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e How can we run procedures on a different computer?

What are remote procedure calls and remote method invocation?

What different technologies exist for that purpose?

Example implementation in Java
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e Procedural programming languages like Java and C offer us the
concept of function calls: e.g., double compute(double a, double b)

e Such a local function call (normally) has the following features:
o executed in the calling Thread and therefore
e blocking until the function is finished

e What are procedure/function calls good for?

e Modular software development '
e Smaller programs
e Separation of concerns (SoC) P
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e Execute a procedure on another computer. .. Why?

e Implement functionality (e.g., application logic) in a program that can
be accessed from another program (e.g., front end) running on a
different computer

e Code of the procedure resides on other computer, is unknown to our
computer (we just know procedure’s signature), and must be executed
there

e Combine advantages of modular programming with client/server
systems, e.g.,

e Perform a location-dependent service

e Centralized maintenance and updating

e Platform independent binding of services

Distributed Computing Thomas Weise 5/29
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o Execute a procedure on another computer. .. Why?
» Remote Procedure Call (RPC) P!

o call/execute a function in another process (usually on another
computer)

e necessary communication offered by software framework

o from programmer’s perspective: looks exactly like local procedure call
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e The basic principle behind RPC are “Function Proxies”

e Say, we want to perform a remote invocation of a function
double calculate(double x, double y)

e Goals

e Function which is implemented on another computer is actually
executed on that other computer, but triggered by our process

e From the programmer's and program’s perspective, it looks like it is
called in the current process




e We can use sockets to realize some sort of remote procedure call. ..




LiStith [TCPServerStructuredData.java]: A server perform a specific “method”.

import java.io.DatalnputStream;  import java.io.DataQutputStream;
import java.net.ServerSocket; import java.net.Socket;

public class TCPServerStructuredData {
public static final void main(final String[] args) {

ServerSocket server; Socket client;
DataOutputStream dos; DatalnputStream  dis;
String s; long a, b,r;
try {
server = new ServerSocket (9996);
for (imt j = §; (--j) >= 0;) {
client = server.accept();

dis = new DatalnputStream(client.getInputStream()); @+ 3
= dis.readUTF();
a = dis.readLong();

b = dis.readLong();
if ("add".equalsIgnoreCase(s)) { r += b; } else {
if ("sub".equalsIgnoreCase(s)) { r -= b;
b @ + @)
System.out.println(s + "(" + a + ",," + b + ") =" + r + "jto," +

client.getRemoteSocketAddress ());

dos = new DataOutputStream(client.getOutputStream());
dos.writeLong(r); @ + B
dos.close();

client.close();
}
server.close();
} catch (Throwable t) {
t.printStackTrace ();

b

}
¥
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Client Part of the Example

LIStIng [TCPClientStructuredData.java): A client asking the server to perform a spec

import java.io.DatalnputStream;  import java.io.DataOutputStream;
import java.net.InetAddress; import java.net.Socket;

public class TCPClientStructuredData {

public static final void main(final String[] args) {

Socket client; InetAddress ia;
DataOutputStream dos; DataInputStream  dis;
try €

ia = InetAddress.getByName("localhost");

client = new Socket(ia, 9996);

dos = new DatalOutputStream(client.getOutputStream());
dos.writeUTF ("sub");
dos.writeLong (9876) ;
dos.writeLong (1234);
dos.flush();

dis = new DatalnputStream(client.getInputStream());
System.out.println("Result:, " + dis.readLong());

client.close();
catch (Throwable t) {
t.printStackTrace();

-
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e Making a RPC framework by itself is not hard
e Client side: function stub (proxy) that can be called “normally”

e send the procedure name

e send the procedure parameters

e wait for result. ..

e Server side: a skeleton function that

e receives procedure name

e finds the procedure implementation/pointer to code that fits to the
name

e sends error message back if none found

e receives the procedure parameters

e checks whether parameter types fits to procedure (send error if it
doesn't fit)

e calls the procedure

e sends back the result

Distributed Computing Thomas Weise 11/29



RMI

e Remote Method Invocation (RMI): RPC for distributed objects
e Stub: implements object interface 7 and marshalls calls

o Skeleton: unmarshalls calls and delegates them to real object

Client Server
Activity object interface Servant
(real object)
:m user processes
middleware TF
Stub : Skeleton
object reference

Marshalling Protocol —|

Distributed Computing Thomas Weise 12/29
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What are the reasons, advantages, and disadvantages of remote

method invocation?

Reasons
Advantages
Disadvantages
e security
e always much slower than a local invocation
e complex implementation
e messages may get lost/modified /doubled
o distributed garbage collection
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Common Object Request Broker Architecture (CORBA)
e remote access to objects distributed over the system
e Interface Definition Language (IDL) to specify object interfaces
e mapping of IDL to programming languages: Code Generation
e application interacts with objects through Object Request Broker
(ORB)
e naming service: maps names to locations
e standardized by Object Management Group (OMG)
o fast, mature technology, language/Os independent, strong data types
e very complex, standard very verbose: “design by committee”
e incompatibilities between implementations

e firewalls may block protocol
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memory management via reference counting
interfaces described via IDL
fast, mature technology, strong data types

bound to Microsoft, supported mainly by Microsoft programming
languages

firewalls



.NET Remoting **!




.NET Remoting **!
o developed by Microsoft, replaces DCOM

e based on .NET Framework




.NET Remoting **!
o developed by Microsoft, replaces DCOM

e based on .NET Framework

e memory management via garbage collection




.NET Remoting **!
o developed by Microsoft, replaces DCOM
e based on .NET Framework

e memory management via garbage collection

e fully transparent




.NET Remoting **!
o developed by Microsoft, replaces DCOM

based on .NET Framework

e memory management via garbage collection

fully transparent
e can use both, TCP or SOAP! via HTTP (so no firewall problems)




.NET Remoting **!
o developed by Microsoft, replaces DCOM

based on .NET Framework

e memory management via garbage collection

fully transparent
e can use both, TCP or SOAP! via HTTP (so no firewall problems)

fast, mature technology, strong data types

e ———————



.NET Remoting **!

developed by Microsoft, replaces DCOM

based on .NET Framework

memory management via garbage collection

fully transparent

can use both, TCP or SOAP! via HTTP (so no firewall problems)
fast, mature technology, strong data types

bound to Microsoft, supported mainly by Microsoft programming
languages
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Functionality specified as interface

Servant object (on server side) implements the functionality

e A name is assigned to the Servant and managed by a registry

Client can request access to the object from the registry

Stub on client side is an automatically generated instance of the
interface

Client can now access the object exactly as if it was a local object




RemotePrintInterface

Listi Ng. [RemotePrintInterface jav.

The interface specifying the functionality.

import java.rmi.Remote;
import java.rmi.RemoteException;

// the RemotePrint interface

public interface RemotePrintInterface extends Remote {

A me

* @param

o pri

eption a pos on */

* Qthrows no t
public abstract void print(final String what) throws
RemoteException;

le exzcep

Distributed Computing Thomas Weise 20/29



RemotePrintServer

Llstmg [RemotePrintServe The server implementing the functionalit;
import java.rmi.RemoteException; import java.rmi.registry.LocateRegistry;
import java.rmi.registry.Registry; import java.rmi.server.UnicastRemoteObject;

public class RemotePrintServer extends UnicastRemoteObject implements
RemotePrintInterface {
RemotePrintServer () throws RemoteException {
super () ;

}

@Override
public void print(final String what) throws RemoteException {
System.out.println(what);

public static final void main(final String args[l) {
Registry registry;
try {
registry = LocateRegistry.createRegistry(9999);
registry.rebind("server", new RemotePrintServer());

} catch (Throwable t) {
t.printStackTrace();
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RemotePrintClient

Listing

import java.rmi.registry.LocateRegistry; import java.rmi.registry.Registry;

public class RemotePrintClient { e i clie
public static final void main(final Str)ng args[]) {
RemotePrintInterface rmiServer; Registry registry;

try {
registry = LocateRegistry.getRegistry (9999);

rmiServer = (RemotePrintInterface) (registry.lookup("server"));

rmiServer.print ("Hello World"); $NON - S -
} catch (Throwable t) {
t.printStackTrace ();
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RemotePrintClientErroneous

Listing

import java.rmi.registry.LocateRegistry; import java.rmi.registry.Registry;
public class RemotePrintClientErroneous { e )4 emote clie
public static final void main(final String args[]) {
RemotePrintInterface rmiServer; Registry registry;

try {

registry = LocateRegistry.getRegistry (9999);

rmiServer = ((RemotePrintServer)(registry.lookup("server")));

rmiServer.print ("Hello World"); $NON - S -
} catch (Throwable t) {
t.printStackTrace ();
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Why?

Because the object instance returned by registry.lookup is a proxy

The real object instance (servant) exists in another JVM / on another
computer

The proxy on the client side is a dynamically created object
implementing the RemotePrintInterface interface

It has a class different from RemotePrintServer

And thus, cannot be cast to RemotePrintServer




RPC: call a procedure on another computer

RMI: call a method (i.e., access an object) on a different computer

Many different technologies

Java RMI: quite simple to use




il
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