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Overview %\

1AQ

e Servers need to deal with multiple clients at the same time.

¢ Dealing with clients may involve 1/O to/from the disk or
communication with other processes, meaning that at times, the CPU
does no real work for a task (but waits for 1/O completion)?

e The CPU time can be used more efficiently if “shared” between
clients.

e Threads allow for having multiple, independent, (quasi-)parallel
streams of execution in a program.

e Threads are resources that can be pooled and cached.
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e Distributed systems are inherently parallel
e On each node, some process may be running
e Multiple nodes may communicate at the same time

e Multiple connection requests or data packets may arrive at a server
socket at the same time or close to each other

e The examples so far process one request (= job) at a time, roughly in
FIFO order

e If we have a single processor and no blocking (system) calls during a
job, this is OK

e Usually, we have multiple (virtual) processors AND blocking system
calls

e \We waste runtime.
e So what to do?
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system, e.g., via timer interrupt

o Scheduling: decision about which activity should be execute when in
order to optimize characteristics (response time, throughput)
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e First and second generation systems: only single program in execution

e For better resource utilization: multiple programs loaded, “switching”
of active process

e Preemptive multitasking: “switching” performed by the operating
system, e.g., via timer interrupt

o Scheduling: decision about which activity should be execute when in
order to optimize characteristics (response time, throughput)

e 3rd generation systems: virtualization: memory, processors
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e Processes are the basic activities of a system

e Processes use resources exclusively, e.g.,

@ (virtual) memory
@ (virtual) processor
@ other resources
e usually via "handles”, i.e., unique IDs identifying resource owner which
are valid only inside the process which acquired them
® sockets in C are such handles, socket objects in Java map to handles
e handles not visible/useful for other processes
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Processes run quasi-parallel: OS performs context switches '

storing registers and process counter in PCB

selecting next process (PCB)
e restoring registers, instruction pointer, virtual memory table pointer

flushing of caches
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e Creation of a new process involves a couple of steps:

e allocating new Process Control Block (PCB)

e initializing other data structures (e.g., for virtual memory)
o loading first few pages from program code

o loading required libraries
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¢ Advantages?

o Security: other processes cannot read memory / confidential data

o Safety: if one process fails, it cannot influence other processes directly

e Virtual memory: More memory can be used than actually physically
available

¢ Disadvantages?

e Inter-process communication (IPC) slow
context switch slow
explicit sharing of data/information complicated
initialization/management time and resource consuming
passing of handles complex
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e “Lightweight Processes”

a process can own an arbitrary number of threads

all threads of a process run quasi-parallel to each other

scheduling via OS (kernel-mode threads) or owning process (usermode
threads)

all threads of one process share the resources of this process

all threads of one process reside in this processes address space

each thread has private stack and virtual processor

e Context switch much faster: caches do not need to be flushed, virtual
memory does not need to be switched
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e “Lightweight Processes”

e a process can own an arbitrary number of threads

e all threads of a process run quasi-parallel to each other

e scheduling via OS (kernel-mode threads) or owning process (usermode
threads)

e all threads of one process share the resources of this process

o all threads of one process reside in this processes address space

e each thread has private stack and virtual processor

e Context switch much faster: caches do not need to be flushed, virtual
memory does not need to be switched

o No security threat: all threads in one process are part of the same
program
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e Traditionally: Web Servers fork ed in Unix:

e multi-process systems

e safe

e high resource consumption

o for each request, a new process is created, which costs time before the

request is processed
e Multi-threaded servers:
e multiple threads process client requests in parallel

o faster
e less secure/safe: 1 compromised thread can compromise the whole

Server process
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e Java has built-in, easy-to-use support for multi-threadding >~

e Class Thread :

e has method void run() which does the work and can be overridden
e is started with void start()
e we can wait until it is finished with void join()

e |nterface Runmnable

e has method void run() which may do some work
e can be passed into the constructor of Thread , thread will then

execute run() when started




Multi-Threaded HTTP Server / Java

Listing: MinHTTPServerMultiThread.java Multi-Threaded HTTP Server / Java

import java.io.BuffersdReadsr; import java.ie.File

port java.io.FileInputStrean;
import java.ie.OutputStreamiriter;

iz inport java.io.InputStreamReader;
inport java.ie.PrintWriter; isport java.net.ServerSockst;

import java.met.Socket;

public class MinKTTPServerMultiThread {

public static timl vold main(tinal Stringl] args) {
ServerSocket  server; oc

ey
server = new ServerSocket (9995);
for i) {

client = server.accept
A S

»

¥ catch (Throvable ©) {
©.printStackTrace O ;

3

3

private static fimal class Job implements Rumnabls {

hie.n_client=cliont;

override

public final void runO{

BufferedReader br; Printériter  pu; String s  File f;
bytel] bs;  FilolnputStream fis; Throvable x;  int 1;
eyt

br = ne (this.m_cli

s
v it P T R L ST

process: { /@ +
x = null;

v <
hile (6 = brireadtine0) 1= mui) ¢

it (s.startaRich (“GE «

S b, ¢ indesot(

bycol(int) (£ length ()1
new FileInputstreas(f);
£1s.read(ba);
fis. 10000

. 4)).replace('/', File.separatorChar));

Bu-erite CHITP/I 1200, 0K\ . £10sb 0
m_client.getOutputStrean().urite(bs, 0, 1);

B+m
ak process;
3
3

¥ caten (Throvable t) { x= t; }

pu.urite (“NTTP/1.1,404 Not, Found\r\n\r\n<htsl><haad><titla>04</title></haad><body><hi>404 - Not, found </hi><pre>");

i£(x 1= null) { x.printStackTrace(pw); }

pu.write (" </pre></body></Btal");

P flush(); LRy}
)

this.m_client.close();

i mrovaris seror) { scior prineseackTrace(; 3
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e Now we create a new thread for every single request
e Wasteful: many threads are created and used only once (threads are

OS resources)
e What if very many requests come at a time? Fraction of
runtime/thread will go down to 0
e A thread pool keeps n threads and has a job queue
If a thread is idle, it takes a job out of the queue and processes it
If no job is in the queue, it waits for the next job
After it is finished, it becomes idle again
A job is executed by at most 1 thread
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e Now we create a new thread for every single request
e Wasteful: many threads are created and used only once (threads are

OS resources)
e What if very many requests come at a time? Fraction of
runtime/thread will go down to 0

e A thread pool keeps n threads and has a job queue

e If a thread is idle, it takes a job out of the queue and processes it
e If no job is in the queue, it waits for the next job

o After it is finished, it becomes idle again

e A job is executed by at most 1 thread

e ExecutorService Iis an interface of classes that can execute Runnable s
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Thread Pools in Java
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e Now we create a new thread for every single request
e Wasteful: many threads are created and used only once (threads are
OS resources)
e What if very many requests come at a time? Fraction of
runtime/thread will go down to 0
A thread pool keeps n threads and has a job queue
e If a thread is idle, it takes a job out of the queue and processes it
e If no job is in the queue, it waits for the next job
o After it is finished, it becomes idle again
e A job is executed by at most 1 thread

ExecutorService is an interface of classes that can execute Runnable S

® Executors.newFixedThreadPool(n) creates a thread-pool based

ExecutorService
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Thread-Pooled HTTP Server / Java

Listing: MinHTTPServerThreadPool.java Thread-Pooled HTTP Server / Java

import java.io.BuffersdReadsr;

smport java.io.File; import java.io.File i import java
import java.io.Printiriter; e S ol e

sport java.io.QutputStrasmiriter;

P $0 Y PG PECmir Ay AEor S0 08 P GG, CECRR oD

public class MinKTTPServerThreadPool {
public static final sadn(tinal Seringl] axgs) ¢
ServerSocket  server; lient; ExecutorService pool;
ey ©
ool = Exscutors.newFix

edThrandPosl (1005

new ServerSocket (9994) ;

client = sarver.accept();
Pool.execute(new Job(client));

Y catch (Throvable ©) {
©.printStackTrace O ;
3

3

private static fimal class Job implements Rumnabls {

hie.n_client=cliont;

override

public final void runO{

BufferedReader br; PrintWriter  pu; String s File f;
bytel] bs;  FilolnputStream fis; Throvable x;  int 1;
eyt

br (this.m_cli

s
v it P T R L ST
process: { /@ +

x = null;

it (s.startaRich (“GE
S b, ¢ indesot(

bycol(int) (£ length ()1

new FileInputstreas(f);

£1s.read(ba);

fis. 10000

X
¥iile (o = brceadline ) 1= m) ¢
€

. 4)).replace('/', File.separatorChar));

Pu-erise CHITP/I. 13000\ R RV \)

pu.flush O
m_client.getOutputStrean().urite(bs, 0, 1); B+m
ak process;
3
3
¥ caten (Throvable t) { x= t; }
pu.urite (“NTTP/1.1,404 Not, Found\r\n\r\n<htsl><haad><titla>04</title></haad><body><hi>404 - Not, found </hi><pre>");
i£(x 1= null) { x.printStackTrace(pw); }
pu.write (" </pre></body></Btal");
P flush(); LRy}
)

this.m_client.close();

i mrovaris seror) { scior prineseackTrace(; 3
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Summary %\

e Parallelism may increase server performance significantly.

e The concept of threads allows for pre-emptive multi-tasking of
different (quasi-)parallel strands of a process.

e The class Thread implements this in Java.
e Each client of a server can be processed by a different thread.

e Since Thread s are expensive system resources, thread pools can hold
a set of threads to be re-used for future clients after having
completed a task.
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