LR B

HEFEI UNIVERSITY

Distributed Computing

Lesson 14: Remote Method Invocation

Thomas Weise -

tweise@hfuu.edu.cn -

Hefei University, South Campus 2
Faculty of Computer Science and Technology
Institute of Applied Optimization
230601 Shushan District, Hefei, Anhui, China
Econ. & Tech. Devel. Zone, Jinxiu Dadao 99

H LR
http://www.it-weise.de

i =4
T H A

ri]?@féﬂ#i[;’;/éJZB
5HRA

R AR ACHE RBT
TE ks ST . R 230601
BFBARTER %%

#99%

mailto:tweise@hfuu.edu.cn
http://www.it-weise.de

QOutline

@ RPC
® RMI

® Java RMI

Distributed Computing

Thomas Weise

e How can we run procedures on a different computer?

What are remote procedure calls and remote method invocation?

What different technologies exist for that purpose?

Example implementation in Java

e Procedural programming languages like Java and C offer us the
concept of function calls: e.g., double compute(double a, double b)

e Procedural programming languages like Java and C offer us the
concept of function calls: e.g., double compute(double a, double b)

e Such a local function call (normally) has the following features

e Procedural programming languages like Java and C offer us the
concept of function calls: e.g., double compute(double a, double b)

e Such a local function call (normally) has the following features:
e executed in the calling Thread

e Procedural programming languages like Java and C offer us the
concept of function calls: e.g., double compute(double a, double b)

e Such a local function call (normally) has the following features:

o executed in the calling Thread and therefore
e blocking until the function is finished

e Procedural programming languages like Java and C offer us the
concept of function calls: e.g., double compute(double a, double b)

e Such a local function call (normally) has the following features:

o executed in the calling Thread and therefore
e blocking until the function is finished

e What are procedure/function calls good for?

e Procedural programming languages like Java and C offer us the
concept of function calls: e.g., double compute(double a, double b)

e Such a local function call (normally) has the following features:

o executed in the calling Thread and therefore
e blocking until the function is finished

e What are procedure/function calls good for?
e Modular software development '

e Procedural programming languages like Java and C offer us the
concept of function calls: e.g., double compute(double a, double b)

e Such a local function call (normally) has the following features:

o executed in the calling Thread and therefore
e blocking until the function is finished

e What are procedure/function calls good for?

e Modular software development '
e Smaller programs

e Procedural programming languages like Java and C offer us the
concept of function calls: e.g., double compute(double a, double b)

e Such a local function call (normally) has the following features:
o executed in the calling Thread and therefore
e blocking until the function is finished

e What are procedure/function calls good for?

e Modular software development '
e Smaller programs
e Separation of concerns (SoC) P

o Execute a procedure on another computer. .. Why?

e Execute a procedure on another computer. .. Why?
o Implement functionality (e.g., application logic) in a program that can
be accessed from another program (e.g., front end) running on a
different computer

e Execute a procedure on another computer. .. Why?
o Implement functionality (e.g., application logic) in a program that can
be accessed from another program (e.g., front end) running on a
different computer
o Code of the procedure resides on other computer, is unknown to our
computer (we just know procedure’s signature), and must be executed
there

e Execute a procedure on another computer. .. Why?

o Implement functionality (e.g., application logic) in a program that can
be accessed from another program (e.g., front end) running on a
different computer

o Code of the procedure resides on other computer, is unknown to our
computer (we just know procedure’s signature), and must be executed
there

e Combine advantages of modular programming with client/server

systems, e.g.,

Remote Procedure Call %V

1AQ

e Execute a procedure on another computer. .. Why?

e Implement functionality (e.g., application logic) in a program that can
be accessed from another program (e.g., front end) running on a
different computer

e Code of the procedure resides on other computer, is unknown to our
computer (we just know procedure’s signature), and must be executed
there

e Combine advantages of modular programming with client/server
systems, e.g.,

e Perform a location-dependent service

Distributed Computing Thomas Weise 5/29

Remote Procedure Call %0,

e Execute a procedure on another computer. .. Why?

e Implement functionality (e.g., application logic) in a program that can
be accessed from another program (e.g., front end) running on a
different computer

e Code of the procedure resides on other computer, is unknown to our
computer (we just know procedure’s signature), and must be executed
there

e Combine advantages of modular programming with client/server
systems, e.g.,

e Perform a location-dependent service

e Centralized maintenance and updating

Distributed Computing Thomas Weise 5/29

Remote Procedure Call %0,

e Execute a procedure on another computer. .. Why?

e Implement functionality (e.g., application logic) in a program that can
be accessed from another program (e.g., front end) running on a
different computer

e Code of the procedure resides on other computer, is unknown to our
computer (we just know procedure’s signature), and must be executed
there

e Combine advantages of modular programming with client/server
systems, e.g.,

e Perform a location-dependent service

e Centralized maintenance and updating

e Platform independent binding of services

Distributed Computing Thomas Weise 5/29

o Execute a procedure on another computer. .. Why?
e Remote Procedure Call (RPC) ¥

o Execute a procedure on another computer. .. Why?
» Remote Procedure Call (RPC) P!

o call/execute a function in another process (usually on another
computer)

o Execute a procedure on another computer. .. Why?
» Remote Procedure Call (RPC) P!
o call/execute a function in another process (usually on another

computer)
e necessary communication offered by software framework

o Execute a procedure on another computer. .. Why?
» Remote Procedure Call (RPC) P!

o call/execute a function in another process (usually on another
computer)

e necessary communication offered by software framework

o from programmer’s perspective: looks exactly like local procedure call

Client Server
res=myproc(”abc”)| user processes res=myproc(”abc”)

middleware

Transport Trans.port

marshalling: translate procedure parameters into platform-independent representation
unmarshalling:translate marshalled data structures back to platform-specific representation

Client Server
res=myproc(”abc”)| user processes res=myproc(”abc”)

middleware

N

. packing procedure id,
and marshalled
parameters into

request message p @

’

Transport Trans.port

marshalling: translate procedure parameters into platform-independent representation
unmarshalling:translate marshalled data structures back to platform-specific representation

Client Server

res=myproc(”abc”)| user processes res=myproc(”abc”)
1. packing procedure id, ———— ----------------m-i(-](-]l-e;l-a-re-------------------------

and marshalled
parameters into

request message @
2. send message to server

Transport Trans.port

marshalling: translate procedure parameters into platform-independent representation
unmarshalling:translate marshalled data structures back to platform-specific representation

Client Server

res=myproc(”abc”)| user processes res=myproc(”abc”)
1. packing procedure id, - ----------------m-i(-](-]l-e;l-a-re-------------------------

and marshalled
parameters into

request message ¢ >

2. send message to server

Transport Trans.port

marshalling: translate procedure parameters into platform-independent representation
unmarshalling:translate marshalled data structures back to platform-specific representation

Client Server

res=myproc(”abc”)| user processes res=myproc(”abc”)
1. packing procedure id, b ----------------m-i(-](-]l-e;l-a-re-------------------------

and marshalled
parameters into

request message ¢ >

2. send message to server

[
Transport

Tranlsport

marshalling: translate procedure parameters into platform-independent representation
unmarshalling:translate marshalled data structures back to platform-specific representation

Client Server

res=myproc(”abc”)| user processes res=myproc(”abc”)
1. packing procedure id, - ----------------m-i(-](-]l-e;l-a-re-------------------------

and marshalled
parameters into

request message ¢ >

2. send message to server

Tranlsport Trans.port

marshalling: translate procedure parameters into platform-independent representation
unmarshalling:translate marshalled data structures back to platform-specific representation

Client Server
res=myproc(”abc”)| user processes res=myproc(”abc”)

1. packing procedure id, r ----------m-i(-](-]l-e;l-a-re-------------------------
and marshalled

parameters into

request message ¢ > @

2. send message to server e
a

Tranlsport Trans.port

request

marshalling: translate procedure parameters into platform-independent representation
unmarshalling:translate marshalled data structures back to platform-specific representation

Client Server
res=myproc(”abc”)| user processes res=myproc(”abc”)

1. packing procedure id, r ----------m-i(-](-]l-e;l-a-re-------------------------
and marshalled

parameters into

request message ¢ > @

2. send message to server e
a

[
Transport

Tranlsport

marshalling: translate procedure parameters into platform-independent representation
unmarshalling:translate marshalled data structures back to platform-specific representation

Client Server
res=myproc(”abc”)| user processes res=myproc(”abc”)

1. packing procedure id, r ----------m-i(-](-]l-e;l-a-re-------------------------
and marshalled

parameters into

request message ¢ > @

2. send message to server

Tranlsport

Internet

marshalling: translate procedure parameters into platform-independent representation
unmarshalling:translate marshalled data structures back to platform-specific representation

Client Server
res=myproc(”abc™)| user processes res=myproc(”abc™)
1. packing procedure id, Fm.iaal.eal.a.re...............K........
and marshalled
parameters into
request message
<P & H
2. send message to server (e
a
O
Transport Transport
| |

marshalling: translate procedure parameters into platform-independent representation
unmarshalling:translate marshalled data structures back to platform-specific representation

1. packing procedure id,
and marshalled
parameters into
request message

2. send message to server

marshalling: translate procedure parameters into platform-independent representation
unmarshalling:translate marshalled data structures back to platform-specific representation

Client

res=myproc(”abc”)

¢D

Tranlsport

user processes
middleware

Server
res=myproc(”abc”)

&

’

Client Server

res=myproc(”abc”)| user processes res=myproc(”abc”)
1. packing procedure id, b ----------------m-i(-](-]l-e;l-a-re---------------K-------- 3. map procedurefobject id

and marshalled d to a real method

parameters into

request message ¢ S t 5
2. send message to server ¢:'_
a

1
Translport

marshalling: translate procedure parameters into platform-independent representation
unmarshalling:translate marshalled data structures back to platform-specific representation

Client Server

res=myproc(”abc”)| user processes res=myproc(”abc”)

1. packing procedure id,m.ia(.ﬂ.eal.a.re...............K........ 3. map procedurefobject id
and marshalled f 1 to a real method
parameters into 4. unmarshall received
request message ¢) t b ¢D parameters

2. send message to server (e

a

1
Translport

marshalling: translate procedure parameters into platform-independent representation
unmarshalling:translate marshalled data structures back to platform-specific representation

1. packing procedure id,
and marshalled
parameters into
request message

2. send message to server

Client

res=myproc(”abc”)

¢D

Server
user processes res=myproc(”abc”)

middleware

fe --------------------------------------K--------

&5

1
Translport

3. map procedure/object id
to a real method

4. unmarshall received
parameters

5. call method

marshalling: translate procedure parameters into platform-independent representation
unmarshalling:translate marshalled data structures back to platform-specific representation

1. packing procedure id,
and marshalled
parameters into
request message

2. send message to server

----K--------

3. map procedure/object id
to a real method

4. unmarshall received
parameters

5. call method

marshalling: translate procedure parameters into platform-independent representation
unmarshalling:translate marshalled data structures back to platform-specific representation

1. packing procedure id,
and marshalled
parameters into
request message

2. send message to server

----K--------

3. map procedure/object id
to a real method

4. unmarshall received
parameters

5. call method

marshalling: translate procedure parameters into platform-independent representation
unmarshalling:translate marshalled data structures back to platform-specific representation

1. packing procedure id,
and marshalled
parameters into
request message

2. send message to server

----K--------

3. map procedure/object id
to a real method

4. unmarshall received
parameters

5. call method

marshalling: translate procedure parameters into platform-independent representation
unmarshalling:translate marshalled data structures back to platform-specific representation

1. packing procedure id,
and marshalled
parameters into
request message

2. send message to server

Client

res=myproc(”abc”)

user processes

middleware
6. after method

Server

res=myproc(”abc”)

---w--------

finishes, marshall
the return value

7. send response
message

$tp i¢D

1
Tranlsport

3. map procedure/object id
to a real method

4. unmarshall received
parameters

5. call method

marshalling: translate procedure parameters into platform-independent representation
unmarshalling:translate marshalled data structures back to platform-specific representation

1. packing procedure id,
and marshalled
parameters into
request message

2. send message to server

Client

res=myproc(”abc”)

user processes

middleware
6. after method

Server

res=myproc(”abc”)

---w--------

finishes, marshall
the return value

7. send response
message

$tp i¢D

1
Tranlsport

3. map procedure/object id
to a real method

4. unmarshall received
parameters

5. call method

marshalling: translate procedure parameters into platform-independent representation
unmarshalling:translate marshalled data structures back to platform-specific representation

1. packing procedure id,
and marshalled
parameters into
request message

2. send message to server

Client

res=myproc(”abc”)

user processes

middleware
6. after method

Server

res=myproc(”abc”)

---w--------

“res’]

finishes, marshall
the return value

7. send response
message

request
response

$tp i¢D

1
Tranlsport

3. map procedure/object id
to a real method

4. unmarshall received
parameters

5. call method

marshalling: translate procedure parameters into platform-independent representation
unmarshalling:translate marshalled data structures back to platform-specific representation

Client

res=myproc(”abc”)

1. packing procedure id,
and marshalled
parameters into
request message

2. send message to server

user processes

middleware

6. after method

Server

res=myproc(”abc”)

---w--------

“res’]

finishes, marshall
the return value

7. send response
message

Tranfport

request
response

$tp i¢D

1
Tranlsport

3. map procedure/object id
to a real method

4. unmarshall received
parameters

5. call method

marshalling: translate procedure parameters into platform-independent representation
unmarshalling:translate marshalled data structures back to platform-specific representation

1. packing procedure id,
and marshalled
parameters into
request message

2. send message to server

Client

res=myproc(”abc”)

user processes

middleware
6. after method

Server

res=myproc(”abc”)

---w--------

“res’]

finishes, marshall
the return value

7. send response
message

request
response

$tp i¢D

1
Tranlsport

3. map procedure/object id
to a real method

4. unmarshall received
parameters

5. call method

marshalling: translate procedure parameters into platform-independent representation
unmarshalling:translate marshalled data structures back to platform-specific representation

Client Server
myproc(”abc™)

res=myproc(”abc™) user processes

3. map procedure/object id
to a real method

1. packing procedure id,
and marshalled
parameters into
request message

2. send message to server

middleware

6. after method “res”| -
finishes, marshalll 4. unmarshall received

the return value ¢:> ¢D parameters
¢'—

7. send response 5. call method
message

1
Tranlsport

Internet

request
response

marshalling: translate procedure parameters into platform-independent representation
unmarshalling:translate marshalled data structures back to platform-specific representation

1. packing procedure id,
and marshalled
parameters into
request message

2. send message to server

Client

res=myproc(”abc”)

- ------w----

user processes

Server
res=myproc(”abc”)

$p

request
response

middleware 1 - .
8. unmarshall return 6. after method “res”]
values finishes, marshall
the return value ¢'> ¢D
Cl r]
7. send response o
message
O
Transport
|

3. map procedure/object id
to a real method

4. unmarshall received
parameters

5. call method

marshalling: translate procedure parameters into platform-independent representation
unmarshalling:translate marshalled data structures back to platform-specific representation

1. packing procedure id,
and marshalled
parameters into
request message

2. send message to server

Client

res=myproc(”abc”)

- ------w----

8. unmarshall return
values

$p

9. pass control back

to user process

user processes

middleware

6. after method

Server

res=myproc(”abc”)

---w--------

“res’]

finishes, marshall

the return value
7. send response

message

request

response

$tp i¢D

1
Tranlsport

3. map procedure/object id
to a real method

4. unmarshall received
parameters

5. call method

marshalling: translate procedure parameters into platform-independent representation
unmarshalling:translate marshalled data structures back to platform-specific representation

e The basic principle behind RPC are “Function Proxies”

e The basic principle behind RPC are “Function Proxies”

e Say, we want to perform a remote invocation of a function

double calculate(double x, double y)

e The basic principle behind RPC are “Function Proxies”

e Say, we want to perform a remote invocation of a function

double calculate(double x, double y)

e Goals

e The basic principle behind RPC are “Function Proxies”

e Say, we want to perform a remote invocation of a function

double calculate(double x, double y)

e Goals

e Function which is implemented on another computer is actually
executed on that other computer, but triggered by our process

e The basic principle behind RPC are “Function Proxies”

e Say, we want to perform a remote invocation of a function
double calculate(double x, double y)

e Goals

e Function which is implemented on another computer is actually
executed on that other computer, but triggered by our process

e From the programmer's and program’s perspective, it looks like it is
called in the current process

e We can use sockets to realize some sort of remote procedure call. ..

LiStith [TCPServerStructuredData.java]: A server perform a specific “method”.

import java.io.DatalnputStream; import java.io.DataQutputStream;
import java.net.ServerSocket; import java.net.Socket;

public class TCPServerStructuredData {
public static final void main(final String[] args) {

ServerSocket server; Socket client;
DataOutputStream dos; DatalnputStream dis;
String s; long a, b,r;
try {
server = new ServerSocket (9996);
for (imt j = §; (--j) >= 0;) {
client = server.accept();

dis = new DatalnputStream(client.getInputStream()); @+ 3
= dis.readUTF();
a = dis.readLong();

b = dis.readLong();
if ("add".equalsIgnoreCase(s)) { r += b; } else {
if ("sub".equalsIgnoreCase(s)) { r -= b;
b @ + @)
System.out.println(s + "(" + a + ",," + b + ") =" + r + "jto," +

client.getRemoteSocketAddress ());

dos = new DataOutputStream(client.getOutputStream());
dos.writeLong(r); @ + B
dos.close();

client.close();
}
server.close();
} catch (Throwable t) {
t.printStackTrace ();

b

}
¥

Distributed Computing Thomas Weise 9/29

Client Part of the Example

LIStIng [TCPClientStructuredData.java): A client asking the server to perform a spec

import java.io.DatalnputStream; import java.io.DataOutputStream;
import java.net.InetAddress; import java.net.Socket;

public class TCPClientStructuredData {

public static final void main(final String[] args) {

Socket client; InetAddress ia;
DataOutputStream dos; DataInputStream dis;
try €

ia = InetAddress.getByName("localhost");

client = new Socket(ia, 9996);

dos = new DatalOutputStream(client.getOutputStream());
dos.writeUTF ("sub");
dos.writeLong (9876) ;
dos.writeLong (1234);
dos.flush();

dis = new DatalnputStream(client.getInputStream());
System.out.println("Result:, " + dis.readLong());

client.close();
catch (Throwable t) {
t.printStackTrace();

-

Distributed Computing Thomas Weise 10/29

e Making a RPC framework by itself is not hard

e Making a RPC framework by itself is not hard
o Client side

e Making a RPC framework by itself is not hard
e Client side: function stub (proxy) that can be called “normally”

e Making a RPC framework by itself is not hard
e Client side: function stub (proxy) that can be called “normally”
e send the procedure name

e Making a RPC framework by itself is not hard
e Client side: function stub (proxy) that can be called “normally”

e send the procedure name
e send the procedure parameters

e Making a RPC framework by itself is not hard
e Client side: function stub (proxy) that can be called “normally”

e send the procedure name
e send the procedure parameters
o wait for result. ..

e Making a RPC framework by itself is not hard
e Client side: function stub (proxy) that can be called “normally”

e send the procedure name
e send the procedure parameters
o wait for result. ..

e Server side

e Making a RPC framework by itself is not hard
e Client side: function stub (proxy) that can be called “normally”

e send the procedure name
e send the procedure parameters
o wait for result. ..

e Server side: a skeleton function

e Making a RPC framework by itself is not hard
e Client side: function stub (proxy) that can be called “normally”

e send the procedure name
e send the procedure parameters
o wait for result. ..

e Server side: a skeleton function that
o receives procedure name

e Making a RPC framework by itself is not hard
e Client side: function stub (proxy) that can be called “normally”

e send the procedure name
e send the procedure parameters
o wait for result. ..

e Server side: a skeleton function that

o receives procedure name
e finds the procedure implementation/pointer to code that fits to the
name

e Making a RPC framework by itself is not hard
e Client side: function stub (proxy) that can be called “normally”

e send the procedure name
e send the procedure parameters
o wait for result. ..

e Server side: a skeleton function that

o receives procedure name
e finds the procedure implementation/pointer to code that fits to the

name
e sends error message back if none found

e Making a RPC framework by itself is not hard
e Client side: function stub (proxy) that can be called “normally”

e send the procedure name
e send the procedure parameters
o wait for result. ..

e Server side: a skeleton function that

o receives procedure name
e finds the procedure implementation/pointer to code that fits to the

name
e sends error message back if none found
o receives the procedure parameters

Basic Idea %ﬁ)

e Making a RPC framework by itself is not hard
e Client side: function stub (proxy) that can be called “normally”
e send the procedure name

e send the procedure parameters
e wait for result. ..
e Server side: a skeleton function that

e receives procedure name

e finds the procedure implementation/pointer to code that fits to the
name

e sends error message back if none found

e receives the procedure parameters

e checks whether parameter types fits to procedure (send error if it
doesn't fit)

Distributed Computing Thomas Weise 11/29

Basic Idea %ﬁ)

e Making a RPC framework by itself is not hard
e Client side: function stub (proxy) that can be called “normally”

e send the procedure name

e send the procedure parameters

e wait for result. ..

e Server side: a skeleton function that

e receives procedure name

e finds the procedure implementation/pointer to code that fits to the
name

e sends error message back if none found

e receives the procedure parameters

e checks whether parameter types fits to procedure (send error if it
doesn't fit)

e calls the procedure

Distributed Computing Thomas Weise 11/29

Basic Idea %ﬁ)

e Making a RPC framework by itself is not hard
e Client side: function stub (proxy) that can be called “normally”

e send the procedure name

e send the procedure parameters

e wait for result. ..

e Server side: a skeleton function that

e receives procedure name

e finds the procedure implementation/pointer to code that fits to the
name

e sends error message back if none found

e receives the procedure parameters

e checks whether parameter types fits to procedure (send error if it
doesn't fit)

e calls the procedure

e sends back the result

Distributed Computing Thomas Weise 11/29

RMI

e Remote Method Invocation (RMI): RPC for distributed objects
e Stub: implements object interface 7 and marshalls calls

o Skeleton: unmarshalls calls and delegates them to real object

Client Server
Activity object interface Servant
(real object)
:m user processes
middleware TF
Stub : Skeleton
object reference

Marshalling Protocol —|

Distributed Computing Thomas Weise 12/29

e What are the reasons, advantages, and disadvantages of remote
method invocation?

e What are the reasons, advantages, and disadvantages of remote
method invocation?
e Reasons

e Advantages
e Disadvantages

What are the reasons, advantages, and disadvantages of remote
method invocation?
Reasons

o application servers: separation of concerns

Advantages
Disadvantages

What are the reasons, advantages, and disadvantages of remote
method invocation?
Reasons
o application servers: separation of concerns
e interconnect heterogeneous systems
Advantages
Disadvantages

What are the reasons, advantages, and disadvantages of remote
method invocation?

Reasons
Advantages
o versatile: anticipation of change

Disadvantages

What are the reasons, advantages, and disadvantages of remote
method invocation?
Reasons
Advantages
o versatile: anticipation of change
o |ocation transparency

Disadvantages

What are the reasons, advantages, and disadvantages of remote
method invocation?
Reasons
Advantages
o versatile: anticipation of change
o |ocation transparency
o geographical distribution

Disadvantages

What are the reasons, advantages, and disadvantages of remote
method invocation?
Reasons
Advantages
o versatile: anticipation of change
o |ocation transparency
o geographical distribution
e often independent from programming language

Disadvantages

What are the reasons, advantages, and disadvantages of remote
method invocation?
Reasons
Advantages
o versatile: anticipation of change
location transparency
geographical distribution
often independent from programming language
allows for replication of objects

Disadvantages

What are the reasons, advantages, and disadvantages of remote
method invocation?
Reasons
Advantages
o versatile: anticipation of change
location transparency
geographical distribution
often independent from programming language
allows for replication of objects
e security and access rights
Disadvantages

What are the reasons, advantages, and disadvantages of remote
method invocation?
Reasons
Advantages
o versatile: anticipation of change
location transparency
geographical distribution
often independent from programming language
allows for replication of objects
e security and access rights
Disadvantages
® security

What are the reasons, advantages, and disadvantages of remote
method invocation?
Reasons
Advantages
o versatile: anticipation of change
location transparency
geographical distribution
often independent from programming language
allows for replication of objects
e security and access rights
Disadvantages
® security
o always much slower than a local invocation

What are the reasons, advantages, and disadvantages of remote
method invocation?
Reasons
Advantages
o versatile: anticipation of change
location transparency
geographical distribution
often independent from programming language
allows for replication of objects
e security and access rights
Disadvantages
® security
o always much slower than a local invocation
e complex implementation

What are the reasons, advantages, and disadvantages of remote
method invocation?
Reasons
Advantages
o versatile: anticipation of change
location transparency
geographical distribution
often independent from programming language
allows for replication of objects
e security and access rights
Disadvantages
® security
always much slower than a local invocation
complex implementation
messages may get lost/modified/doubled

What are the reasons, advantages, and disadvantages of remote

method invocation?

Reasons
Advantages
Disadvantages
e security
e always much slower than a local invocation
e complex implementation
e messages may get lost/modified /doubled
o distributed garbage collection

e Common Object Request Broker Architecture (CORBA) [l

e Common Object Request Broker Architecture (CORBA) [l
e Distributed Component Object Model (DCOM) [l

e Common Object Request Broker Architecture (CORBA) [l
e Distributed Component Object Model (DCOM) [l
e .NET Remoting ™

Common Object Request Broker Architecture (CORBA)
Distributed Component Object Model (DCOM) [l

.NET Remoting **!

Java Remote Method Invocation (RMI) [1617

Common Object Request Broker Architecture (CORBA)
Distributed Component Object Model (DCOM) [l

.NET Remoting **!

Java Remote Method Invocation (RMI) [1617

XPCOM (Cross Platform Component Object Model) ¥l

Common Object Request Broker Architecture (CORBA) >

Common Object Request Broker Architecture (CORBA) >

e remote access to objects distributed over the system

e Interface Definition Language (IDL) to specify object interfaces

Common Object Request Broker Architecture (CORBA) >
e remote access to objects distributed over the system

e Interface Definition Language (IDL) to specify object interfaces

e mapping of IDL to programming languages: Code Generation

Common Object Request Broker Architecture (CORBA) >
e remote access to objects distributed over the system
e Interface Definition Language (IDL) to specify object interfaces

e mapping of IDL to programming languages: Code Generation

e application interacts with objects through Object Request Broker
(ORB)

Common Object Request Broker Architecture (CORBA) >
e remote access to objects distributed over the system
e Interface Definition Language (IDL) to specify object interfaces
e mapping of IDL to programming languages: Code Generation

e application interacts with objects through Object Request Broker
(ORB)

e naming service: maps names to locations

RMI: CORBA %\

Common Object Request Broker Architecture (CORBA)
e remote access to objects distributed over the system
e Interface Definition Language (IDL) to specify object interfaces
e mapping of IDL to programming languages: Code Generation
application interacts with objects through Object Request Broker
(ORB)
e naming service: maps names to locations
standardized by Object Management Group (OMG)

Distributed Computing Thomas Weise 15/29

RMI: CORBA %\

Common Object Request Broker Architecture (CORBA)
e remote access to objects distributed over the system
e Interface Definition Language (IDL) to specify object interfaces
e mapping of IDL to programming languages: Code Generation
application interacts with objects through Object Request Broker
(ORB)
e naming service: maps names to locations
standardized by Object Management Group (OMG)

Distributed Computing Thomas Weise 15/29

RM

I: CORBA x\,

Common Object Request Broker Architecture (CORBA)

remote access to objects distributed over the system
Interface Definition Language (IDL) to specify object interfaces
mapping of IDL to programming languages: Code Generation

application interacts with objects through Object Request Broker
(ORB)

naming service: maps names to locations

standardized by Object Management Group (OMG)

fast, mature technology, language/QOs independent, strong data types

very complex, standard very verbose: “design by committee”

Distributed Computing Thomas Weise 15/29

1AQ

RMI: CORBA %\’

Common Object Request Broker Architecture (CORBA)
e remote access to objects distributed over the system
e Interface Definition Language (IDL) to specify object interfaces
e mapping of IDL to programming languages: Code Generation
e application interacts with objects through Object Request Broker
(ORB)
e naming service: maps names to locations
e standardized by Object Management Group (OMG)
o fast, mature technology, language/Os independent, strong data types
e very complex, standard very verbose: “design by committee”

e incompatibilities between implementations

Distributed Computing Thomas Weise 15/29

1AQ

RMI: CORBA %\’

Common Object Request Broker Architecture (CORBA)
e remote access to objects distributed over the system
e Interface Definition Language (IDL) to specify object interfaces
e mapping of IDL to programming languages: Code Generation
e application interacts with objects through Object Request Broker
(ORB)
e naming service: maps names to locations
e standardized by Object Management Group (OMG)
o fast, mature technology, language/Os independent, strong data types
e very complex, standard very verbose: “design by committee”
e incompatibilities between implementations

e firewalls may block protocol

Distributed Computing Thomas Weise 15/29

Distributed Component Object Model (DCOM) 4

Distributed Component Object Model (DCOM) "l
e developed by Microsoft

e object-oriented RPC system based on Distributed Computing
Environment (DCE) and Compound Object Model (COM)

Distributed Component Object Model (DCOM) "l
e developed by Microsoft

e object-oriented RPC system based on Distributed Computing
Environment (DCE) and Compound Object Model (COM)

e memory management via reference counting

Distributed Component Object Model (DCOM) "l
e developed by Microsoft

e object-oriented RPC system based on Distributed Computing
Environment (DCE) and Compound Object Model (COM)

e memory management via reference counting

e interfaces described via IDL

Distributed Component Object Model (DCOM) "l

developed by Microsoft

object-oriented RPC system based on Distributed Computing
Environment (DCE) and Compound Object Model (COM)

memory management via reference counting

interfaces described via IDL

fast, mature technology, strong data types

Distributed Component Object Model (DCOM) "l

developed by Microsoft

object-oriented RPC system based on Distributed Computing
Environment (DCE) and Compound Object Model (COM)

memory management via reference counting
interfaces described via IDL

fast, mature technology, strong data types

bound to Microsoft, supported mainly by Microsoft programming
languages

Distributed Component Object Model (DCOM) "l

developed by Microsoft

object-oriented RPC system based on Distributed Computing
Environment (DCE) and Compound Object Model (COM)

memory management via reference counting
interfaces described via IDL
fast, mature technology, strong data types

bound to Microsoft, supported mainly by Microsoft programming
languages

firewalls

.NET Remoting **!

.NET Remoting **!
o developed by Microsoft, replaces DCOM

e based on .NET Framework

.NET Remoting **!
o developed by Microsoft, replaces DCOM

e based on .NET Framework

e memory management via garbage collection

.NET Remoting **!
o developed by Microsoft, replaces DCOM
e based on .NET Framework

e memory management via garbage collection

e fully transparent

.NET Remoting **!
o developed by Microsoft, replaces DCOM

based on .NET Framework

e memory management via garbage collection

fully transparent
e can use both, TCP or SOAP! via HTTP (so no firewall problems)

.NET Remoting **!
o developed by Microsoft, replaces DCOM

based on .NET Framework

e memory management via garbage collection

fully transparent
e can use both, TCP or SOAP! via HTTP (so no firewall problems)

fast, mature technology, strong data types

e ———————

.NET Remoting **!

developed by Microsoft, replaces DCOM

based on .NET Framework

memory management via garbage collection

fully transparent

can use both, TCP or SOAP! via HTTP (so no firewall problems)
fast, mature technology, strong data types

bound to Microsoft, supported mainly by Microsoft programming
languages

s ——————

Java Remote Method Invocation (RMI) [167

Java Remote Method Invocation (RMI) [167

e developed by Sun / Java technology

e fully transparent

Java Remote Method Invocation (RMI) [167
e developed by Sun / Java technology
e fully transparent

e objects bound to names in registry

Java Remote Method Invocation (RMI) [167

developed by Sun / Java technology

fully transparent

objects bound to names in registry

names can be looked up and object references are obtained from the
registry

Java Remote Method Invocation (RMI) [167

developed by Sun / Java technology
fully transparent
objects bound to names in registry

names can be looked up and object references are obtained from the
registry

fast, mature technology, strong data types

Java Remote Method Invocation (RMI) [167

developed by Sun / Java technology
fully transparent
objects bound to names in registry

names can be looked up and object references are obtained from the
registry

fast, mature technology, strong data types

less complicated than .NET Remoting

Java Remote Method Invocation (RMI) ' 117

developed by Sun / Java technology

fully transparent

objects bound to names in registry

names can be looked up and object references are obtained from the
registry

fast, mature technology, strong data types

less complicated than .NET Remoting

bound to Java, supported, firewalls

Java Remote Method Invocation (RMI) [167

developed by Sun / Java technology

fully transparent

objects bound to names in registry

names can be looked up and object references are obtained from the
registry

fast, mature technology, strong data types

less complicated than .NET Remoting

bound to Java, supported, firewalls

firewalls

e Functionality specified as interface

e Functionality specified as interface

e Servant object (on server side) implements the functionality

e Functionality specified as interface

e Servant object (on server side) implements the functionality

e A name is assigned to the Servant and managed by a registry

Functionality specified as interface

Servant object (on server side) implements the functionality

e A name is assigned to the Servant and managed by a registry

Client can request access to the object from the registry

Functionality specified as interface

Servant object (on server side) implements the functionality

e A name is assigned to the Servant and managed by a registry

Client can request access to the object from the registry

Stub on client side is an automatically generated instance of the
interface

Functionality specified as interface

Servant object (on server side) implements the functionality

e A name is assigned to the Servant and managed by a registry

Client can request access to the object from the registry

Stub on client side is an automatically generated instance of the
interface

Client can now access the object exactly as if it was a local object

RemotePrintInterface

Listi Ng. [RemotePrintInterface jav.

The interface specifying the functionality.

import java.rmi.Remote;
import java.rmi.RemoteException;

// the RemotePrint interface

public interface RemotePrintInterface extends Remote {

A me

* @param

o pri

eption a pos on */

* Qthrows no t
public abstract void print(final String what) throws
RemoteException;

le exzcep

Distributed Computing Thomas Weise 20/29

RemotePrintServer

Llstmg [RemotePrintServe The server implementing the functionalit;
import java.rmi.RemoteException; import java.rmi.registry.LocateRegistry;
import java.rmi.registry.Registry; import java.rmi.server.UnicastRemoteObject;

public class RemotePrintServer extends UnicastRemoteObject implements
RemotePrintInterface {
RemotePrintServer () throws RemoteException {
super () ;

}

@Override
public void print(final String what) throws RemoteException {
System.out.println(what);

public static final void main(final String args[l) {
Registry registry;
try {
registry = LocateRegistry.createRegistry(9999);
registry.rebind("server", new RemotePrintServer());

} catch (Throwable t) {
t.printStackTrace();

Distributed Computing Thomas Weise 21/29

RemotePrintClient

Listing

import java.rmi.registry.LocateRegistry; import java.rmi.registry.Registry;

public class RemotePrintClient { e i clie
public static final void main(final Str)ng args[]) {
RemotePrintInterface rmiServer; Registry registry;

try {
registry = LocateRegistry.getRegistry (9999);

rmiServer = (RemotePrintInterface) (registry.lookup("server"));

rmiServer.print ("Hello World"); $NON - S -
} catch (Throwable t) {
t.printStackTrace ();

Distributed Computing Thomas Weise 22/29

RemotePrintClientErroneous

Listing

import java.rmi.registry.LocateRegistry; import java.rmi.registry.Registry;
public class RemotePrintClientErroneous { e)4 emote clie
public static final void main(final String args[]) {
RemotePrintInterface rmiServer; Registry registry;

try {

registry = LocateRegistry.getRegistry (9999);

rmiServer = ((RemotePrintServer)(registry.lookup("server")));

rmiServer.print ("Hello World"); $NON - S -
} catch (Throwable t) {
t.printStackTrace ();

Distributed Computing Thomas Weise 23/29

o Why?

o Why?

e Because the object instance returned by registry.lookup is a proxy

o Why?

e Because the object instance returned by registry.lookup is a proxy

e The real object instance (servant) exists in another JVM / on another
computer

o Why?
e Because the object instance returned by registry.lookup is a proxy

e The real object instance (servant) exists in another JVM / on another
computer

e The proxy on the client side is a dynamically created object
implementing the RemotePrintInterface interface

Why?

Because the object instance returned by registry.lookup is a proxy

The real object instance (servant) exists in another JVM / on another
computer

The proxy on the client side is a dynamically created object
implementing the RemotePrintInterface interface

It has a class different from RemotePrintServer

Why?

Because the object instance returned by registry.lookup is a proxy

The real object instance (servant) exists in another JVM / on another
computer

The proxy on the client side is a dynamically created object
implementing the RemotePrintInterface interface

It has a class different from RemotePrintServer

And thus, cannot be cast to RemotePrintServer

RPC: call a procedure on another computer

RMI: call a method (i.e., access an object) on a different computer

Many different technologies

Java RMI: quite simple to use

il
Thank you

Thomas Weise [i% 2 .&]
tweise@hfuu.edu.cn
http://www.it-weise.de

Hefei University, South Campus 2
Institute of Applied Optimization
Shushan District, Hefei, Anhui,
China

Distributed Computing

Thomas Weise

Caspar David Fried
hitp:/fen.wikip

mailto:tweise@hfuu.edu.cn
mailto:http://www.it-weise.de

Bibliography |

W

>
<

10.

11.

Carlo Ghezzi, Mehdi Jazayeri, and Dino Mandrioli. Fundamentals of Software Engineering. second edition. ISBN
9780133056990.

Peter Naur and Brian Randell, editors. Software Engineering — Report on a Conference Sponsored by the NATO Science
Committee, Garmisch, Bavaria, Germany, October 7-11, 1968. Brussels, Belgium: NATO, Scientific Affairs Division. URL
http://homepages.cs.ncl.ac.uk/brian.randell/NATO/nato1968.PDF. Chairman: Professor Dr. Fritz L. Bauer,
Co-chairmen: Professor L. Bolliet, Dr. H. J. Helms. Published: January 1969.

Edsger Wybe Dijkstra. On the role of scientific thought. Technical report, The Netherlands, Nuenen: Burroughs
Corporation, August 30, 1974. URL http://www.cs.utexas.edu/users/EWD/transcriptions/EWD04xx/EWD447 .html.
Edsger Wybe Dijkstra. On the role of scientific thought. In Selected Writings on Computing: A Personal Perspective, Texts
and Monographs in Computer Science, pages 60-65. Berlin, Germany: Springer-Verlag GmbH, 1982.

Andrew D. Birrell and Bruce Jay Nelson. Implementing remote procedure calls. ACM Transactions on Computer Systems
(ACM TOCS), 2(1):39-59, February 1984. doi: 10.1145/2080.357392. URL
http://nd.edu/~dthain/courses/cse598z/£all2004/papers/birrell-rpc.pdf.

Philip Shaw. Java Interface Design FAQ. Norwich, UK: Metacentric Internet Limited, One Percent Better, 1.0 edition,
2010. ISBN 978-1-907863-03-5. URL http://books.google.de/books?id=Lmgh1oNRpbOC.

Nell Dale, Daniel Joyce, and Chip Weems. Object-Oriented Data Structures Using Java. Sudbury, MA, USA: Jones &
Bartlett Publishers, 2011. ISBN 1449613543 and 9781449613549. URL
http://books.google.de/books?id=GEJ_Jp6mUpgC.

David Chappell. The trouble with corba, May 1998. URL
http://www.davidchappell.com/articles/article_Trouble_CORBA.html.

Robert Orfali, Dan Harkey, and Daniel J. Edwards. Client/Server Survival Guide. Wiley Computer Publishing. New York,
NY, USA: John Wiley & Sons Ltd., 1999. ISBN 0471316156 and 9780471316152. URL
http://books.google.de/books?id=fBteTDjMwScC.

USA: Electronic Data Systems Corporation (EDS) et al. Plano, TX. Common Object Request Broker Architecture
(CORBA) Specification, Version 3.2 — Part 1: CORBA Interfaces, volume formal/2011-11-01. Needham, MA, USA: Object
Management Group (OMG), November 2011. URL http://www.omg.org/spec/CORBA/3.2/Interfaces/PDF/.

USA: Electronic Data Systems Corporation (EDS) et al. Plano, TX. Common Object Request Broker Architecture
(CORBA) Specification, Version 3.2 — Part 2: CORBA Interoperability, volume formal/2011-11-02. Needham, MA, USA:
Object Management Group (OMG), November 2011. URL
http://www.omg.org/spec/CORBA/3.2/Interoperability/PDF.

Distributed Computing Thomas Weise 28/29

http://homepages.cs.ncl.ac.uk/brian.randell/NATO/nato1968.PDF
http://www.cs.utexas.edu/users/EWD/transcriptions/EWD04xx/EWD447.html
http://nd.edu/~dthain/courses/cse598z/fall2004/papers/birrell-rpc.pdf
http://books.google.de/books?id=Lmqh1oNRpb0C
http://books.google.de/books?id=GEJ_Jp6mUpgC
http://www.davidchappell.com/articles/article_Trouble_CORBA.html
http://books.google.de/books?id=fBteTDjMwScC
http://www.omg.org/spec/CORBA/3.2/Interfaces/PDF/
http://www.omg.org/spec/CORBA/3.2/Interoperability/PDF

Bibliography 11

W

1AQ

12.

13.

14.

15.

16.

17.

18.

USA: Electronic Data Systems Corporation (EDS) et al. Plano, TX. Common Object Request Broker Architecture
(CORBA) Specification, Version 3.2 — Part 3: CORBA Component Model, volume formal/2011-11-03. Needham, MA,
USA: Object Management Group (OMG), November 2011. URL http://www.omg.org/spec/CORBA/3.2/Components/PDF.
Josef Stepisnik. Distributed Object-Oriented Architectures: Sockets, Java RMI and CORBA. Hamburg, Germany:
Diplomica Verlag GmbH, 2007. ISBN 3836650339 and 9783836650335. URL
http://books.google.de/books?id=gNGTzYdJt18C.

[MS-DCOM): Distributed Component Model (DCOM) Remote Protocol Specification, volume v20111214. Redmond, WA,
USA: Microsoft Corporation, December 14, 2011. URL
http://download.microsoft.com/download/a/e/6/ae6e4142-aa58-45c6-8dcf-a657e5900cd3/%,5BMS-DCOMYED . pdf.
Dino Esposito. .net remoting — design and develop seamless distributed applications for the common language runtime.
Microsoft Developer Network — MSDN Magazin, 2(10), October 2002. URL
http://msdn.microsoft.com/en-us/magazine/cc188927.aspx.

Ann Wollrath, Roger Riggs, and Jim Waldo. A distributed object model for the java system. In Douglas C. Schmidt and
Doug Lea, editors, Proceedings of the USENIX 1996 Conference on Object-Oriented Technologies (COOTS), Toronto, ON,
Canada, 1996. URL http://pdos.csail.mit.edu/6.824/papers/waldo-rmi.pdf.

William Grosso. Java RMI. Sebastopol, CA, USA: O'Reilly Media, Inc., 2011. ISBN 1449315356 and 9781449315351. URL
http://books.google.de/books?id=TeK5uL2dWwQC.

Nigel McFarland. Rapid Application Development With Mozilla. Bruce Perens’ Open Source Series. Upper Saddle River,
NJ, USA: Prentice Hall Professional, 2004. ISBN 0131423436 and 9780131423435. URL
http://books.google.de/books?id=gKeRXPkSAVMC.

Distributed Computing Thomas Weise 29/29

http://www.omg.org/spec/CORBA/3.2/Components/PDF
http://books.google.de/books?id=qNGTzYdJt18C
http://download.microsoft.com/download/a/e/6/ae6e4142-aa58-45c6-8dcf-a657e5900cd3/%5BMS-DCOM%5D.pdf
http://msdn.microsoft.com/en-us/magazine/cc188927.aspx
http://pdos.csail.mit.edu/6.824/papers/waldo-rmi.pdf
http://books.google.de/books?id=TeK5uL2dWwQC
http://books.google.de/books?id=gKeRXPkSAVMC

	Outline
	Overview
	RPC
	Local Procedure Call
	Remote Procedure Call
	RPC
	Principle
	Remember
	
	Client Part of the Example
	Basic Idea

	RMI
	RMI
	RMI: Pros and Cons
	Examples
	RMI: CORBA
	RMI: DCOM
	RMI: .NET Remoting

	 RMI
	 RMI
	Example for RMI
	RemotePrintInterface
	RemotePrintServer
	RemotePrintClient
	RemotePrintClientErroneous
	An erroneous client…
	Summary

	Presentation End
	Bibliography

