LR B

HEFEI UNIVERSITY

Distributed Computing
Lesson 10: HTTP

Thomas Weise -

tweise@hfuu.edu.cn -

Hefei University, South Campus 2
Faculty of Computer Science and Technology
Institute of Applied Optimization
230601 Shushan District, Hefei, Anhui, China
Econ. & Tech. Devel. Zone, Jinxiu Dadao 99

H LR
http://www.it-weise.de

i =4
T H A

ri]?@féﬂ#i[;’;/éJZB
5HRA

R AR ACHE RBT
TE ks ST . R 230601
BFBARTER %%

#99%

mailto:tweise@hfuu.edu.cn
http://www.it-weise.de

QOutline

@ Browser and Web Server

@ HTTP

Distributed Computing

Thomas Weise

We now know HTML, web pages, and how they can be “located” in
the internet via URLs.

But how does the concent of a web page come from the web server to
our computer?

We will learn about HTTP, the protocol existing for this purpose.

How is HTTP related to TCP sockets and what we've learned so far?

o Client/Server systems are the most common application structure in
the internet and corporate networks

o Client/Server systems are the most common application structure in
the internet and corporate networks

Client
defines tasks

Server
performs task

o Client/Server systems are the most common application structure in
the internet and corporate networks

1.request 1.request

Client
defines tasks

Server

performs task

o Client/Server systems are the most common application structure in
the internet and corporate networks

1.request 1.request

! 2. computation
Client
defines tasks

Server
performs task

o Client/Server systems are the most common application structure in
the internet and corporate networks

1.request 1.request

2. computation

Client
defines tasks

Server

3. response performs task

Client

GET /index.html HTTP/1.1
Host: www.baidu.com

~~ Request >

Client

GET /index.html HTTP/1.1
Host: www.baidu.com

~~ Request >

Client

Wsponse

HTTP/1.1 200 OK

<html><head><meta http-equiv=Content-Type
content="text/html;charset=gb2312"><title>{ ¥
—F, fREtanit</title><style>body{margin:4px...

€@

o steedaan

¢ 08

e fxan B8

REMBNF Oy 5wt vl)

* SERHTROBERS T
- ERAF LRI TRRE 52
AT P AR T

* 2 318)
- KTUBERER SRR Bt FRGA" Tk
AR REE SR

- K IR0 135 e KR 1 ” 0

© BRI IEOABIE KBLAA R AT AR G2

- BRI Qo ksl i il el)

I
nan + KPRBIEREL LRI ARAR S SHRARNE

IR b
IR —— AR - »
S B TR i 0 gy Hssie i it e
* SRR AR 2 was . =
* EMBSTHIE: AR ST B2 AN T
= ROV BT S ST A R TT 025 K FHUREIA I 2201305 5 B 4 MO AL &2
my T

=0
026

026
026
oas

05

wy

O AU RIS FEHBAIES MEE BAL

[& @

i

TIRTIEAAT D LM TS S BRATHTAAEO BN ERE

‘Copyright 20062011 A1 A K7 AllRights Rescrved BRARN] R1CF&050025288

Main Resource

.v"tea
HTML Code (hypertext)

index.htm

s fkEm 0@

& atiEn B

BI1P O //5. wate b)

- FRATR0IER S T
-SRI R R TR
kR R it R ECEE T
* BRI RGN S RS
» ERSIRSRBUR A 120122 5 KSR £ SAHH A B
B 8 25—
[R
ORI LRI R 2
- EREAEIERIR: AR RRETLE
* RHDOIER LB ST T R

0z
on
028
026

026
o2s

o
Wy

R 31H)
| ETRRSEHSIELS SRAR. FRAS" TR
O RGET

KT R 4

P Pr’muw!wx& AL 5

« T HOR TG IR AR B R 03
R —— PR R s
ot P R i

it i
« P T
« KT RIS IR S 201367 R BB F BT T2
W5

=0
e

=
s
mas

mas
mas
nn

S

= FRAH R URE » BB M LR - B

[& @

AR SRR RS~ WA TATIAE S SRR

C -
&Resource:

Main Resour‘ce:
HTML Code (hypertext)
index.html

N

embedded image
a11.jpg

s fkEm 0@

& atiEn B

BI1P O //5. wate b)

* SRATOIERS T2

« FRAT AT AR

fik %l “F2" B BB AT T

* AL WO SN RS LT

+ ERHIRSBIRAT (0126540 A1 £ SR 8
IR B e —

© E DRI OB ik

© RO GRS &

* EPEEEIRIP R HEEFREI U

* REQOISERL WA A TR ST

0z
on
028
026

026
o2s

o
Wy

R 31H)
« T WENERFEARKS BRI FREE" Tk
AT AER

KT R = "

K R0 PIRB A RN L 5

« T HOR TG IR AR B R 03

o R —— R R »
ot bl M RIE L

it i
« P T
« KT RIS IR S 201367 R BB F BT T2
W5

=0

26
w26
26
was

mas
mas
nn

S

= FRAH R URE » BB M LR - B

[& @

AR SRR RS~ WA TATIAE S SRR

C O

Main Resou..ce:
HTML Code ﬁ?ygertext)
index.html

N

Resource:
embedded image
all.jpg

exkzA = BERB1AIn /5 wave vl)
RO RS TIAL na ORERE o e .
- v ATIERECER ARt WA T wae
521 P AR AR T N —
R IR KRN TR AT o2 I
BT ————— v ETRRLER LSO ARARIARRENOE 00
B R

R KR K s i 02
LR R T 026 gy B R B
SRR LR T [T v = o2s
B AR AR AR 035 RO E TR oas
* REDOLFR LR ST AR o .

« KT PURE IR IS 2013 R e P AT B
T 258

AT RAR

E%3

AT LI A% 0 M) 6

‘Copyright 2006-2011 FTHTIZ-E R 7 All Rights Reserved BRI GRICF@05002526°5

7 Re
embedded images

J mg_l,,‘j pg. .. img_7.jpg

©-séen

C O

Main Resou..ce:
HTML Code ﬁ?ygertext)
index.html

N

« KT PURE IR IS 2013 R e P AT B
T 258

AT RAR

exkzA = BERB1AIn /5 wave vl)
RO RS TIAL na ORERE o e .
- v ATIERECER ARt WA T wae
521 P AR AR T N —
R IR KRN TR AT o2 I
BT ————— v ETRRLER LSO ARARIARRENOE 00
B R

R KR K s i 02
LR R T 026 gy B R B
SRR LR T [T v = o2s
B AR AR AR 035 RO E TR oas
* REDOLFR LR ST AR o .

E%3

AT LI A% 0 M) 6

‘Copyright 2006-2011 FTHTIZ-E R 7 All Rights Reserved BRI GRICF@05002526°5

qm

0 5@

Resource:
embedded image
Ia'l 1.jpg

Resource:
CSS Style Sheet file
main.css

7 Re
embedded images

g_1.3pg...img_7.3jpg
okt Ovon 1

es

Resource:
embedded image
Ia'l 1.jpg

Main Resou..ce:
HTML Code ﬁ?ygertext)
Lhtml

index.htm
Resource:
\ CSS Style Sheet file

main.css
o fkzn B 8 4am 6 BRIty /i ot win)
RO RS TIAL na T MENE O o -
Resource:
i L KT IR0 B LA R 02

JavaScrlp_t file * BRI, IR AR w2 IfflE
menu.js - SRR Con e xR w2 - CTRIEEMIL LG AV RSN 0230
" B Ao B R
© R —— KRB - G 0
DT BB 14 #26 gy ERP CRECIEES
- BRI GRS S TR 2 B . et T was
PRI ARSI B2 TR T was
* R0V R UL A R T A AR TT 025« KFRRENRRA LS 013w R Y FER 52
ms TR

© IR MAEHIAIES %8I O HIRTANATO LRV FRILS MRRTITENAEO WK ERF

— 7 Resources:

L3 .
4 embedded images
Copyright 20062011 FIHF LA k7 All Rights Reserved BLARN] BRICF@05002520°% 3 -1 s s
img_1.jpg...img_7.jpg

7 ©- 59 Q 8 Bokitownl

e Client

/\

GET /index.html HTTP/1.1
Host: www.ustc.edu.cn

Request

< Client

AR

Response

HTTP/1.1 200 OK

<IDOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML Tang=zh-CN xmlns="http://www.w3.0rg/1999/xhtm1">

<HEAD>

<link re shortcut icon" href- ustc co" type=" 1ma(“;e/x icon">

i con" href="ustc.ico" image/x-icon">

<META content="text/html; charset utf 8" http-equiv=Content-Type>

<TITLE>FEREFERAKRF </TITLE>

Server

/\

emiStiad mage GET /all.jpg HTTP/1.1
PO Host: www.ustc.edu.cn

Main Resource:
HTMI Code (Wpertext)
index: htril

Request

embSded image
2 £ jp

)
yWVSGTVGI'

HTTP/1.1 200 OK

Main Resource:
HTMI Code (Wpertext)
index: htril v

<bi nary data>

Main Resqurce:

HTML Code @en’exo
Tndex. K1 v

/\

GET /img_1.jpg HTTP/1.1
Host: www.ustc.edu.cn

Request

embSded image
@] Yipg

Main Resource:
HTMI Code (Wpertext)
index: htril v

7 Resgurces:
‘embeddEd images _
_1.ipg® ing_7.jpg

< Client Response

HTTP/1.1 200 OK

<bi nary data>

Main Resqurce:

HTML Code @en’exo
Tndex. K1 v

/\

GET /img_2.jpg HTTP/1.1
Host: www.ustc.edu.cn

Request

embSded image
@] Yipg

Main Resource:
HTMI Code (Wpertext)
index: htril v

7 Resgurces:
‘embeddEd images _
_1.ipg® ing_7.jpg

< Client Response

HTTP/1.1 200 OK

<bi nary data>

Main Resqurce:

HTML Code @en’exo
Tndex. K1 v

/\

GET /img_3.jpg HTTP/1.1
Host: www.ustc.edu.cn

Request

embSded image
@] Yipg

Main Resource:
HTMI Code (Wpertext)
index: htril v

7 Resgurces:
‘embeddEd images _
_1.ipg® ing_7.jpg

< Client Response

HTTP/1.1 200 OK

<bi nary data>

embSded image

’aal-wg

Main Resqurce:

HTML Code @en’exo
Tndex. K1 v

/\

GET /img_7.jpg HTTP/1.1
Host: www.ustc.edu.cn

Request

Main Resqurce:

HTML Code @en’exo
Tndex. K1 v

embSded image
@] ‘ipg

Response

HTTP/1.1 200 OK

<bi nary data>

/\

sm%eﬁe'é’ﬁ;ge GET /main.css HTTP/1.1
w7 Host: www.ustc.edu.cn

Request

Main Resource:
HTMI Code (pertext)
index: htril v

‘embed:

embed
@

Resource:
CSS Siyle Sheet file
Win cs:

7 Resgurces:
G8d images _
1.ipgM img_

Tidad image
Jl ipg

7.3pg

Response

HTTP/1.1 200 OK

body{back%round—co1or:white;co1or:b1ack;
font-family:sans-serif;}img{background-color
:transparent;border-style:none;}a{background
-color:transparent;border-style:none;text
-decoration:none;color:blue;}a:hover{text...

embSided image.
@] Yipg

Resource:
CSS Siyle Sheet file
s

/\

GET /menu.js HTTP/1.1
Host: www.ustc.edu.cn

Request

7 Resgurces:

Response

Server

HTTP/1.1 200 OK

function menuF1x(menu1d) {
s

for (var ; i<sfeEls.length;
sfETs[i].onmouseover=function {

sfETs[i].onMousebown=Ffunction() {
this.className+=(this.className.length>0? " ":

locument. getEIementBy%d%menmd) .getElementsByTagName. .
T+-

this.className+=(this.className.Tength>0? " ":

"") + "sfhover";

"") + "sfhover";

e But how do web browser and web server communicate?

e But how do web browser and web server communicate?
e Well, we already know the Socket API

e But how do web browser and web server communicate?

o Well, we already know the Socket API which gives us access to
transport layer protocols such as TCP and UDP

e But how do web browser and web server communicate?

o Well, we already know the Socket API which gives us access to
transport layer protocols such as TCP and UDP

e Using TCP seems to be a good idea

e But how do web browser and web server communicate?

o Well, we already know the Socket API which gives us access to
transport layer protocols such as TCP and UDP

e Using TCP seems to be a good idea: We transfer files, and files can
be characterized as streams

But how do web browser and web server communicate?

Well, we already know the Socket API which gives us access to
transport layer protocols such as TCP and UDP

Using TCP seems to be a good idea: We transfer files, and files can
be characterized as streams

But TCP is not enough

But how do web browser and web server communicate?

Well, we already know the Socket API which gives us access to
transport layer protocols such as TCP and UDP

Using TCP seems to be a good idea: We transfer files, and files can
be characterized as streams

But TCP is not enough: The web browser must, at least, also send
the path/object part of the URL

HTTP? %\

e But how do web browser and web server communicate?

o Well, we already know the Socket APl which gives us access to
transport layer protocols such as TCP and UDP

e Using TCP seems to be a good idea: We transfer files, and files can
be characterized as streams

e But TCP is not enough: The web browser must, at least, also send

the path/object part of the URL, so that the web server knows
which page or ressource the browser wants. . .

Distributed Computing Thomas Weise 8/28

HTTP? %\

1AQ

e But how do web browser and web server communicate?

o Well, we already know the Socket APl which gives us access to
transport layer protocols such as TCP and UDP

e Using TCP seems to be a good idea: We transfer files, and files can
be characterized as streams

e But TCP is not enough: The web browser must, at least, also send
the path/object part of the URL, so that the web server knows
which page or ressource the browser wants... ...and the server must
be able to send errors or other answers

Distributed Computing Thomas Weise 8/28

HTTP? %\

1AQ

e But how do web browser and web server communicate?

o Well, we already know the Socket APl which gives us access to
transport layer protocols such as TCP and UDP

e Using TCP seems to be a good idea: We transfer files, and files can
be characterized as streams

e But TCP is not enough: The web browser must, at least, also send
the path/object part of the URL, so that the web server knows
which page or ressource the browser wants... ...and the server must
be able to send errors or other answers

e Protocol on top of TCP, designed to achieve this

Distributed Computing Thomas Weise 8/28

HTTP? %\

1AQ

e But how do web browser and web server communicate?

o Well, we already know the Socket APl which gives us access to
transport layer protocols such as TCP and UDP

e Using TCP seems to be a good idea: We transfer files, and files can
be characterized as streams

e But TCP is not enough: The web browser must, at least, also send
the path/object part of the URL, so that the web server knows
which page or ressource the browser wants... ...and the server must
be able to send errors or other answers

e Protocol on top of TCP, designed to achieve this: HTTP

Distributed Computing Thomas Weise 8/28

Client:
Web Browser / HTTP GET Reqm Web Server

HTTP HTTP

%\ socket socket /$

TCP TCP

Client:
Web Browser Web Server
HTTP HTTP

NFTP Response
$\ socket m/’é

TCP TCP

o HyperText Transfer Protocol (HTTP)

o HyperText Transfer Protocol (HTTP)

e Application-layer protocol for communication between web browser
and web server

o HyperText Transfer Protocol (HTTP)

e Application-layer protocol for communication between web browser
and web server

e Uses reliable, bi-directional, ordered byte stream provided by TCP

o HyperText Transfer Protocol (HTTP)

e Application-layer protocol for communication between web browser
and web server

e Uses reliable, bi-directional, ordered byte stream provided by TCP
e Features

o HyperText Transfer Protocol (HTTP)

e Application-layer protocol for communication between web browser
and web server

e Uses reliable, bi-directional, ordered byte stream provided by TCP
e Features:

e text-based and human readable

o HyperText Transfer Protocol (HTTP)

e Application-layer protocol for communication between web browser
and web server

e Uses reliable, bi-directional, ordered byte stream provided by TCP
e Features:

e text-based and human readable
o state-less (no information preserved between different HTTP requests)

o HyperText Transfer Protocol (HTTP)

e Application-layer protocol for communication between web browser
and web server

e Uses reliable, bi-directional, ordered byte stream provided by TCP
e Features:

e text-based and human readable
o state-less (no information preserved between different HTTP requests)
e anonymous

o HyperText Transfer Protocol (HTTP)

e Application-layer protocol for communication between web browser
and web server

e Uses reliable, bi-directional, ordered byte stream provided by TCP
e Features:

e text-based and human readable
o state-less (no information preserved between different HTTP requests)
e anonymous

e HTTP 1.0

o HyperText Transfer Protocol (HTTP)

e Application-layer protocol for communication between web browser
and web server

e Uses reliable, bi-directional, ordered byte stream provided by TCP
e Features:

e text-based and human readable
o state-less (no information preserved between different HTTP requests)
e anonymous

e HTTP 1.01:
o Messages in the MIME (Multipurpose Internet Mail Extensions) format

HTTP Protocol %ﬁ)

o HyperText Transfer Protocol (HTTP)

e Application-layer protocol for communication between web browser
and web server

e Uses reliable, bi-directional, ordered byte stream provided by TCP

e Features:

e text-based and human readable
e state-less (no information preserved between different HTTP requests)
e anonymous

e HTTP 1.01:
o Messages in the MIME (Multipurpose Internet Mail Extensions) format

e HTTP 1.12

Distributed Computing Thomas Weise 10/28

HTTP Protocol %\

o HyperText Transfer Protocol (HTTP)

e Application-layer protocol for communication between web browser
and web server
e Uses reliable, bi-directional, ordered byte stream provided by TCP
e Features:
e text-based and human readable
e state-less (no information preserved between different HTTP requests)
e anonymous
e HTTP 1.0M:
o Messages in the MIME (Multipurpose Internet Mail Extensions) format
e HTTP 1.12:

e Support for hierarchical proxies, caching, persistent connections, virtual
hosts

Distributed Computing Thomas Weise 10/28

HTTP Protocol %\

o HyperText Transfer Protocol (HTTP)

e Application-layer protocol for communication between web browser
and web server
e Uses reliable, bi-directional, ordered byte stream provided by TCP
e Features:
e text-based and human readable
e state-less (no information preserved between different HTTP requests)
e anonymous
e HTTP 1.0M:
o Messages in the MIME (Multipurpose Internet Mail Extensions) format
e HTTP 1.12:

e Support for hierarchical proxies, caching, persistent connections, virtual
hosts
e Determine applications’ capabilities

Distributed Computing Thomas Weise 10/28

HTTP Protocol %\

1AQ

o HyperText Transfer Protocol (HTTP)

e Application-layer protocol for communication between web browser
and web server
e Uses reliable, bi-directional, ordered byte stream provided by TCP
e Features:
e text-based and human readable
e state-less (no information preserved between different HTTP requests)
e anonymous
e HTTP 1.0M:
o Messages in the MIME (Multipurpose Internet Mail Extensions) format
e HTTP 1.12:

e Support for hierarchical proxies, caching, persistent connections, virtual
hosts

e Determine applications’ capabilities

e TCP connections can be re-used

Distributed Computing Thomas Weise 10/28

HTTP Protocol %\

1AQ

o HyperText Transfer Protocol (HTTP)

e Application-layer protocol for communication between web browser
and web server
e Uses reliable, bi-directional, ordered byte stream provided by TCP
e Features:
e text-based and human readable
e state-less (no information preserved between different HTTP requests)
e anonymous
e HTTP 1.0M:
o Messages in the MIME (Multipurpose Internet Mail Extensions) format
e HTTP 1.12:

e Support for hierarchical proxies, caching, persistent connections, virtual
hosts

e Determine applications’ capabilities

e TCP connections can be re-used (good for inline resources/images in
HTML)

Distributed Computing Thomas Weise 10/28

HTTP Request %\’

[HTTP method |E| URI |E|HTTP vers1'on| request line
|h.e::1c.ler field namelE“f‘ie'Id va'Iuel } header

|header field name”:“ﬁ'e]d va1ue| lines

request body
{not present in GET and HEAD methods, present in POST
method}

may contain, e.g., submitted data from a web form

Distributed Computing Thomas Weise 11/28

HTTP version

URI

HTTP method

e HTTP method

HTTP method

URI

e HTTP method:

HTTP version

e GET : download the data that belongs to a specified resource (can
include parameters), e.g., a web page

HTTP_method |8 [URT |2 [HTTP version

e HTTP method:

e GET : download the data that belongs to a specified resource (can
include parameters), e.g., a web page
e HEAD : returns only the headers of a GET response (no request body)

HTTP Request: Request Line bb’

HTTP method E URI E HTTP version

e HTTP method:
e GET : download the data that belongs to a specified resource (can
include parameters), e.g., a web page
e HEAD : returns only the headers of a GET response (no request body)
e POST : data is sent in the request body that should be handed to the
requested resource, maybe the data filled into a form or a file

Distributed Computing Thomas Weise 12/28

HTTP Request: Request Line b)’

HTTP method E URI E HTTP version

e HTTP method:

e GET : download the data that belongs to a specified resource (can
include parameters), e.g., a web page

e HEAD : returns only the headers of a GET response (no request body)

e POST : data is sent in the request body that should be handed to the
requested resource, maybe the data filled into a form or a file

e PUT : upload a representation of the specified resource

Distributed Computing Thomas Weise 12/28

HTTP Request: Request Line b)’

HTTP method E URI E HTTP version

e HTTP method:
e GET : download the data that belongs to a specified resource (can
include parameters), e.g., a web page
e HEAD : returns only the headers of a GET response (no request body)
e POST : data is sent in the request body that should be handed to the
requested resource, maybe the data filled into a form or a file
e PUT : upload a representation of the specified resource
DELETE : delete the specified resource

Distributed Computing Thomas Weise 12/28

HTTP Request: Request Line b)’

HTTP method E URI E HTTP version

e HTTP method:

e GET : download the data that belongs to a specified resource (can
include parameters), e.g., a web page

e HEAD : returns only the headers of a GET response (no request body)

e POST : data is sent in the request body that should be handed to the
requested resource, maybe the data filled into a form or a file

e PUT : upload a representation of the specified resource

e DELETE : delete the specified resource

e relative part of URI

Distributed Computing Thomas Weise 12/28

HTTP Request: Request Line b)’

HTTP method E URI E HTTP version

e HTTP method:

e GET : download the data that belongs to a specified resource (can
include parameters), e.g., a web page

e HEAD : returns only the headers of a GET response (no request body)

e POST : data is sent in the request body that should be handed to the
requested resource, maybe the data filled into a form or a file

e PUT : upload a representation of the specified resource

e DELETE : delete the specified resource

e relative part of URI: (contains, e.g., path/object)

Distributed Computing Thomas Weise 12/28

HTTP Request: Request Line b)’

HTTP method E URI E HTTP version

e HTTP method:

e GET : download the data that belongs to a specified resource (can
include parameters), e.g., a web page

e HEAD : returns only the headers of a GET response (no request body)

e POST : data is sent in the request body that should be handed to the
requested resource, maybe the data filled into a form or a file

e PUT : upload a representation of the specified resource

e DELETE : delete the specified resource

e relative part of URI: (contains, e.g., path/object) and identifies a
resource relative to server

Distributed Computing Thomas Weise 12/28

HTTP Request: Request Line bﬁ)’

HTTP method E URI E HTTP version

e HTTP method:

e GET : download the data that belongs to a specified resource (can
include parameters), e.g., a web page

e HEAD : returns only the headers of a GET response (no request body)

e POST : data is sent in the request body that should be handed to the
requested resource, maybe the data filled into a form or a file

e PUT : upload a representation of the specified resource

e DELETE : delete the specified resource

e relative part of URI: (contains, e.g., path/object) and identifies a
resource relative to server
e HTTP version

Distributed Computing Thomas Weise 12/28

HTTP Request: Request Line bﬁ)’

HTTP method E URI E HTTP version

e HTTP method:

e GET : download the data that belongs to a specified resource (can
include parameters), e.g., a web page

e HEAD : returns only the headers of a GET response (no request body)

e POST : data is sent in the request body that should be handed to the
requested resource, maybe the data filled into a form or a file

e PUT : upload a representation of the specified resource

e DELETE : delete the specified resource

e relative part of URI: (contains, e.g., path/object) and identifies a
resource relative to server
e HTTP version:
e HTTP/1.1 for HTTP 1.1%

Distributed Computing Thomas Weise 12/28

HTTP Request: Request Line bﬁ)’

HTTP method E URI E HTTP version

e HTTP method:

e GET : download the data that belongs to a specified resource (can
include parameters), e.g., a web page

e HEAD : returns only the headers of a GET response (no request body)

e POST : data is sent in the request body that should be handed to the
requested resource, maybe the data filled into a form or a file

e PUT : upload a representation of the specified resource

e DELETE : delete the specified resource

e relative part of URI: identifies a resource relative to server

e HTTP version:

e HTTP/1.1 for HTTP 1.1
e HTTP/1.0 for HTTP 1.0

Distributed Computing Thomas Weise 12/28

header field name

field value

e Different header fields, each has its own format

header field name

field value

e Different header fields, each has its own format

e Examples

header field name

field value

e Different header fields, each has its own format

e Examples
e Accept: text/html

header field name

field value

e Different header fields, each has its own format

e Examples

e Accept: text/html
e Accept: image/jpg

header field name

field value

e Different header fields, each has its own format

e Examples
e Accept: text/html
e Accept: image/jpg
e Accept-Language: zh-CN

HTTP Request: Request Header

header field name

field value

e Different header fields, each has its own format

e Examples
e Accept: text/html
e Accept: image/jpg
e Accept-Language: zh-CN

e Accept-Charset: utf-8, gb2312

Distributed Computing

Thomas Weise

13/28

HTTP Request: Request Header

header field name

field value

e Different header fields, each has its own format

e Examples

Accept: text/html
Accept: image/jpg

Accept-Charset: utf-8, gb2312

°
°
e Accept-Language: zh-CN
°
°

If-Modified-Since:

Wed, 27 Mar 2013 12:01:32 GMT

Distributed Computing

Thomas Weise

13/28

e Let's look how requests generated by web browsers look like

HTTP Server Printing Requests

LIStIng HTTPServerPrintingRequests.java

import java.io.BufferedReader; import java.io.Bufferediiriter; import java.io.InputStreamReader;
import java.io.OutputStreamWriter; import java.net.ServerSocket; import java.net.Socket;

public class HTTPServerPrintingRequests {
public static final void main(final Stringl[] args) {
String s; StringBuilder sb;

try (ServerSocket server = new ServerSocket(9995)) {
try (Socket client = server.accept()) {

sb = new StringBuilder();

try (InputStreamReader ir = new InputStreamReader(client.getInputStream());

BufferedReader br = new BufferedReader (ir)) {

while ((s = br.readLine()) != null) {
sb.append(s);
sb.append ("
");
if(s.length() <=0) { break; }

}

client.shutdownInput ();

try (OutputStreamWriter pw = new OutputStreamWriter(client.getOutputStream())) {
pw.write ("HTTP/1.1,200,0K\r\n\r\n<html><body><pre>");
pw.write(sb.toString());
pw.vwrite("</pre></body></html>");
i3
¥

¥
} catch (Throwable t) {
t.printStackTrace();
}

Distributed Computing Thomas Weise 15/28

We run the HTTPServerPrintingRequests locally and access
localhost:9995 with Firefox

We run the HTTPServerPrintingRequests locally and access
localhost:9995 with Firefox:

We run the HTTPServerPrintingRequests locally and access
http://localhost:9995 with Internet Explorer

We run the HTTPServerPrintingRequests locally and access
http://localhost:9995 with Internet Explorer:

[HTTP version |E|Status codelElStatus phrase| response line

|h.(éiuier' field name][:][field vatue] T NI } header

lines

|header field namelE“ﬁ'e'ld va1ue|

response body

may contain, e.g., the HTML contents of the requested web
page, the error page if the web page was not found, or the
data of other resources, e.g., binary image data

[HrTP vers1'on|H|Status code|E|Status phrase| response line

e HTTP version

[HrTP vers1'on|H|Status code|E|Status phrase| response line

e HTTP version:
e HTTP/1.1 for HTTP 1.1@

[HrTP vers1'on|H|Status code|H|Status phrase| response line

e HTTP version:

e HTTP/1.1 for HTTP 1.1@
e HTTP/1.0 for HTTP 1.01

[HrTP vers1'on|H|Status code|H|Status phrase| response line

e HTTP version:

e HTTP/1.1 for HTTP 1.1@
e HTTP/1.0 for HTTP 1.01

e Status code

[HrTP vers1'on|H|Status code|H|Status phr'ase| response line

e HTTP version:

e HTTP/1.1 for HTTP 1.1@
e HTTP/1.0 for HTTP 1.01

e Status code: three digits, with the first digit representing

[HrTP vers1'on|H|Status code|H|Status phr'ase| response line

e HTTP version:

e HTTP/1.1 for HTTP 1.1@
e HTTP/1.0 for HTTP 1.01

e Status code: three digits, with the first digit representing

[HrTP vers1'on|H|Status code|H|Status phr'ase| response line

e HTTP version:

e HTTP/1.1 for HTTP 1.1@
e HTTP/1.0 for HTTP 1.01

e Status code: three digits, with the first digit representing
1 Information

[HrTP vers1'on|H|Status code|H|Status phr'ase| response line

e HTTP version:

e HTTP/1.1 for HTTP 1.1@
e HTTP/1.0 for HTTP 1.01

e Status code: three digits, with the first digit representing

1 Information
2 Success

[HrTP vers1'on|H|Status code|H|Status phr'ase| response line

e HTTP version:

e HTTP/1.1 for HTTP 1.1@
e HTTP/1.0 for HTTP 1.01

e Status code: three digits, with the first digit representing

1 Information
2 Success
3 Redirection

[HrTP vers1'on|H|Status code|H|Status phr'ase| response line

e HTTP version:
e HTTP/1.1 for HTTP 1.1%
e HTTP/1.0 for HTTP 1.0
e Status code: three digits, with the first digit representing
1 Information
2 Success
3 Redirection
4 Error on client side (e.g., wrong URI)

[HrTP ver's1'on|H|Status code|H|Status phr'ase| response line

e HTTP version:

e HTTP/1.1 for HTTP 1.1%
e HTTP/1.0 for HTTP 1.0
e Status code: three digits, with the first digit representing
1 Information
2 Success
3 Redirection
4 Error on client side (e.g., wrong URI)
5 Error on server side

[HrTP version|H|Status code|H|Status phr'ase| response line

e HTTP version:

e HTTP/1.1 for HTTP 1.1@
e HTTP/1.0 for HTTP 1.01

e Status code: three digits, with the first digit representing

1 Information

2 Success

3 Redirection

4 Error on client side (e.g., wrong URI)
5 Error on server side

e Status phrase

[HTTP version |H|Status code|H|Status phr'ase| response line

e HTTP version:

e HTTP/1.1 for HTTP 1.1@
e HTTP/1.0 for HTTP 1.01

e Status code: three digits, with the first digit representing

1 Information

2 Success

3 Redirection

4 Error on client side (e.g., wrong URI)
5 Error on server side

e Status phrase: short textual representation of status code, e.g., 0K

e Some examples for status codes

e Some examples for status codes
e 200 OK

e Some examples for status codes

e 200 OK
e 301 Moved Permanently

e Some examples for status codes

e 200 OK
e 301 Moved Permanently
e 400 Bad Request

e Some examples for status codes

200 OK

301 Moved Permanently
400 Bad Request

404 Not Found

e Some examples for status codes

200 OK

301 Moved Permanently

400 Bad Request

404 Not Found

505 HTTP Version Not Supported

header field name

field value

e Different header fields, each has its own format

header field name

field value

e Different header fields, each has its own format
e Examples

header field name

field value

o Different header fields, each has its own format
e Examples
e Content-Type: text/html

header field name

field value

e Different header fields, each has its own format
e Examples

e Content-Type: text/html
e Content-Length: 16384

header field name

field value

e Different header fields, each has its own format
e Examples

e Content-Type: text/html
e Content-Length: 16384
e Language: zh-CN;

HTTP Response: Response Header

header field name

field value

e Different header fields, each has its own format

e Examples
e Content-Type: text/html
e Content-Length: 16384
e Language: zh-CN;

e Last-modified: 28 Mar 2013

Distributed Computing

Thomas Weise

21/28

e Let's look how responses generated by web servers look like

HTTP Client Printing Server’s Response

Llstmg MinHTTPClientJaval7.java Min HTTP Client + Try-With

import java.io.BufferedReader; import java.io.InputStreamReader;
import java.io.OutputStreamWriter; import java.net.Socket;

public class MinHTTPClientJavai7 {
public static final void main(final String[] args) {
String dest, request, response;

dest
request

"www.baidu.com";
"GET./index.html HTTP/1.1\nHost: " + dest + "\n\n\n";

try(Socket sock = new Socket(dest, 80)) {
try(OutputStreamWriter w = new OutputStreamWriter(sock.getOutputStream())) {
w.write(request); il
w.flush)
sock.shutdownOutput ();

try (InputStreamReader is = new InputStreamReader (sock.getInputStream());
BufferedReader T = new BufferedReader(is)) {
while ((response = r.readLinme()) != null) {
System.out.println(response);
b3
s
b
} catch (Throwable t) {
t.printStackTrace();
¥
}
¥

Distributed Computing Thomas Weise 23/28

To www.baidu.com, we send

To www.baidu.com, we send:

To www.baidu.com, we send:

and get the response:

HTTP is a general, text-based protocol to request resources.

Web pages are served by web servers which implement the HTTP
protocol.

Such servers can be implemented with the simple stuff we have
learned about sockets.

Actually, several Java-based web servers use exactly the technologies
we have learned so far.

il
Thank you

Thomas Weise [i% 2 .&]
tweise@hfuu.edu.cn
http://www.it-weise.de

Hefei University, South Campus 2
Institute of Applied Optimization
Shushan District, Hefei, Anhui,
China

Distributed Computing

Thomas Weise

Caspar David Fried
hitp:/fen.wikip

mailto:tweise@hfuu.edu.cn
mailto:http://www.it-weise.de

1.

2.

Timothy John Berners-Lee, R. Fielding, and H. Frystyk. Hypertext Transfer Protocol — HTTP/1.0, volume 1945 of Request
for Comments (RFC). Network Working Group, May 1996. URL http://tools.ietf.org/html/rfc1945.

R. Fielding, J. Gettys, Jeffrey Mogul, H. Frystyk, L. Masinter, P. Leach, and Timothy John Berners-Lee. Hypertext Transfer
Protocol = HTTP/1.1, volume 2616 of Request for Comments (RFC). Network Working Group, June 1999. URL
http://tools.ietf.org/html/rfc2616.

David Gourley and Brian Totty. HTTP: The Definitive Guide. Definitive Guide. Sebastopol, CA, USA: O'Reilly Media, Inc.,
2002. ISBN 1565925092 and 9781565925090. URL http://books.google.de/books?id=qE0o019bcV_cC.

http://tools.ietf.org/html/rfc1945
http://tools.ietf.org/html/rfc2616
http://books.google.de/books?id=qEoOl9bcV_cC

	Outline
	Overview
	Browser and Web Server
	Client/Server
	Browser/Web Server
	Hypertext Structure
	Browser loads Website

	HTTP
	HTTP?
	HTTP & Protocol Layers
	HTTP Protocol
	HTTP Request
	HTTP Request: Request Line
	HTTP Request: Request Header
	HTTP Request Printing Server
	HTTP Server Printing Requests
	HTTP Request: Example
	HTTP Request: Example
	HTTP Response
	HTTP Response: Response Line
	HTTP Status Codes
	HTTP Response: Response Header
	HTTP Response Printing Client
	HTTP Client Printing Server's Response
	HTTP Response: Example
	Summary

	Presentation End
	Bibliography

