
Distributed Computing
Lesson 10: HTTP

Thomas Weise · 汤卫思

tweise@hfuu.edu.cn · http://www.it-weise.de

Hefei University, South Campus 2 合肥学院 南艳湖校区/南2区
Faculty of Computer Science and Technology 计算机科学与技术系

Institute of Applied Optimization 应用优化研究所

230601 Shushan District, Hefei, Anhui, China 中国 安徽省 合肥市 蜀山区 230601
Econ. & Tech. Devel. Zone, Jinxiu Dadao 99 经济技术开发区 锦绣大道99号

mailto:tweise@hfuu.edu.cn
http://www.it-weise.de

Outline

1 Browser and Web Server

2 HTTP

Distributed Computing Thomas Weise 2/28

w
e
b
s
it
e

Overview

• We now know HTML, web pages, and how they can be “located” in
the internet via URLs.

• But how does the concent of a web page come from the web server to
our computer?

• We will learn about HTTP, the protocol existing for this purpose.

• How is HTTP related to TCP sockets and what we’ve learned so far?

Distributed Computing Thomas Weise 3/28

Client/Server

• Client/Server systems are the most common application structure in
the internet and corporate networks

Distributed Computing Thomas Weise 4/28

Client/Server

• Client/Server systems are the most common application structure in
the internet and corporate networks

Distributed Computing Thomas Weise 4/28

Network
Client

defines tasks

Server
performs task

Client/Server

• Client/Server systems are the most common application structure in
the internet and corporate networks

Distributed Computing Thomas Weise 4/28

Network
Client

defines tasks

Server
performs task

1.request 1.request

Client/Server

• Client/Server systems are the most common application structure in
the internet and corporate networks

Distributed Computing Thomas Weise 4/28

Network
Client

defines tasks

Server
performs task

1.request 1.request

2. computation

Client/Server

• Client/Server systems are the most common application structure in
the internet and corporate networks

Distributed Computing Thomas Weise 4/28

Network
Client

defines tasks

Server
performs task

1.request 1.request

3. response
3. response

2. computation

Browser/Web Server

Distributed Computing Thomas Weise 5/28

Browser/Web Server

Distributed Computing Thomas Weise 5/28

Browser/Web Server

Distributed Computing Thomas Weise 5/28

Hypertext Structure

Distributed Computing Thomas Weise 6/28

Hypertext Structure

Distributed Computing Thomas Weise 6/28

Hypertext Structure

Distributed Computing Thomas Weise 6/28

Hypertext Structure

Distributed Computing Thomas Weise 6/28

Hypertext Structure

Distributed Computing Thomas Weise 6/28

Hypertext Structure

Distributed Computing Thomas Weise 6/28

Browser loads Website

Distributed Computing Thomas Weise 7/28

Browser loads Website

Distributed Computing Thomas Weise 7/28

Browser loads Website

Distributed Computing Thomas Weise 7/28

Browser loads Website

Distributed Computing Thomas Weise 7/28

Browser loads Website

Distributed Computing Thomas Weise 7/28

Browser loads Website

Distributed Computing Thomas Weise 7/28

Browser loads Website

Distributed Computing Thomas Weise 7/28

Browser loads Website

Distributed Computing Thomas Weise 7/28

Browser loads Website

Distributed Computing Thomas Weise 7/28

Browser loads Website

Distributed Computing Thomas Weise 7/28

Browser loads Website

Distributed Computing Thomas Weise 7/28

Browser loads Website

Distributed Computing Thomas Weise 7/28

Browser loads Website

Distributed Computing Thomas Weise 7/28

Browser loads Website

Distributed Computing Thomas Weise 7/28

Browser loads Website

Distributed Computing Thomas Weise 7/28

Browser loads Website

Distributed Computing Thomas Weise 7/28

Browser loads Website

Distributed Computing Thomas Weise 7/28

Browser loads Website

Distributed Computing Thomas Weise 7/28

HTTP?

• But how do web browser and web server communicate?

Distributed Computing Thomas Weise 8/28

HTTP?

• But how do web browser and web server communicate?

• Well, we already know the Socket API

Distributed Computing Thomas Weise 8/28

HTTP?

• But how do web browser and web server communicate?

• Well, we already know the Socket API which gives us access to
transport layer protocols such as TCP and UDP

Distributed Computing Thomas Weise 8/28

HTTP?

• But how do web browser and web server communicate?

• Well, we already know the Socket API which gives us access to
transport layer protocols such as TCP and UDP

• Using TCP seems to be a good idea

Distributed Computing Thomas Weise 8/28

HTTP?

• But how do web browser and web server communicate?

• Well, we already know the Socket API which gives us access to
transport layer protocols such as TCP and UDP

• Using TCP seems to be a good idea: We transfer files, and files can
be characterized as streams

Distributed Computing Thomas Weise 8/28

HTTP?

• But how do web browser and web server communicate?

• Well, we already know the Socket API which gives us access to
transport layer protocols such as TCP and UDP

• Using TCP seems to be a good idea: We transfer files, and files can
be characterized as streams

• But TCP is not enough

Distributed Computing Thomas Weise 8/28

HTTP?

• But how do web browser and web server communicate?

• Well, we already know the Socket API which gives us access to
transport layer protocols such as TCP and UDP

• Using TCP seems to be a good idea: We transfer files, and files can
be characterized as streams

• But TCP is not enough: The web browser must, at least, also send
the path/object part of the URL

Distributed Computing Thomas Weise 8/28

HTTP?

• But how do web browser and web server communicate?

• Well, we already know the Socket API which gives us access to
transport layer protocols such as TCP and UDP

• Using TCP seems to be a good idea: We transfer files, and files can
be characterized as streams

• But TCP is not enough: The web browser must, at least, also send
the path/object part of the URL, so that the web server knows
which page or ressource the browser wants. . .

Distributed Computing Thomas Weise 8/28

HTTP?

• But how do web browser and web server communicate?

• Well, we already know the Socket API which gives us access to
transport layer protocols such as TCP and UDP

• Using TCP seems to be a good idea: We transfer files, and files can
be characterized as streams

• But TCP is not enough: The web browser must, at least, also send
the path/object part of the URL, so that the web server knows
which page or ressource the browser wants. and the server must
be able to send errors or other answers

Distributed Computing Thomas Weise 8/28

HTTP?

• But how do web browser and web server communicate?

• Well, we already know the Socket API which gives us access to
transport layer protocols such as TCP and UDP

• Using TCP seems to be a good idea: We transfer files, and files can
be characterized as streams

• But TCP is not enough: The web browser must, at least, also send
the path/object part of the URL, so that the web server knows
which page or ressource the browser wants. and the server must
be able to send errors or other answers

• Protocol on top of TCP, designed to achieve this

Distributed Computing Thomas Weise 8/28

HTTP?

• But how do web browser and web server communicate?

• Well, we already know the Socket API which gives us access to
transport layer protocols such as TCP and UDP

• Using TCP seems to be a good idea: We transfer files, and files can
be characterized as streams

• But TCP is not enough: The web browser must, at least, also send
the path/object part of the URL, so that the web server knows
which page or ressource the browser wants. and the server must
be able to send errors or other answers

• Protocol on top of TCP, designed to achieve this: HTTP

Distributed Computing Thomas Weise 8/28

HTTP & Protocol Layers

Distributed Computing Thomas Weise 9/28

HTTP & Protocol Layers

Distributed Computing Thomas Weise 9/28

HTTP Protocol

• HyperText Transfer Protocol (HTTP)

Distributed Computing Thomas Weise 10/28

HTTP Protocol

• HyperText Transfer Protocol (HTTP)

• Application-layer protocol for communication between web browser
and web server

Distributed Computing Thomas Weise 10/28

HTTP Protocol

• HyperText Transfer Protocol (HTTP)

• Application-layer protocol for communication between web browser
and web server

• Uses reliable, bi-directional, ordered byte stream provided by TCP

Distributed Computing Thomas Weise 10/28

HTTP Protocol

• HyperText Transfer Protocol (HTTP)

• Application-layer protocol for communication between web browser
and web server

• Uses reliable, bi-directional, ordered byte stream provided by TCP

• Features

Distributed Computing Thomas Weise 10/28

HTTP Protocol

• HyperText Transfer Protocol (HTTP)

• Application-layer protocol for communication between web browser
and web server

• Uses reliable, bi-directional, ordered byte stream provided by TCP

• Features:
• text-based and human readable

Distributed Computing Thomas Weise 10/28

HTTP Protocol

• HyperText Transfer Protocol (HTTP)

• Application-layer protocol for communication between web browser
and web server

• Uses reliable, bi-directional, ordered byte stream provided by TCP

• Features:
• text-based and human readable
• state-less (no information preserved between different HTTP requests)

Distributed Computing Thomas Weise 10/28

HTTP Protocol

• HyperText Transfer Protocol (HTTP)

• Application-layer protocol for communication between web browser
and web server

• Uses reliable, bi-directional, ordered byte stream provided by TCP

• Features:
• text-based and human readable
• state-less (no information preserved between different HTTP requests)
• anonymous

Distributed Computing Thomas Weise 10/28

HTTP Protocol

• HyperText Transfer Protocol (HTTP)

• Application-layer protocol for communication between web browser
and web server

• Uses reliable, bi-directional, ordered byte stream provided by TCP

• Features:
• text-based and human readable
• state-less (no information preserved between different HTTP requests)
• anonymous

• HTTP 1.0 [1]

Distributed Computing Thomas Weise 10/28

HTTP Protocol

• HyperText Transfer Protocol (HTTP)

• Application-layer protocol for communication between web browser
and web server

• Uses reliable, bi-directional, ordered byte stream provided by TCP

• Features:
• text-based and human readable
• state-less (no information preserved between different HTTP requests)
• anonymous

• HTTP 1.0 [1]:
• Messages in the MIME (Multipurpose Internet Mail Extensions) format

Distributed Computing Thomas Weise 10/28

HTTP Protocol

• HyperText Transfer Protocol (HTTP)

• Application-layer protocol for communication between web browser
and web server

• Uses reliable, bi-directional, ordered byte stream provided by TCP

• Features:
• text-based and human readable
• state-less (no information preserved between different HTTP requests)
• anonymous

• HTTP 1.0 [1]:
• Messages in the MIME (Multipurpose Internet Mail Extensions) format

• HTTP 1.1 [2]

Distributed Computing Thomas Weise 10/28

HTTP Protocol

• HyperText Transfer Protocol (HTTP)

• Application-layer protocol for communication between web browser
and web server

• Uses reliable, bi-directional, ordered byte stream provided by TCP

• Features:
• text-based and human readable
• state-less (no information preserved between different HTTP requests)
• anonymous

• HTTP 1.0 [1]:
• Messages in the MIME (Multipurpose Internet Mail Extensions) format

• HTTP 1.1 [2]:
• Support for hierarchical proxies, caching, persistent connections, virtual

hosts

Distributed Computing Thomas Weise 10/28

HTTP Protocol

• HyperText Transfer Protocol (HTTP)

• Application-layer protocol for communication between web browser
and web server

• Uses reliable, bi-directional, ordered byte stream provided by TCP

• Features:
• text-based and human readable
• state-less (no information preserved between different HTTP requests)
• anonymous

• HTTP 1.0 [1]:
• Messages in the MIME (Multipurpose Internet Mail Extensions) format

• HTTP 1.1 [2]:
• Support for hierarchical proxies, caching, persistent connections, virtual

hosts
• Determine applications’ capabilities

Distributed Computing Thomas Weise 10/28

HTTP Protocol

• HyperText Transfer Protocol (HTTP)

• Application-layer protocol for communication between web browser
and web server

• Uses reliable, bi-directional, ordered byte stream provided by TCP

• Features:
• text-based and human readable
• state-less (no information preserved between different HTTP requests)
• anonymous

• HTTP 1.0 [1]:
• Messages in the MIME (Multipurpose Internet Mail Extensions) format

• HTTP 1.1 [2]:
• Support for hierarchical proxies, caching, persistent connections, virtual

hosts
• Determine applications’ capabilities
• TCP connections can be re-used

Distributed Computing Thomas Weise 10/28

HTTP Protocol

• HyperText Transfer Protocol (HTTP)

• Application-layer protocol for communication between web browser
and web server

• Uses reliable, bi-directional, ordered byte stream provided by TCP

• Features:
• text-based and human readable
• state-less (no information preserved between different HTTP requests)
• anonymous

• HTTP 1.0 [1]:
• Messages in the MIME (Multipurpose Internet Mail Extensions) format

• HTTP 1.1 [2]:
• Support for hierarchical proxies, caching, persistent connections, virtual

hosts
• Determine applications’ capabilities
• TCP connections can be re-used (good for inline resources/images in

HTML)

Distributed Computing Thomas Weise 10/28

HTTP Request

Distributed Computing Thomas Weise 11/28

HTTP Request: Request Line

• HTTP method

Distributed Computing Thomas Weise 12/28

HTTP Request: Request Line

• HTTP method:
• GET : download the data that belongs to a specified resource (can

include parameters), e.g., a web page

Distributed Computing Thomas Weise 12/28

HTTP Request: Request Line

• HTTP method:
• GET : download the data that belongs to a specified resource (can

include parameters), e.g., a web page
• HEAD : returns only the headers of a GET response (no request body)

Distributed Computing Thomas Weise 12/28

HTTP Request: Request Line

• HTTP method:
• GET : download the data that belongs to a specified resource (can

include parameters), e.g., a web page
• HEAD : returns only the headers of a GET response (no request body)

• POST : data is sent in the request body that should be handed to the
requested resource, maybe the data filled into a form or a file

Distributed Computing Thomas Weise 12/28

HTTP Request: Request Line

• HTTP method:
• GET : download the data that belongs to a specified resource (can

include parameters), e.g., a web page
• HEAD : returns only the headers of a GET response (no request body)

• POST : data is sent in the request body that should be handed to the
requested resource, maybe the data filled into a form or a file

• PUT : upload a representation of the specified resource

Distributed Computing Thomas Weise 12/28

HTTP Request: Request Line

• HTTP method:
• GET : download the data that belongs to a specified resource (can

include parameters), e.g., a web page
• HEAD : returns only the headers of a GET response (no request body)

• POST : data is sent in the request body that should be handed to the
requested resource, maybe the data filled into a form or a file

• PUT : upload a representation of the specified resource

• DELETE : delete the specified resource

Distributed Computing Thomas Weise 12/28

HTTP Request: Request Line

• HTTP method:
• GET : download the data that belongs to a specified resource (can

include parameters), e.g., a web page
• HEAD : returns only the headers of a GET response (no request body)

• POST : data is sent in the request body that should be handed to the
requested resource, maybe the data filled into a form or a file

• PUT : upload a representation of the specified resource

• DELETE : delete the specified resource

• relative part of URI

Distributed Computing Thomas Weise 12/28

HTTP Request: Request Line

• HTTP method:
• GET : download the data that belongs to a specified resource (can

include parameters), e.g., a web page
• HEAD : returns only the headers of a GET response (no request body)

• POST : data is sent in the request body that should be handed to the
requested resource, maybe the data filled into a form or a file

• PUT : upload a representation of the specified resource

• DELETE : delete the specified resource

• relative part of URI: (contains, e.g., path/object)

Distributed Computing Thomas Weise 12/28

HTTP Request: Request Line

• HTTP method:
• GET : download the data that belongs to a specified resource (can

include parameters), e.g., a web page
• HEAD : returns only the headers of a GET response (no request body)

• POST : data is sent in the request body that should be handed to the
requested resource, maybe the data filled into a form or a file

• PUT : upload a representation of the specified resource

• DELETE : delete the specified resource

• relative part of URI: (contains, e.g., path/object) and identifies a
resource relative to server

Distributed Computing Thomas Weise 12/28

HTTP Request: Request Line

• HTTP method:
• GET : download the data that belongs to a specified resource (can

include parameters), e.g., a web page
• HEAD : returns only the headers of a GET response (no request body)

• POST : data is sent in the request body that should be handed to the
requested resource, maybe the data filled into a form or a file

• PUT : upload a representation of the specified resource

• DELETE : delete the specified resource

• relative part of URI: (contains, e.g., path/object) and identifies a
resource relative to server

• HTTP version

Distributed Computing Thomas Weise 12/28

HTTP Request: Request Line

• HTTP method:
• GET : download the data that belongs to a specified resource (can

include parameters), e.g., a web page
• HEAD : returns only the headers of a GET response (no request body)

• POST : data is sent in the request body that should be handed to the
requested resource, maybe the data filled into a form or a file

• PUT : upload a representation of the specified resource

• DELETE : delete the specified resource

• relative part of URI: (contains, e.g., path/object) and identifies a
resource relative to server

• HTTP version:
• HTTP/1.1 for HTTP 1.1 [2]

Distributed Computing Thomas Weise 12/28

HTTP Request: Request Line

• HTTP method:
• GET : download the data that belongs to a specified resource (can

include parameters), e.g., a web page
• HEAD : returns only the headers of a GET response (no request body)

• POST : data is sent in the request body that should be handed to the
requested resource, maybe the data filled into a form or a file

• PUT : upload a representation of the specified resource

• DELETE : delete the specified resource

• relative part of URI: identifies a resource relative to server

• HTTP version:
• HTTP/1.1 for HTTP 1.1 [2]

• HTTP/1.0 for HTTP 1.0 [1]

Distributed Computing Thomas Weise 12/28

HTTP Request: Request Header

• Different header fields, each has its own format

Distributed Computing Thomas Weise 13/28

HTTP Request: Request Header

• Different header fields, each has its own format

• Examples

Distributed Computing Thomas Weise 13/28

HTTP Request: Request Header

• Different header fields, each has its own format

• Examples
• Accept: text/html

Distributed Computing Thomas Weise 13/28

HTTP Request: Request Header

• Different header fields, each has its own format

• Examples
• Accept: text/html
• Accept: image/jpg

Distributed Computing Thomas Weise 13/28

HTTP Request: Request Header

• Different header fields, each has its own format

• Examples
• Accept: text/html
• Accept: image/jpg
• Accept-Language: zh-CN

Distributed Computing Thomas Weise 13/28

HTTP Request: Request Header

• Different header fields, each has its own format

• Examples
• Accept: text/html
• Accept: image/jpg
• Accept-Language: zh-CN
• Accept-Charset: utf-8, gb2312

Distributed Computing Thomas Weise 13/28

HTTP Request: Request Header

• Different header fields, each has its own format

• Examples
• Accept: text/html
• Accept: image/jpg
• Accept-Language: zh-CN
• Accept-Charset: utf-8, gb2312
• If-Modified-Since: Wed, 27 Mar 2013 12:01:32 GMT

Distributed Computing Thomas Weise 13/28

HTTP Request Printing Server

• Let’s look how requests generated by web browsers look like

Distributed Computing Thomas Weise 14/28

HTTP Server Printing Requests

Listing: HTTPServerPrintingRequests.java

import java.io.BufferedReader; import java.io.BufferedWriter; import java.io.InputStreamReader;

import java.io.OutputStreamWriter; import java.net.ServerSocket; import java.net.Socket;

public class HTTPServerPrintingRequests {

public static final void main(final String [] args) {

String s; StringBuilder sb;

try (ServerSocket server = new ServerSocket (9995)) { // create server socket

try (Socket client = server.accept ()) { // accept incoming client

sb = new StringBuilder (); // allocate buffer

try (InputStreamReader ir = new InputStreamReader(client.getInputStream ());// request=character stream

BufferedReader br = new BufferedReader(ir)) { //read request line -by-line

while ((s = br.readLine ()) != null) { //as long as lines can be read ...

sb.append(s); // append them to the buffer

sb.append("
"); //add HTML line breaks

if(s.length () <=0) { break; } // the final newline of the header

}

client.shutdownInput (); //no more input is requests

try (OutputStreamWriter pw = new OutputStreamWriter(client.getOutputStream ())) {

pw.write("HTTP /1.1 200 OK\r\n\r\n<html ><body ><pre >"); //now write the answer: HTTP OK + HTML document

pw.write(sb.toString ()); // buffered content

pw.write("</pre ></body ></html >"); // close the HTML document

}

}

}

} catch (Throwable t) {

t.printStackTrace ();

}

}

}

Distributed Computing Thomas Weise 15/28

HTTP Request: Example

We run the HTTPServerPrintingRequests locally and access
localhost:9995 with Firefox

Distributed Computing Thomas Weise 16/28

HTTP Request: Example

We run the HTTPServerPrintingRequests locally and access
localhost:9995 with Firefox:

GET / HTTP/1.1

Host: localhost:9995

User-Agent: Mozilla/5.0 (Windows NT 6.1; WOW64; rv:19.0) Gecko/20100101 Firefox/19.0

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

Accept-Language: en-us,en;q=0.8,de-de;q=0.5,de;q=0.3

Accept-Encoding: gzip, deflate

DNT: 1

Connection: keep-alive

Cache-Control: max-age=0

Distributed Computing Thomas Weise 16/28

HTTP Request: Example

We run the HTTPServerPrintingRequests locally and access
http://localhost:9995 with Internet Explorer

Distributed Computing Thomas Weise 17/28

HTTP Request: Example

We run the HTTPServerPrintingRequests locally and access
http://localhost:9995 with Internet Explorer:

GET / HTTP/1.1

Accept: application/x-ms-application, image/jpeg, application/xaml+xml, image/gif,...

Accept-Language: de-DE

User-Agent: Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 6.1; WOW64; Trident/4.0;;...

Accept-Encoding: gzip, deflate

Host: localhost:9995

Connection: Keep-Alive

Distributed Computing Thomas Weise 17/28

HTTP Response

Distributed Computing Thomas Weise 18/28

HTTP Response: Response Line

• HTTP version

Distributed Computing Thomas Weise 19/28

HTTP Response: Response Line

• HTTP version:
• HTTP/1.1 for HTTP 1.1 [2]

Distributed Computing Thomas Weise 19/28

HTTP Response: Response Line

• HTTP version:
• HTTP/1.1 for HTTP 1.1 [2]

• HTTP/1.0 for HTTP 1.0 [1]

Distributed Computing Thomas Weise 19/28

HTTP Response: Response Line

• HTTP version:
• HTTP/1.1 for HTTP 1.1 [2]

• HTTP/1.0 for HTTP 1.0 [1]

• Status code

Distributed Computing Thomas Weise 19/28

HTTP Response: Response Line

• HTTP version:
• HTTP/1.1 for HTTP 1.1 [2]

• HTTP/1.0 for HTTP 1.0 [1]

• Status code: three digits, with the first digit representing

Distributed Computing Thomas Weise 19/28

HTTP Response: Response Line

• HTTP version:
• HTTP/1.1 for HTTP 1.1 [2]

• HTTP/1.0 for HTTP 1.0 [1]

• Status code: three digits, with the first digit representing

Distributed Computing Thomas Weise 19/28

HTTP Response: Response Line

• HTTP version:
• HTTP/1.1 for HTTP 1.1 [2]

• HTTP/1.0 for HTTP 1.0 [1]

• Status code: three digits, with the first digit representing

1 Information

Distributed Computing Thomas Weise 19/28

HTTP Response: Response Line

• HTTP version:
• HTTP/1.1 for HTTP 1.1 [2]

• HTTP/1.0 for HTTP 1.0 [1]

• Status code: three digits, with the first digit representing

1 Information
2 Success

Distributed Computing Thomas Weise 19/28

HTTP Response: Response Line

• HTTP version:
• HTTP/1.1 for HTTP 1.1 [2]

• HTTP/1.0 for HTTP 1.0 [1]

• Status code: three digits, with the first digit representing

1 Information
2 Success
3 Redirection

Distributed Computing Thomas Weise 19/28

HTTP Response: Response Line

• HTTP version:
• HTTP/1.1 for HTTP 1.1 [2]

• HTTP/1.0 for HTTP 1.0 [1]

• Status code: three digits, with the first digit representing

1 Information
2 Success
3 Redirection
4 Error on client side (e.g., wrong URI)

Distributed Computing Thomas Weise 19/28

HTTP Response: Response Line

• HTTP version:
• HTTP/1.1 for HTTP 1.1 [2]

• HTTP/1.0 for HTTP 1.0 [1]

• Status code: three digits, with the first digit representing

1 Information
2 Success
3 Redirection
4 Error on client side (e.g., wrong URI)
5 Error on server side

Distributed Computing Thomas Weise 19/28

HTTP Response: Response Line

• HTTP version:
• HTTP/1.1 for HTTP 1.1 [2]

• HTTP/1.0 for HTTP 1.0 [1]

• Status code: three digits, with the first digit representing

1 Information
2 Success
3 Redirection
4 Error on client side (e.g., wrong URI)
5 Error on server side

• Status phrase

Distributed Computing Thomas Weise 19/28

HTTP Response: Response Line

• HTTP version:
• HTTP/1.1 for HTTP 1.1 [2]

• HTTP/1.0 for HTTP 1.0 [1]

• Status code: three digits, with the first digit representing

1 Information
2 Success
3 Redirection
4 Error on client side (e.g., wrong URI)
5 Error on server side

• Status phrase: short textual representation of status code, e.g., OK

Distributed Computing Thomas Weise 19/28

HTTP Status Codes

• Some examples for status codes

Distributed Computing Thomas Weise 20/28

HTTP Status Codes

• Some examples for status codes
• 200 OK

Distributed Computing Thomas Weise 20/28

HTTP Status Codes

• Some examples for status codes
• 200 OK
• 301 Moved Permanently

Distributed Computing Thomas Weise 20/28

HTTP Status Codes

• Some examples for status codes
• 200 OK
• 301 Moved Permanently
• 400 Bad Request

Distributed Computing Thomas Weise 20/28

HTTP Status Codes

• Some examples for status codes
• 200 OK
• 301 Moved Permanently
• 400 Bad Request
• 404 Not Found

Distributed Computing Thomas Weise 20/28

HTTP Status Codes

• Some examples for status codes
• 200 OK
• 301 Moved Permanently
• 400 Bad Request
• 404 Not Found
• 505 HTTP Version Not Supported

Distributed Computing Thomas Weise 20/28

HTTP Response: Response Header

• Different header fields, each has its own format

Distributed Computing Thomas Weise 21/28

HTTP Response: Response Header

• Different header fields, each has its own format

• Examples

Distributed Computing Thomas Weise 21/28

HTTP Response: Response Header

• Different header fields, each has its own format

• Examples
• Content-Type: text/html

Distributed Computing Thomas Weise 21/28

HTTP Response: Response Header

• Different header fields, each has its own format

• Examples
• Content-Type: text/html
• Content-Length: 16384

Distributed Computing Thomas Weise 21/28

HTTP Response: Response Header

• Different header fields, each has its own format

• Examples
• Content-Type: text/html
• Content-Length: 16384
• Language: zh-CN;

Distributed Computing Thomas Weise 21/28

HTTP Response: Response Header

• Different header fields, each has its own format

• Examples
• Content-Type: text/html
• Content-Length: 16384
• Language: zh-CN;
• Last-modified: 28 Mar 2013

Distributed Computing Thomas Weise 21/28

HTTP Response Printing Client

• Let’s look how responses generated by web servers look like

Distributed Computing Thomas Weise 22/28

HTTP Client Printing Server’s Response

Listing: MinHTTPClientJava17.java Min HTTP Client + Try-With-Resource

import java.io.BufferedReader; import java.io.InputStreamReader;

import java.io.OutputStreamWriter; import java.net.Socket;

public class MinHTTPClientJava17 {//this is a minimum web client; see lesson 07 coming later

public static final void main(final String [] args) {

String dest , request , response;

dest = "www.baidu.com"; // a random example for a Chinese host

request = "GET /index.html HTTP /1.1\ nHost: " + dest + "\n\n\n";

try(Socket sock = new Socket(dest , 80)) { // web servers are usually listening at port 80

try(OutputStreamWriter w = new OutputStreamWriter(sock.getOutputStream ())) {

w.write(request); // write the HTTP request [1–3]

w.flush(); // make sure that all data has been sent

sock.shutdownOutput (); // closing down the channel for sending data to the server

try (InputStreamReader is = new InputStreamReader(sock.getInputStream ());

BufferedReader r = new BufferedReader(is)) { // Baidu uses UTF -8 encoding

while ((response = r.readLine ()) != null) { // read strings line -by-line until connection closed by serve

System.out.println(response); // print to output

}

}

}

} catch (Throwable t) {

t.printStackTrace ();

}

}

}

Distributed Computing Thomas Weise 23/28

HTTP Response: Example

To www.baidu.com, we send

Distributed Computing Thomas Weise 24/28

HTTP Response: Example

To www.baidu.com, we send:

GET /index.html HTTP/1.1

Host: www.baidu.com

Distributed Computing Thomas Weise 24/28

HTTP Response: Example

To www.baidu.com, we send:

GET /index.html HTTP/1.1

Host: www.baidu.com

and get the response:

HTTP/1.1 200 OK

Date: Wed, 27 Mar 2013 23:44:43 GMT

Server: BWS/1.0

Content-Length: 10319

Content-Type: text/html;charset=utf-8

Cache-Control: private

Expires: Wed, 27 Mar 2013 23:44:43 GMT

Set-Cookie: H PS PSSID=2097 1430 2132 1945 1788; path=/; domain=.baidu.com

Set-Cookie: BAIDUID=1BBB7C987D5159BE0741B675A88B3E0C:FG=1; expires=Wed, 27-Mar-43...

P3P: CP=" OTI DSP COR IVA OUR IND COM "

Connection: Keep-Alive

<!DOCTYPE html><!--STATUS OK--> <html><head> <meta http-equiv="content-type"

content="text/html;charset=utf-8"> <title>...

Distributed Computing Thomas Weise 24/28

Summary

• HTTP is a general, text-based protocol to request resources.

• Web pages are served by web servers which implement the HTTP
protocol.

• Such servers can be implemented with the simple stuff we have
learned about sockets.

• Actually, several Java-based web servers use exactly the technologies
we have learned so far.

Distributed Computing Thomas Weise 25/28

Caspar David Friedrich, “Der Wanderer über dem Nebelmeer”, 1818
http://en.wikipedia.org/wiki/Wanderer_above_the_Sea_of_Fog

谢谢谢谢谢谢
Thank you

Thomas Weise [汤卫思]
tweise@hfuu.edu.cn

http://www.it-weise.de

Hefei University, South Campus 2
Institute of Applied Optimization
Shushan District, Hefei, Anhui,

China

Distributed Computing Thomas Weise 26/28

mailto:tweise@hfuu.edu.cn
mailto:http://www.it-weise.de

Bibliography

Distributed Computing Thomas Weise 27/28

Bibliography I

1. Timothy John Berners-Lee, R. Fielding, and H. Frystyk. Hypertext Transfer Protocol – HTTP/1.0, volume 1945 of Request
for Comments (RFC). Network Working Group, May 1996. URL http://tools.ietf.org/html/rfc1945.

2. R. Fielding, J. Gettys, Jeffrey Mogul, H. Frystyk, L. Masinter, P. Leach, and Timothy John Berners-Lee. Hypertext Transfer
Protocol – HTTP/1.1, volume 2616 of Request for Comments (RFC). Network Working Group, June 1999. URL
http://tools.ietf.org/html/rfc2616.

3. David Gourley and Brian Totty. HTTP: The Definitive Guide. Definitive Guide. Sebastopol, CA, USA: O’Reilly Media, Inc.,
2002. ISBN 1565925092 and 9781565925090. URL http://books.google.de/books?id=qEoOl9bcV_cC.

Distributed Computing Thomas Weise 28/28

http://tools.ietf.org/html/rfc1945
http://tools.ietf.org/html/rfc2616
http://books.google.de/books?id=qEoOl9bcV_cC

	Outline
	Overview
	Browser and Web Server
	Client/Server
	Browser/Web Server
	Hypertext Structure
	Browser loads Website

	HTTP
	HTTP?
	HTTP & Protocol Layers
	HTTP Protocol
	HTTP Request
	HTTP Request: Request Line
	HTTP Request: Request Header
	HTTP Request Printing Server
	HTTP Server Printing Requests
	HTTP Request: Example
	HTTP Request: Example
	HTTP Response
	HTTP Response: Response Line
	HTTP Status Codes
	HTTP Response: Response Header
	HTTP Response Printing Client
	HTTP Client Printing Server's Response
	HTTP Response: Example
	Summary

	Presentation End
	Bibliography

