

• What are the reasons, advantages, and disadvantages of remote
method invocation?

Distributed Computing Thomas Weise 13/29

RMI: Pros and Cons

• What are the reasons, advantages, and disadvantages of remote
method invocation?

• Reasons
• Advantages
• Disadvantages

Distributed Computing Thomas Weise 13/29

RMI: Pros and Cons

• What are the reasons, advantages, and disadvantages of remote
method invocation?

• Reasons
• application servers: separation of concerns

• Advantages
• Disadvantages

Distributed Computing Thomas Weise 13/29

RMI: Pros and Cons

• What are the reasons, advantages, and disadvantages of remote
method invocation?

• Reasons
• application servers: separation of concerns
• interconnect heterogeneous systems

• Advantages
• Disadvantages

Distributed Computing Thomas Weise 13/29

RMI: Pros and Cons

• What are the reasons, advantages, and disadvantages of remote
method invocation?

• Reasons
• Advantages

• versatile: anticipation of change

• Disadvantages

Distributed Computing Thomas Weise 13/29

RMI: Pros and Cons

• What are the reasons, advantages, and disadvantages of remote
method invocation?

• Reasons
• Advantages

• versatile: anticipation of change
• location transparency

• Disadvantages

Distributed Computing Thomas Weise 13/29

RMI: Pros and Cons

• What are the reasons, advantages, and disadvantages of remote
method invocation?

• Reasons
• Advantages

• versatile: anticipation of change
• location transparency
• geographical distribution

• Disadvantages

Distributed Computing Thomas Weise 13/29

RMI: Pros and Cons

• What are the reasons, advantages, and disadvantages of remote
method invocation?

• Reasons
• Advantages

• versatile: anticipation of change
• location transparency
• geographical distribution
• often independent from programming language

• Disadvantages

Distributed Computing Thomas Weise 13/29

RMI: Pros and Cons

• What are the reasons, advantages, and disadvantages of remote
method invocation?

• Reasons
• Advantages

• versatile: anticipation of change
• location transparency
• geographical distribution
• often independent from programming language
• allows for replication of objects

• Disadvantages

Distributed Computing Thomas Weise 13/29

RMI: Pros and Cons

• What are the reasons, advantages, and disadvantages of remote
method invocation?

• Reasons
• Advantages

• versatile: anticipation of change
• location transparency
• geographical distribution
• often independent from programming language
• allows for replication of objects
• security and access rights

• Disadvantages

Distributed Computing Thomas Weise 13/29

RMI: Pros and Cons

• What are the reasons, advantages, and disadvantages of remote
method invocation?

• Reasons
• Advantages

• versatile: anticipation of change
• location transparency
• geographical distribution
• often independent from programming language
• allows for replication of objects
• security and access rights

• Disadvantages
• security

Distributed Computing Thomas Weise 13/29

RMI: Pros and Cons

• What are the reasons, advantages, and disadvantages of remote
method invocation?

• Reasons
• Advantages

• versatile: anticipation of change
• location transparency
• geographical distribution
• often independent from programming language
• allows for replication of objects
• security and access rights

• Disadvantages
• security
• always much slower than a local invocation

Distributed Computing Thomas Weise 13/29

RMI: Pros and Cons

• What are the reasons, advantages, and disadvantages of remote
method invocation?

• Reasons
• Advantages

• versatile: anticipation of change
• location transparency
• geographical distribution
• often independent from programming language
• allows for replication of objects
• security and access rights

• Disadvantages
• security
• always much slower than a local invocation
• complex implementation

Distributed Computing Thomas Weise 13/29

RMI: Pros and Cons

• What are the reasons, advantages, and disadvantages of remote
method invocation?

• Reasons
• Advantages

• versatile: anticipation of change
• location transparency
• geographical distribution
• often independent from programming language
• allows for replication of objects
• security and access rights

• Disadvantages
• security
• always much slower than a local invocation
• complex implementation
• messages may get lost/modified/doubled

Distributed Computing Thomas Weise 13/29

RMI: Pros and Cons

• What are the reasons, advantages, and disadvantages of remote
method invocation?

• Reasons
• Advantages
• Disadvantages

• security
• always much slower than a local invocation
• complex implementation
• messages may get lost/modified/doubled
• distributed garbage collection

Distributed Computing Thomas Weise 13/29

Examples

• Common Object Request Broker Architecture (CORBA) [8–13]

Distributed Computing Thomas Weise 14/29

Examples

• Common Object Request Broker Architecture (CORBA) [8–13]

• Distributed Component Object Model (DCOM) [14]

Distributed Computing Thomas Weise 14/29

Examples

• Common Object Request Broker Architecture (CORBA) [8–13]

• Distributed Component Object Model (DCOM) [14]

• .NET Remoting [15]

Distributed Computing Thomas Weise 14/29

Examples

• Common Object Request Broker Architecture (CORBA) [8–13]

• Distributed Component Object Model (DCOM) [14]

• .NET Remoting [15]

• Java Remote Method Invocation (RMI) [13, 16, 17]

Distributed Computing Thomas Weise 14/29

Examples

• Common Object Request Broker Architecture (CORBA) [8–13]

• Distributed Component Object Model (DCOM) [14]

• .NET Remoting [15]

• Java Remote Method Invocation (RMI) [13, 16, 17]

• XPCOM (Cross Platform Component Object Model) [18]

• . . .

Distributed Computing Thomas Weise 14/29

RMI: CORBA

Common Object Request Broker Architecture (CORBA) [9–13]

Distributed Computing Thomas Weise 15/29

RMI: CORBA

Common Object Request Broker Architecture (CORBA) [9–13]

• remote access to objects distributed over the system

• Interface Definition Language (IDL) to specify object interfaces

Distributed Computing Thomas Weise 15/29

RMI: CORBA

Common Object Request Broker Architecture (CORBA) [9–13]

• remote access to objects distributed over the system

• Interface Definition Language (IDL) to specify object interfaces

• mapping of IDL to programming languages: Code Generation

Distributed Computing Thomas Weise 15/29

RMI: CORBA

Common Object Request Broker Architecture (CORBA) [9–13]

• remote access to objects distributed over the system

• Interface Definition Language (IDL) to specify object interfaces

• mapping of IDL to programming languages: Code Generation

• application interacts with objects through Object Request Broker
(ORB)

Distributed Computing Thomas Weise 15/29

RMI: CORBA

Common Object Request Broker Architecture (CORBA) [9–13]

• remote access to objects distributed over the system

• Interface Definition Language (IDL) to specify object interfaces

• mapping of IDL to programming languages: Code Generation

• application interacts with objects through Object Request Broker
(ORB)

• naming service: maps names to locations

Distributed Computing Thomas Weise 15/29

RMI: CORBA

Common Object Request Broker Architecture (CORBA) [9–13]

• remote access to objects distributed over the system

• Interface Definition Language (IDL) to specify object interfaces

• mapping of IDL to programming languages: Code Generation

• application interacts with objects through Object Request Broker
(ORB)

• naming service: maps names to locations

• standardized by Object Management Group (OMG)

Distributed Computing Thomas Weise 15/29

RMI: CORBA

Common Object Request Broker Architecture (CORBA) [9–13]

• remote access to objects distributed over the system

• Interface Definition Language (IDL) to specify object interfaces

• mapping of IDL to programming languages: Code Generation

• application interacts with objects through Object Request Broker
(ORB)

• naming service: maps names to locations

• standardized by Object Management Group (OMG)

• fast, mature technology, language/Os independent, strong data types

Distributed Computing Thomas Weise 15/29

RMI: CORBA

Common Object Request Broker Architecture (CORBA) [9–13]

• remote access to objects distributed over the system

• Interface Definition Language (IDL) to specify object interfaces

• mapping of IDL to programming languages: Code Generation

• application interacts with objects through Object Request Broker
(ORB)

• naming service: maps names to locations

• standardized by Object Management Group (OMG)

• fast, mature technology, language/Os independent, strong data types

• very complex, standard very verbose: “design by committee”

Distributed Computing Thomas Weise 15/29

RMI: CORBA

Common Object Request Broker Architecture (CORBA) [9–13]

• remote access to objects distributed over the system

• Interface Definition Language (IDL) to specify object interfaces

• mapping of IDL to programming languages: Code Generation

• application interacts with objects through Object Request Broker
(ORB)

• naming service: maps names to locations

• standardized by Object Management Group (OMG)

• fast, mature technology, language/Os independent, strong data types

• very complex, standard very verbose: “design by committee”

• incompatibilities between implementations

Distributed Computing Thomas Weise 15/29

RMI: CORBA

Common Object Request Broker Architecture (CORBA) [9–13]

• remote access to objects distributed over the system

• Interface Definition Language (IDL) to specify object interfaces

• mapping of IDL to programming languages: Code Generation

• application interacts with objects through Object Request Broker
(ORB)

• naming service: maps names to locations

• standardized by Object Management Group (OMG)

• fast, mature technology, language/Os independent, strong data types

• very complex, standard very verbose: “design by committee”

• incompatibilities between implementations

• firewalls may block protocol

Distributed Computing Thomas Weise 15/29

RMI: DCOM

Distributed Component Object Model (DCOM) [14]

Distributed Computing Thomas Weise 16/29

RMI: DCOM

Distributed Component Object Model (DCOM) [14]

• developed by Microsoft

• object-oriented RPC system based on Distributed Computing
Environment (DCE) and Compound Object Model (COM)

Distributed Computing Thomas Weise 16/29

RMI: DCOM

Distributed Component Object Model (DCOM) [14]

• developed by Microsoft

• object-oriented RPC system based on Distributed Computing
Environment (DCE) and Compound Object Model (COM)

• memory management via reference counting

Distributed Computing Thomas Weise 16/29

RMI: DCOM

Distributed Component Object Model (DCOM) [14]

• developed by Microsoft

• object-oriented RPC system based on Distributed Computing
Environment (DCE) and Compound Object Model (COM)

• memory management via reference counting

• interfaces described via IDL

Distributed Computing Thomas Weise 16/29

RMI: DCOM

Distributed Component Object Model (DCOM) [14]

• developed by Microsoft

• object-oriented RPC system based on Distributed Computing
Environment (DCE) and Compound Object Model (COM)

• memory management via reference counting

• interfaces described via IDL

• fast, mature technology, strong data types

Distributed Computing Thomas Weise 16/29

RMI: DCOM

Distributed Component Object Model (DCOM) [14]

• developed by Microsoft

• object-oriented RPC system based on Distributed Computing
Environment (DCE) and Compound Object Model (COM)

• memory management via reference counting

• interfaces described via IDL

• fast, mature technology, strong data types

• bound to Microsoft, supported mainly by Microsoft programming
languages

Distributed Computing Thomas Weise 16/29

RMI: DCOM

Distributed Component Object Model (DCOM) [14]

• developed by Microsoft

• object-oriented RPC system based on Distributed Computing
Environment (DCE) and Compound Object Model (COM)

• memory management via reference counting

• interfaces described via IDL

• fast, mature technology, strong data types

• bound to Microsoft, supported mainly by Microsoft programming
languages

• firewalls

Distributed Computing Thomas Weise 16/29

RMI: .NET Remoting

.NET Remoting [15]

1see a later lesson. . .
Distributed Computing Thomas Weise 17/29

RMI: .NET Remoting

.NET Remoting [15]

• developed by Microsoft, replaces DCOM

• based on .NET Framework

1see a later lesson. . .
Distributed Computing Thomas Weise 17/29

RMI: .NET Remoting

.NET Remoting [15]

• developed by Microsoft, replaces DCOM

• based on .NET Framework

• memory management via garbage collection

1see a later lesson. . .
Distributed Computing Thomas Weise 17/29

RMI: .NET Remoting

.NET Remoting [15]

• developed by Microsoft, replaces DCOM

• based on .NET Framework

• memory management via garbage collection

• fully transparent

1see a later lesson. . .
Distributed Computing Thomas Weise 17/29

RMI: .NET Remoting

.NET Remoting [15]

• developed by Microsoft, replaces DCOM

• based on .NET Framework

• memory management via garbage collection

• fully transparent

• can use both, TCP or SOAP1 via HTTP (so no firewall problems)

1see a later lesson. . .
Distributed Computing Thomas Weise 17/29

RMI: .NET Remoting

.NET Remoting [15]

• developed by Microsoft, replaces DCOM

• based on .NET Framework

• memory management via garbage collection

• fully transparent

• can use both, TCP or SOAP1 via HTTP (so no firewall problems)

• fast, mature technology, strong data types

1see a later lesson. . .
Distributed Computing Thomas Weise 17/29

RMI: .NET Remoting

.NET Remoting [15]

• developed by Microsoft, replaces DCOM

• based on .NET Framework

• memory management via garbage collection

• fully transparent

• can use both, TCP or SOAP1 via HTTP (so no firewall problems)

• fast, mature technology, strong data types

• bound to Microsoft, supported mainly by Microsoft programming
languages

1see a later lesson. . .
Distributed Computing Thomas Weise 17/29

Java RMI

Java Remote Method Invocation (RMI) [13, 16, 17]

Distributed Computing Thomas Weise 18/29

Java RMI

Java Remote Method Invocation (RMI) [13, 16, 17]

• developed by Sun / Java technology

• fully transparent

Distributed Computing Thomas Weise 18/29

Java RMI

Java Remote Method Invocation (RMI) [13, 16, 17]

• developed by Sun / Java technology

• fully transparent

• objects bound to names in registry

Distributed Computing Thomas Weise 18/29

Java RMI

Java Remote Method Invocation (RMI) [13, 16, 17]

• developed by Sun / Java technology

• fully transparent

• objects bound to names in registry

• names can be looked up and object references are obtained from the
registry

Distributed Computing Thomas Weise 18/29

Java RMI

Java Remote Method Invocation (RMI) [13, 16, 17]

• developed by Sun / Java technology

• fully transparent

• objects bound to names in registry

• names can be looked up and object references are obtained from the
registry

• fast, mature technology, strong data types

Distributed Computing Thomas Weise 18/29

Java RMI

Java Remote Method Invocation (RMI) [13, 16, 17]

• developed by Sun / Java technology

• fully transparent

• objects bound to names in registry

• names can be looked up and object references are obtained from the
registry

• fast, mature technology, strong data types

• less complicated than .NET Remoting

Distributed Computing Thomas Weise 18/29

Java RMI

Java Remote Method Invocation (RMI) [13, 16, 17]

• developed by Sun / Java technology

• fully transparent

• objects bound to names in registry

• names can be looked up and object references are obtained from the
registry

• fast, mature technology, strong data types

• less complicated than .NET Remoting

• bound to Java, supported, firewalls

Distributed Computing Thomas Weise 18/29

Java RMI

Java Remote Method Invocation (RMI) [13, 16, 17]

• developed by Sun / Java technology

• fully transparent

• objects bound to names in registry

• names can be looked up and object references are obtained from the
registry

• fast, mature technology, strong data types

• less complicated than .NET Remoting

• bound to Java, supported, firewalls

• firewalls

Distributed Computing Thomas Weise 18/29

Example for Java RMI

• Functionality specified as interface

Distributed Computing Thomas Weise 19/29

Example for Java RMI

• Functionality specified as interface

• Servant object (on server side) implements the functionality

Distributed Computing Thomas Weise 19/29

Example for Java RMI

• Functionality specified as interface

• Servant object (on server side) implements the functionality

• A name is assigned to the Servant and managed by a registry

Distributed Computing Thomas Weise 19/29

Example for Java RMI

• Functionality specified as interface

• Servant object (on server side) implements the functionality

• A name is assigned to the Servant and managed by a registry

• Client can request access to the object from the registry

Distributed Computing Thomas Weise 19/29

Example for Java RMI

• Functionality specified as interface

• Servant object (on server side) implements the functionality

• A name is assigned to the Servant and managed by a registry

• Client can request access to the object from the registry

• Stub on client side is an automatically generated instance of the
interface

Distributed Computing Thomas Weise 19/29

Example for Java RMI

• Functionality specified as interface

• Servant object (on server side) implements the functionality

• A name is assigned to the Servant and managed by a registry

• Client can request access to the object from the registry

• Stub on client side is an automatically generated instance of the
interface

• Client can now access the object exactly as if it was a local object

Distributed Computing Thomas Weise 19/29

RemotePrintInterface

Listing: [RemotePrintInterface.java]: The interface specifying the functionality.

import java.rmi.Remote;

import java.rmi.RemoteException;

// the RemotePrint interface

public interface RemotePrintInterface extends Remote {

/** A method to be remote -accessible

* @param what the string to print

* @throws RemoteException a possible exception */

public abstract void print(final String what) throws

RemoteException;

}

Distributed Computing Thomas Weise 20/29

RemotePrintServer

Listing: [RemotePrintServer.java]: The server implementing the functionality.

import java.rmi.RemoteException; import java.rmi.registry.LocateRegistry;

import java.rmi.registry.Registry; import java.rmi.server.UnicastRemoteObject;

public class RemotePrintServer extends UnicastRemoteObject implements

RemotePrintInterface {

RemotePrintServer () throws RemoteException {

super();

}

// the actual implementation of the method specified by RemotePrintInterface

@Override

public void print(final String what) throws RemoteException {

System.out.println(what);

}

public static final void main(final String args []) {

Registry registry;

try {

// create the (local) object registry

registry = LocateRegistry.createRegistry (9999);

// bind the object to the name "server"

registry.rebind("server", new RemotePrintServer ());

} catch (Throwable t) {

t.printStackTrace ();

}

}

}

Distributed Computing Thomas Weise 21/29

RemotePrintClient

Listing: [RemotePrintClient.java]: The client remotely using the functionality.

import java.rmi.registry.LocateRegistry; import java.rmi.registry.Registry;

public class RemotePrintClient { // the remote print rmi client

public static final void main(final String args []) {

RemotePrintInterface rmiServer; Registry registry;

try {

// find the (local) object registry

registry = LocateRegistry.getRegistry (9999);

// find the server object

rmiServer = (RemotePrintInterface) (registry.lookup("server"));

rmiServer.print("Hello World"); //$NON -NLS -1$

} catch (Throwable t) {

t.printStackTrace ();

}

}

}

Distributed Computing Thomas Weise 22/29

RemotePrintClientErroneous

Listing: [RemotePrintClientErroneous.java]: The client remotely using the functionality wrongly.

import java.rmi.registry.LocateRegistry; import java.rmi.registry.Registry;

public class RemotePrintClientErroneous { // the erroneous remote print client

public static final void main(final String args []) {

RemotePrintInterface rmiServer; Registry registry;

try {

// find the (local) object registry

registry = LocateRegistry.getRegistry (9999);

//! invalid cast to server class !

rmiServer = ((RemotePrintServer)(registry.lookup("server")));

rmiServer.print("Hello World"); //$NON -NLS -1$

} catch (Throwable t) {

t.printStackTrace ();

}

}

}

Distributed Computing Thomas Weise 23/29

An erroneous client. . .

• Why?

Distributed Computing Thomas Weise 24/29

An erroneous client. . .

• Why?

• Because the object instance returned by registry.lookup is a proxy

Distributed Computing Thomas Weise 24/29

An erroneous client. . .

• Why?

• Because the object instance returned by registry.lookup is a proxy

• The real object instance (servant) exists in another JVM / on another
computer

Distributed Computing Thomas Weise 24/29

An erroneous client. . .

• Why?

• Because the object instance returned by registry.lookup is a proxy

• The real object instance (servant) exists in another JVM / on another
computer

• The proxy on the client side is a dynamically created object
implementing the RemotePrintInterface interface

Distributed Computing Thomas Weise 24/29

An erroneous client. . .

• Why?

• Because the object instance returned by registry.lookup is a proxy

• The real object instance (servant) exists in another JVM / on another
computer

• The proxy on the client side is a dynamically created object
implementing the RemotePrintInterface interface

• It has a class different from RemotePrintServer

Distributed Computing Thomas Weise 24/29

An erroneous client. . .

• Why?

• Because the object instance returned by registry.lookup is a proxy

• The real object instance (servant) exists in another JVM / on another
computer

• The proxy on the client side is a dynamically created object
implementing the RemotePrintInterface interface

• It has a class different from RemotePrintServer

• And thus, cannot be cast to RemotePrintServer

Distributed Computing Thomas Weise 24/29

Summary

• RPC: call a procedure on another computer

• RMI: call a method (i.e., access an object) on a different computer

• Many different technologies

• Java RMI: quite simple to use

Distributed Computing Thomas Weise 25/29

Caspar David Friedrich, “Der Wanderer über dem Nebelmeer”, 1818
http://en.wikipedia.org/wiki/Wanderer_above_the_Sea_of_Fog

谢谢谢谢谢谢
Thank you

Thomas Weise [汤卫思]
tweise@hfuu.edu.cn

http://www.it-weise.de

Hefei University, South Campus 2
Institute of Applied Optimization
Shushan District, Hefei, Anhui,

China

Distributed Computing Thomas Weise 26/29

mailto:tweise@hfuu.edu.cn
mailto:http://www.it-weise.de

Bibliography

Distributed Computing Thomas Weise 27/29

Bibliography I

1. Carlo Ghezzi, Mehdi Jazayeri, and Dino Mandrioli. Fundamentals of Software Engineering. second edition. ISBN
9780133056990.

2. Peter Naur and Brian Randell, editors. Software Engineering – Report on a Conference Sponsored by the NATO Science
Committee, Garmisch, Bavaria, Germany, October 7–11, 1968. Brussels, Belgium: NATO, Scientific Affairs Division. URL
http://homepages.cs.ncl.ac.uk/brian.randell/NATO/nato1968.PDF. Chairman: Professor Dr. Fritz L. Bauer,
Co-chairmen: Professor L. Bolliet, Dr. H. J. Helms. Published: January 1969.

3. Edsger Wybe Dijkstra. On the role of scientific thought. Technical report, The Netherlands, Nuenen: Burroughs
Corporation, August 30, 1974. URL http://www.cs.utexas.edu/users/EWD/transcriptions/EWD04xx/EWD447.html.

4. Edsger Wybe Dijkstra. On the role of scientific thought. In Selected Writings on Computing: A Personal Perspective, Texts
and Monographs in Computer Science, pages 60–65. Berlin, Germany: Springer-Verlag GmbH, 1982.

5. Andrew D. Birrell and Bruce Jay Nelson. Implementing remote procedure calls. ACM Transactions on Computer Systems
(ACM TOCS), 2(1):39–59, February 1984. doi: 10.1145/2080.357392. URL
http://nd.edu/~dthain/courses/cse598z/fall2004/papers/birrell-rpc.pdf.

6. Philip Shaw. Java Interface Design FAQ. Norwich, UK: Metacentric Internet Limited, One Percent Better, 1.0 edition,
2010. ISBN 978-1-907863-03-5. URL http://books.google.de/books?id=Lmqh1oNRpb0C.

7. Nell Dale, Daniel Joyce, and Chip Weems. Object-Oriented Data Structures Using Java. Sudbury, MA, USA: Jones &
Bartlett Publishers, 2011. ISBN 1449613543 and 9781449613549. URL
http://books.google.de/books?id=GEJ_Jp6mUpgC.

8. David Chappell. The trouble with corba, May 1998. URL
http://www.davidchappell.com/articles/article_Trouble_CORBA.html.

9. Robert Orfali, Dan Harkey, and Daniel J. Edwards. Client/Server Survival Guide. Wiley Computer Publishing. New York,
NY, USA: John Wiley & Sons Ltd., 1999. ISBN 0471316156 and 9780471316152. URL
http://books.google.de/books?id=fBteTDjMwScC.

10. USA: Electronic Data Systems Corporation (EDS) et al. Plano, TX. Common Object Request Broker Architecture
(CORBA) Specification, Version 3.2 – Part 1: CORBA Interfaces, volume formal/2011-11-01. Needham, MA, USA: Object
Management Group (OMG), November 2011. URL http://www.omg.org/spec/CORBA/3.2/Interfaces/PDF/.

11. USA: Electronic Data Systems Corporation (EDS) et al. Plano, TX. Common Object Request Broker Architecture
(CORBA) Specification, Version 3.2 – Part 2: CORBA Interoperability, volume formal/2011-11-02. Needham, MA, USA:
Object Management Group (OMG), November 2011. URL
http://www.omg.org/spec/CORBA/3.2/Interoperability/PDF.

Distributed Computing Thomas Weise 28/29

http://homepages.cs.ncl.ac.uk/brian.randell/NATO/nato1968.PDF
http://www.cs.utexas.edu/users/EWD/transcriptions/EWD04xx/EWD447.html
http://nd.edu/~dthain/courses/cse598z/fall2004/papers/birrell-rpc.pdf
http://books.google.de/books?id=Lmqh1oNRpb0C
http://books.google.de/books?id=GEJ_Jp6mUpgC
http://www.davidchappell.com/articles/article_Trouble_CORBA.html
http://books.google.de/books?id=fBteTDjMwScC
http://www.omg.org/spec/CORBA/3.2/Interfaces/PDF/
http://www.omg.org/spec/CORBA/3.2/Interoperability/PDF

Bibliography II

12. USA: Electronic Data Systems Corporation (EDS) et al. Plano, TX. Common Object Request Broker Architecture
(CORBA) Specification, Version 3.2 – Part 3: CORBA Component Model, volume formal/2011-11-03. Needham, MA,
USA: Object Management Group (OMG), November 2011. URL http://www.omg.org/spec/CORBA/3.2/Components/PDF.

13. Josef Stepisnik. Distributed Object-Oriented Architectures: Sockets, Java RMI and CORBA. Hamburg, Germany:
Diplomica Verlag GmbH, 2007. ISBN 3836650339 and 9783836650335. URL
http://books.google.de/books?id=qNGTzYdJt18C.

14. [MS-DCOM]: Distributed Component Model (DCOM) Remote Protocol Specification, volume v20111214. Redmond, WA,
USA: Microsoft Corporation, December 14, 2011. URL
http://download.microsoft.com/download/a/e/6/ae6e4142-aa58-45c6-8dcf-a657e5900cd3/%5BMS-DCOM%5D.pdf.

15. Dino Esposito. .net remoting – design and develop seamless distributed applications for the common language runtime.
Microsoft Developer Network – MSDN Magazin, 2(10), October 2002. URL
http://msdn.microsoft.com/en-us/magazine/cc188927.aspx.

16. Ann Wollrath, Roger Riggs, and Jim Waldo. A distributed object model for the java system. In Douglas C. Schmidt and
Doug Lea, editors, Proceedings of the USENIX 1996 Conference on Object-Oriented Technologies (COOTS), Toronto, ON,
Canada, 1996. URL http://pdos.csail.mit.edu/6.824/papers/waldo-rmi.pdf.

17. William Grosso. Java RMI. Sebastopol, CA, USA: O’Reilly Media, Inc., 2011. ISBN 1449315356 and 9781449315351. URL
http://books.google.de/books?id=TeK5uL2dWwQC.

18. Nigel McFarland. Rapid Application Development With Mozilla. Bruce Perens’ Open Source Series. Upper Saddle River,
NJ, USA: Prentice Hall Professional, 2004. ISBN 0131423436 and 9780131423435. URL
http://books.google.de/books?id=gKeRXPkSAVMC.

Distributed Computing Thomas Weise 29/29

http://www.omg.org/spec/CORBA/3.2/Components/PDF
http://books.google.de/books?id=qNGTzYdJt18C
http://download.microsoft.com/download/a/e/6/ae6e4142-aa58-45c6-8dcf-a657e5900cd3/%5BMS-DCOM%5D.pdf
http://msdn.microsoft.com/en-us/magazine/cc188927.aspx
http://pdos.csail.mit.edu/6.824/papers/waldo-rmi.pdf
http://books.google.de/books?id=TeK5uL2dWwQC
http://books.google.de/books?id=gKeRXPkSAVMC

	Outline
	Overview
	RPC
	Local Procedure Call
	Remote Procedure Call
	RPC
	Principle
	Remember
	
	Client Part of the Example
	Basic Idea

	RMI
	RMI
	RMI: Pros and Cons
	Examples
	RMI: CORBA
	RMI: DCOM
	RMI: .NET Remoting

	 RMI
	 RMI
	Example for RMI
	RemotePrintInterface
	RemotePrintServer
	RemotePrintClient
	RemotePrintClientErroneous
	An erroneous client…
	Summary

	Presentation End
	Bibliography

