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We now know HTML, web pages, and how they can be “located” in
the internet via URLs.

But how does the concent of a web page come from the web server to
our computer?

We will learn about HTTP, the protocol existing for this purpose.

How is HTTP related to TCP sockets and what we've learned so far?




o Client/Server systems are the most common application structure in
the internet and corporate networks
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o Client/Server systems are the most common application structure in
the internet and corporate networks

1.request 1.request

2. computation

Client
defines tasks

Server

3. response performs task
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GET /index.html HTTP/1.1
Host: www.baidu.com

~~ Request >

Client

Wsponse

HTTP/1.1 200 OK

<html><head><meta http-equiv=Content-Type
content="text/html;charset=gb2312"><title>{ ¥
—F, fREtanit</title><style>body{margin:4px...
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GET /index.html HTTP/1.1
Host: www.ustc.edu.cn

Request

< Client




AR

Response

HTTP/1.1 200 OK

<IDOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML Tang=zh-CN xmlns="http://www.w3.0rg/1999/xhtm1">

<HEAD>

<link re shortcut icon" href- ustc co" type=" 1ma(“;e/x icon">

i con" href="ustc.ico" image/x-icon">

<META content="text/html; charset utf 8" http-equiv=Content-Type>

<TITLE>FEREFERAKRF </TITLE>

Server




/\

emiStiad mage GET /all.jpg HTTP/1.1
PO Host: www.ustc.edu.cn

Main Resource:
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Request
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Main Resource:
HTMI Code (Wpertext)
index: htril v

<bi nary data>
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< Client Response

HTTP/1.1 200 OK
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embSded image
@] ‘ipg

Response

HTTP/1.1 200 OK

<bi nary data>
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sm%eﬁe'é’ﬁ;ge GET /main.css HTTP/1.1
w7 Host: www.ustc.edu.cn

Request




Main Resource:
HTMI Code (pertext)
index: htril v

‘embed:

embed
@

Resource:
CSS Siyle Sheet file
Win cs:

7 Resgurces:
G8d images _
1.ipgM img_

Tidad image
Jl ipg

7.3pg

Response

HTTP/1.1 200 OK

body{back%round—co1or:white;co1or:b1ack;
font-family:sans-serif;}img{background-color
:transparent;border-style:none;}a{background
-color:transparent;border-style:none;text
-decoration:none;color:blue;}a:hover{text...




embSided image.
@] Yipg

Resource:
CSS Siyle Sheet file
s

/\

GET /menu.js HTTP/1.1
Host: www.ustc.edu.cn

Request




7 Resgurces:

Response

Server

HTTP/1.1 200 OK

function menuF1x(menu1d) {
s

for (var ; i<sfeEls.length;
sfETs[i].onmouseover=function {

sfETs[i].onMousebown=Ffunction() {
this.className+=(this.className.length>0? " ":

locument. getEIementBy%d%menmd) .getElementsByTagName. .
T+-

this.className+=(this.className.Tength>0? " ":

"") + "sfhover";

"") + "sfhover";
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e But how do web browser and web server communicate?

o Well, we already know the Socket APl which gives us access to
transport layer protocols such as TCP and UDP

e Using TCP seems to be a good idea: We transfer files, and files can
be characterized as streams

e But TCP is not enough: The web browser must, at least, also send

the path/object part of the URL, so that the web server knows
which page or ressource the browser wants. . .

Distributed Computing Thomas Weise 8/28
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e Using TCP seems to be a good idea: We transfer files, and files can
be characterized as streams

e But TCP is not enough: The web browser must, at least, also send
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e But how do web browser and web server communicate?

o Well, we already know the Socket APl which gives us access to
transport layer protocols such as TCP and UDP

e Using TCP seems to be a good idea: We transfer files, and files can
be characterized as streams

e But TCP is not enough: The web browser must, at least, also send
the path/object part of the URL, so that the web server knows
which page or ressource the browser wants... ...and the server must
be able to send errors or other answers

e Protocol on top of TCP, designed to achieve this: HTTP

Distributed Computing Thomas Weise 8/28
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o HyperText Transfer Protocol (HTTP)

e Application-layer protocol for communication between web browser
and web server

e Uses reliable, bi-directional, ordered byte stream provided by TCP
e Features:

e text-based and human readable
o state-less (no information preserved between different HTTP requests)
e anonymous

e HTTP 1.01:
o Messages in the MIME (Multipurpose Internet Mail Extensions) format
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o HyperText Transfer Protocol (HTTP)

e Application-layer protocol for communication between web browser
and web server

e Uses reliable, bi-directional, ordered byte stream provided by TCP

e Features:

e text-based and human readable
e state-less (no information preserved between different HTTP requests)
e anonymous

e HTTP 1.01:
o Messages in the MIME (Multipurpose Internet Mail Extensions) format

e HTTP 1.12

Distributed Computing Thomas Weise 10/28
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o HyperText Transfer Protocol (HTTP)

e Application-layer protocol for communication between web browser
and web server
e Uses reliable, bi-directional, ordered byte stream provided by TCP
e Features:
e text-based and human readable
e state-less (no information preserved between different HTTP requests)
e anonymous
e HTTP 1.0M:
o Messages in the MIME (Multipurpose Internet Mail Extensions) format
e HTTP 1.12:

e Support for hierarchical proxies, caching, persistent connections, virtual
hosts
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o HyperText Transfer Protocol (HTTP)

e Application-layer protocol for communication between web browser
and web server
e Uses reliable, bi-directional, ordered byte stream provided by TCP
e Features:
e text-based and human readable
e state-less (no information preserved between different HTTP requests)
e anonymous
e HTTP 1.0M:
o Messages in the MIME (Multipurpose Internet Mail Extensions) format
e HTTP 1.12:

e Support for hierarchical proxies, caching, persistent connections, virtual
hosts

e Determine applications’ capabilities

e TCP connections can be re-used (good for inline resources/images in
HTML)

Distributed Computing Thomas Weise 10/28



HTTP Request %\’

[ HTTP method |E| URI |E|HTTP vers1'on| request line
|h.e::1c.ler field namelE“f‘ie'Id va'Iuel } header

|header field name”:“ﬁ'e]d va1ue| lines

request body
{not present in GET and HEAD methods, present in POST
method}

may contain, e.g., submitted data from a web form

Distributed Computing Thomas Weise 11/28



HTTP version

URI

HTTP method

e HTTP method




HTTP method

URI

e HTTP method:

HTTP version

e GET : download the data that belongs to a specified resource (can
include parameters), e.g., a web page




HTTP_method |8 [ URT |2 [HTTP version

e HTTP method:

e GET : download the data that belongs to a specified resource (can
include parameters), e.g., a web page
e HEAD : returns only the headers of a GET response (no request body)




HTTP Request: Request Line bb’

HTTP method E URI E HTTP version

e HTTP method:
e GET : download the data that belongs to a specified resource (can
include parameters), e.g., a web page
e HEAD : returns only the headers of a GET response (no request body)
e POST : data is sent in the request body that should be handed to the
requested resource, maybe the data filled into a form or a file
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e POST : data is sent in the request body that should be handed to the
requested resource, maybe the data filled into a form or a file
e PUT : upload a representation of the specified resource
DELETE : delete the specified resource
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HTTP method E URI E HTTP version

e HTTP method:

e GET : download the data that belongs to a specified resource (can
include parameters), e.g., a web page

e HEAD : returns only the headers of a GET response (no request body)

e POST : data is sent in the request body that should be handed to the
requested resource, maybe the data filled into a form or a file
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e DELETE : delete the specified resource
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HTTP Request: Request Line bﬁ)’

HTTP method E URI E HTTP version

e HTTP method:

e GET : download the data that belongs to a specified resource (can
include parameters), e.g., a web page

e HEAD : returns only the headers of a GET response (no request body)

e POST : data is sent in the request body that should be handed to the
requested resource, maybe the data filled into a form or a file

e PUT : upload a representation of the specified resource

e DELETE : delete the specified resource

e relative part of URI: (contains, e.g., path/object) and identifies a
resource relative to server
e HTTP version:
e HTTP/1.1 for HTTP 1.1%
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HTTP Request: Request Line bﬁ)’

HTTP method E URI E HTTP version

e HTTP method:

e GET : download the data that belongs to a specified resource (can
include parameters), e.g., a web page

e HEAD : returns only the headers of a GET response (no request body)

e POST : data is sent in the request body that should be handed to the
requested resource, maybe the data filled into a form or a file

e PUT : upload a representation of the specified resource

e DELETE : delete the specified resource

e relative part of URI: identifies a resource relative to server

e HTTP version:

e HTTP/1.1 for HTTP 1.1
e HTTP/1.0 for HTTP 1.0

Distributed Computing Thomas Weise 12/28
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e Examples
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HTTP Request: Request Header

header field name

field value

e Different header fields, each has its own format

e Examples
e Accept: text/html
e Accept: image/jpg
e Accept-Language: zh-CN

e Accept-Charset: utf-8, gb2312

Distributed Computing

Thomas Weise
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HTTP Request: Request Header

header field name

field value

e Different header fields, each has its own format

e Examples

Accept: text/html
Accept: image/jpg

Accept-Charset: utf-8, gb2312

°
°
e Accept-Language: zh-CN
°
°

If-Modified-Since:

Wed, 27 Mar 2013 12:01:32 GMT

Distributed Computing

Thomas Weise

13/28



e Let's look how requests generated by web browsers look like




HTTP Server Printing Requests

LIStIng HTTPServerPrintingRequests.java

import java.io.BufferedReader; import java.io.Bufferediiriter; import java.io.InputStreamReader;
import java.io.OutputStreamWriter; import java.net.ServerSocket; import java.net.Socket;

public class HTTPServerPrintingRequests {
public static final void main(final Stringl[] args) {
String s; StringBuilder sb;

try (ServerSocket server = new ServerSocket(9995)) {
try (Socket client = server.accept()) {

sb = new StringBuilder();

try (InputStreamReader ir = new InputStreamReader(client.getInputStream());

BufferedReader br = new BufferedReader (ir)) {

while ((s = br.readLine()) != null) {
sb.append(s);
sb.append ("<br/>");
if(s.length() <=0) { break; }

}

client.shutdownInput ();

try (OutputStreamWriter pw = new OutputStreamWriter(client.getOutputStream())) {
pw.write ("HTTP/1.1,200,0K\r\n\r\n<html><body><pre>");
pw.write(sb.toString());
pw.vwrite("</pre></body></html>");
i3
¥

¥
} catch (Throwable t) {
t.printStackTrace();
}
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We run the HTTPServerPrintingRequests locally and access
localhost:9995 with Firefox




We run the HTTPServerPrintingRequests locally and access
localhost:9995 with Firefox:




We run the HTTPServerPrintingRequests locally and access
http://localhost:9995 with Internet Explorer




We run the HTTPServerPrintingRequests locally and access
http://localhost:9995 with Internet Explorer:




[ HTTP version |E|Status codelElStatus phrase| response line

|h.(éiuier' field name][:][field vatue] T NI } header

lines

|header field namelE“ﬁ'e'ld va1ue|

response body

may contain, e.g., the HTML contents of the requested web
page, the error page if the web page was not found, or the
data of other resources, e.g., binary image data




[ HrTP vers1'on|H|Status code|E|Status phrase| response line

e HTTP version




[ HrTP vers1'on|H|Status code|E|Status phrase| response line

e HTTP version:
e HTTP/1.1 for HTTP 1.1@




[ HrTP vers1'on|H|Status code|H|Status phrase| response line

e HTTP version:

e HTTP/1.1 for HTTP 1.1@
e HTTP/1.0 for HTTP 1.01




[ HrTP vers1'on|H|Status code|H|Status phrase| response line

e HTTP version:

e HTTP/1.1 for HTTP 1.1@
e HTTP/1.0 for HTTP 1.01

e Status code




[ HrTP vers1'on|H|Status code|H|Status phr'ase| response line

e HTTP version:

e HTTP/1.1 for HTTP 1.1@
e HTTP/1.0 for HTTP 1.01

e Status code: three digits, with the first digit representing




[ HrTP vers1'on|H|Status code|H|Status phr'ase| response line

e HTTP version:

e HTTP/1.1 for HTTP 1.1@
e HTTP/1.0 for HTTP 1.01

e Status code: three digits, with the first digit representing




[ HrTP vers1'on|H|Status code|H|Status phr'ase| response line

e HTTP version:

e HTTP/1.1 for HTTP 1.1@
e HTTP/1.0 for HTTP 1.01

e Status code: three digits, with the first digit representing
1 Information




[ HrTP vers1'on|H|Status code|H|Status phr'ase| response line

e HTTP version:

e HTTP/1.1 for HTTP 1.1@
e HTTP/1.0 for HTTP 1.01

e Status code: three digits, with the first digit representing

1 Information
2 Success




[ HrTP vers1'on|H|Status code|H|Status phr'ase| response line

e HTTP version:

e HTTP/1.1 for HTTP 1.1@
e HTTP/1.0 for HTTP 1.01

e Status code: three digits, with the first digit representing

1 Information
2 Success
3 Redirection



[ HrTP vers1'on|H|Status code|H|Status phr'ase| response line

e HTTP version:
e HTTP/1.1 for HTTP 1.1%
e HTTP/1.0 for HTTP 1.0
e Status code: three digits, with the first digit representing
1 Information
2 Success
3 Redirection
4 Error on client side (e.g., wrong URI)



[ HrTP ver's1'on|H|Status code|H|Status phr'ase| response line

e HTTP version:

e HTTP/1.1 for HTTP 1.1%
e HTTP/1.0 for HTTP 1.0
e Status code: three digits, with the first digit representing
1 Information
2 Success
3 Redirection
4 Error on client side (e.g., wrong URI)
5 Error on server side



[ HrTP version|H|Status code|H|Status phr'ase| response line

e HTTP version:

e HTTP/1.1 for HTTP 1.1@
e HTTP/1.0 for HTTP 1.01

e Status code: three digits, with the first digit representing

1 Information

2 Success

3 Redirection

4 Error on client side (e.g., wrong URI)
5 Error on server side

e Status phrase



[ HTTP version |H|Status code|H|Status phr'ase| response line

e HTTP version:

e HTTP/1.1 for HTTP 1.1@
e HTTP/1.0 for HTTP 1.01

e Status code: three digits, with the first digit representing

1 Information

2 Success

3 Redirection

4 Error on client side (e.g., wrong URI)
5 Error on server side

e Status phrase: short textual representation of status code, e.g., 0K



e Some examples for status codes




e Some examples for status codes
e 200 OK




e Some examples for status codes

e 200 OK
e 301 Moved Permanently




e Some examples for status codes

e 200 OK
e 301 Moved Permanently
e 400 Bad Request




e Some examples for status codes

200 OK

301 Moved Permanently
400 Bad Request

404 Not Found




e Some examples for status codes

200 OK

301 Moved Permanently

400 Bad Request

404 Not Found

505 HTTP Version Not Supported




header field name

field value

e Different header fields, each has its own format




header field name

field value

e Different header fields, each has its own format
e Examples




header field name

field value

o Different header fields, each has its own format
e Examples
e Content-Type: text/html




header field name

field value

e Different header fields, each has its own format
e Examples

e Content-Type: text/html
e Content-Length: 16384




header field name

field value

e Different header fields, each has its own format
e Examples

e Content-Type: text/html
e Content-Length: 16384
e Language: zh-CN;




HTTP Response: Response Header

header field name

field value

e Different header fields, each has its own format

e Examples
e Content-Type: text/html
e Content-Length: 16384
e Language: zh-CN;

e Last-modified: 28 Mar 2013
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e Let's look how responses generated by web servers look like




HTTP Client Printing Server’s Response

Llstmg MinHTTPClientJaval7.java Min HTTP Client + Try-With

import java.io.BufferedReader; import java.io.InputStreamReader;
import java.io.OutputStreamWriter; import java.net.Socket;

public class MinHTTPClientJavai7 {
public static final void main(final String[] args) {
String dest, request, response;

dest
request

"www.baidu.com";
"GET./index.html HTTP/1.1\nHost: " + dest + "\n\n\n";

try(Socket sock = new Socket(dest, 80)) {
try(OutputStreamWriter w = new OutputStreamWriter(sock.getOutputStream())) {
w.write(request); il
w.flush )
sock.shutdownOutput ();

try (InputStreamReader is = new InputStreamReader (sock.getInputStream());
BufferedReader T = new BufferedReader(is)) {
while ((response = r.readLinme()) != null) {
System.out.println(response);
b3
s
b
} catch (Throwable t) {
t.printStackTrace();
¥
}
¥
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To www.baidu.com, we send




To www.baidu.com, we send:




To www.baidu.com, we send:

and get the response:




HTTP is a general, text-based protocol to request resources.

Web pages are served by web servers which implement the HTTP
protocol.

Such servers can be implemented with the simple stuff we have
learned about sockets.

Actually, several Java-based web servers use exactly the technologies
we have learned so far.




il
Thank you
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