
Distributed Computing
Lesson 8: Threads and Parallelism

Thomas Weise · 汤卫思

tweise@hfuu.edu.cn · http://www.it-weise.de

Hefei University, South Campus 2 合肥学院 南艳湖校区/南2区
Faculty of Computer Science and Technology 计算机科学与技术系

Institute of Applied Optimization 应用优化研究所

230601 Shushan District, Hefei, Anhui, China 中国 安徽省 合肥市 蜀山区 230601
Econ. & Tech. Devel. Zone, Jinxiu Dadao 99 经济技术开发区 锦绣大道99号

mailto:tweise@hfuu.edu.cn
http://www.it-weise.de


Outline

1 Processing Models

2 Java

Distributed Computing Thomas Weise 2/20

w
e
b
s
it
e



Overview

• Servers need to deal with multiple clients at the same time.

• Dealing with clients may involve I/O to/from the disk or
communication with other processes, meaning that at times, the CPU
does no real work for a task (but waits for I/O completion)?

• The CPU time can be used more efficiently if “shared” between
clients.

• Threads allow for having multiple, independent, (quasi-)parallel
streams of execution in a program.

• Threads are resources that can be pooled and cached.

Distributed Computing Thomas Weise 3/20



So far. . .

• Distributed systems are inherently parallel

Distributed Computing Thomas Weise 4/20



So far. . .

• Distributed systems are inherently parallel

• On each node, some process may be running

Distributed Computing Thomas Weise 4/20



So far. . .

• Distributed systems are inherently parallel

• On each node, some process may be running

• Multiple nodes may communicate at the same time

Distributed Computing Thomas Weise 4/20



So far. . .

• Distributed systems are inherently parallel

• On each node, some process may be running

• Multiple nodes may communicate at the same time

• Multiple connection requests or data packets may arrive at a server
socket at the same time or close to each other

Distributed Computing Thomas Weise 4/20



So far. . .

• Distributed systems are inherently parallel

• On each node, some process may be running

• Multiple nodes may communicate at the same time

• Multiple connection requests or data packets may arrive at a server
socket at the same time or close to each other

• The examples so far process one request (= job) at a time, roughly in
FIFO order

Distributed Computing Thomas Weise 4/20



So far. . .

• Distributed systems are inherently parallel

• On each node, some process may be running

• Multiple nodes may communicate at the same time

• Multiple connection requests or data packets may arrive at a server
socket at the same time or close to each other

• The examples so far process one request (= job) at a time, roughly in
FIFO order

• If we have a single processor and no blocking (system) calls during a
job, this is OK

Distributed Computing Thomas Weise 4/20



So far. . .

• Distributed systems are inherently parallel

• On each node, some process may be running

• Multiple nodes may communicate at the same time

• Multiple connection requests or data packets may arrive at a server
socket at the same time or close to each other

• The examples so far process one request (= job) at a time, roughly in
FIFO order

• If we have a single processor and no blocking (system) calls during a
job, this is OK

• Usually, we have multiple (virtual) processors AND blocking system
calls

Distributed Computing Thomas Weise 4/20



So far. . .

• Distributed systems are inherently parallel

• On each node, some process may be running

• Multiple nodes may communicate at the same time

• Multiple connection requests or data packets may arrive at a server
socket at the same time or close to each other

• The examples so far process one request (= job) at a time, roughly in
FIFO order

• If we have a single processor and no blocking (system) calls during a
job, this is OK

• Usually, we have multiple (virtual) processors AND blocking system
calls

• We waste runtime.

Distributed Computing Thomas Weise 4/20



So far. . .

• Distributed systems are inherently parallel

• On each node, some process may be running

• Multiple nodes may communicate at the same time

• Multiple connection requests or data packets may arrive at a server
socket at the same time or close to each other

• The examples so far process one request (= job) at a time, roughly in
FIFO order

• If we have a single processor and no blocking (system) calls during a
job, this is OK

• Usually, we have multiple (virtual) processors AND blocking system
calls

• We waste runtime.

• So what to do?

Distributed Computing Thomas Weise 4/20



Single-Machine Parallelism

• First and second generation systems: only single program in execution

Distributed Computing Thomas Weise 5/20



Single-Machine Parallelism

• First and second generation systems: only single program in execution

• For better resource utilization: multiple programs loaded, “switching”
of active process

Distributed Computing Thomas Weise 5/20



Single-Machine Parallelism

• First and second generation systems: only single program in execution

• For better resource utilization: multiple programs loaded, “switching”
of active process

• Preemptive multitasking: “switching” performed by the operating
system, e.g., via timer interrupt

Distributed Computing Thomas Weise 5/20



Single-Machine Parallelism

• First and second generation systems: only single program in execution

• For better resource utilization: multiple programs loaded, “switching”
of active process

• Preemptive multitasking: “switching” performed by the operating
system, e.g., via timer interrupt

• Scheduling: decision about which activity should be execute when in
order to optimize characteristics (response time, throughput)

Distributed Computing Thomas Weise 5/20



Single-Machine Parallelism

• First and second generation systems: only single program in execution

• For better resource utilization: multiple programs loaded, “switching”
of active process

• Preemptive multitasking: “switching” performed by the operating
system, e.g., via timer interrupt

• Scheduling: decision about which activity should be execute when in
order to optimize characteristics (response time, throughput)

• 3rd generation systems: virtualization: memory, processors

Distributed Computing Thomas Weise 5/20



Processes

• Processes are the basic activities of a system

Distributed Computing Thomas Weise 6/20



Processes

• Processes are the basic activities of a system

• Processes use resources exclusively

Distributed Computing Thomas Weise 6/20



Processes

• Processes are the basic activities of a system

• Processes use resources exclusively, e.g.,

1 (virtual) memory

Distributed Computing Thomas Weise 6/20



Processes

• Processes are the basic activities of a system
• Processes use resources exclusively, e.g.,

1 (virtual) memory:
• each process has an own virtual address space

Distributed Computing Thomas Weise 6/20



Processes

• Processes are the basic activities of a system
• Processes use resources exclusively, e.g.,

1 (virtual) memory:
• each process has an own virtual address space
• other processes cannot read or write into this memory (except for

shared memory)

Distributed Computing Thomas Weise 6/20



Processes

• Processes are the basic activities of a system
• Processes use resources exclusively, e.g.,

1 (virtual) memory:
• each process has an own virtual address space
• other processes cannot read or write into this memory (except for

shared memory)
• processes thus “think” that they are “alone” in the memory

Distributed Computing Thomas Weise 6/20



Processes

• Processes are the basic activities of a system
• Processes use resources exclusively, e.g.,

1 (virtual) memory:
• each process has an own virtual address space
• other processes cannot read or write into this memory (except for

shared memory)
• processes thus “think” that they are “alone” in the memory
• see operating systems lectures [1–11]. . .

Distributed Computing Thomas Weise 6/20



Processes

• Processes are the basic activities of a system

• Processes use resources exclusively, e.g.,

1 (virtual) memory
2 (virtual) processor

Distributed Computing Thomas Weise 6/20



Processes

• Processes are the basic activities of a system
• Processes use resources exclusively, e.g.,

1 (virtual) memory
2 (virtual) processor:

• scheduling transparent for processes

Distributed Computing Thomas Weise 6/20



Processes

• Processes are the basic activities of a system
• Processes use resources exclusively, e.g.,

1 (virtual) memory
2 (virtual) processor:

• scheduling transparent for processes
• processes think they have their own processor on which only they are

executed

Distributed Computing Thomas Weise 6/20



Processes

• Processes are the basic activities of a system
• Processes use resources exclusively, e.g.,

1 (virtual) memory
2 (virtual) processor:

• scheduling transparent for processes
• processes think they have their own processor on which only they are

executed
• see operating systems lectures [1–11]. . .

Distributed Computing Thomas Weise 6/20



Processes

• Processes are the basic activities of a system

• Processes use resources exclusively, e.g.,

1 (virtual) memory
2 (virtual) processor
3 other resources

Distributed Computing Thomas Weise 6/20



Processes

• Processes are the basic activities of a system

• Processes use resources exclusively, e.g.,

1 (virtual) memory
2 (virtual) processor
3 other resources

• usually via “handles”, i.e., unique IDs identifying resource owner which
are valid only inside the process which acquired them

• sockets in C are such handles, socket objects in Java map to handles

Distributed Computing Thomas Weise 6/20



Processes

• Processes are the basic activities of a system

• Processes use resources exclusively, e.g.,

1 (virtual) memory
2 (virtual) processor
3 other resources

• usually via “handles”, i.e., unique IDs identifying resource owner which
are valid only inside the process which acquired them

• sockets in C are such handles, socket objects in Java map to handles
• handles not visible/useful for other processes

Distributed Computing Thomas Weise 6/20



Parallelism: Context Switch

• Processes run quasi-parallel: OS performs context switches [1–11]

Distributed Computing Thomas Weise 7/20



Parallelism: Context Switch

• Processes run quasi-parallel: OS performs context switches [1–11]

Distributed Computing Thomas Weise 7/20



Parallelism: Context Switch

• Processes run quasi-parallel: OS performs context switches [1–11]

Distributed Computing Thomas Weise 7/20



Parallelism: Context Switch

• Processes run quasi-parallel: OS performs context switches [1–11]

Distributed Computing Thomas Weise 7/20



Parallelism: Context Switch

• Processes run quasi-parallel: OS performs context switches [1–11]

Distributed Computing Thomas Weise 7/20



Parallelism: Context Switch

• Processes run quasi-parallel: OS performs context switches [1–11]

Distributed Computing Thomas Weise 7/20



Parallelism: Context Switch

• Processes run quasi-parallel: OS performs context switches [1–11]

Distributed Computing Thomas Weise 7/20



Parallelism: Context Switch

• Processes run quasi-parallel: OS performs context switches [1–11]

Distributed Computing Thomas Weise 7/20



Parallelism: Context Switch

• Processes run quasi-parallel: OS performs context switches [1–11]

Distributed Computing Thomas Weise 7/20



Parallelism: Context Switch

• Processes run quasi-parallel: OS performs context switches [1–11]

Distributed Computing Thomas Weise 7/20



Parallelism: Context Switch

• Processes run quasi-parallel: OS performs context switches [1–11]

Distributed Computing Thomas Weise 7/20



Parallelism: Context Switch

• Processes run quasi-parallel: OS performs context switches [1–11]

Distributed Computing Thomas Weise 7/20



Parallelism: Context Switch

• Processes run quasi-parallel: OS performs context switches [1–11]

Distributed Computing Thomas Weise 7/20



Parallelism: Context Switch

• Processes run quasi-parallel: OS performs context switches [1–11]

Distributed Computing Thomas Weise 7/20



Parallelism: Context Switch

• Processes run quasi-parallel: OS performs context switches [1–11]

• storing registers and process counter in PCB

Distributed Computing Thomas Weise 7/20



Parallelism: Context Switch

• Processes run quasi-parallel: OS performs context switches [1–11]

• storing registers and process counter in PCB

• selecting next process (PCB)

Distributed Computing Thomas Weise 7/20



Parallelism: Context Switch

• Processes run quasi-parallel: OS performs context switches [1–11]

• storing registers and process counter in PCB

• selecting next process (PCB)

• restoring registers, instruction pointer, virtual memory table pointer

Distributed Computing Thomas Weise 7/20



Parallelism: Context Switch

• Processes run quasi-parallel: OS performs context switches [1–11]

• storing registers and process counter in PCB

• selecting next process (PCB)

• restoring registers, instruction pointer, virtual memory table pointer

• flushing of caches

Distributed Computing Thomas Weise 7/20



Process Creation

• Creation of a new process involves a couple of steps

Distributed Computing Thomas Weise 8/20



Process Creation

• Creation of a new process involves a couple of steps:
• allocating new Process Control Block (PCB)

Distributed Computing Thomas Weise 8/20



Process Creation

• Creation of a new process involves a couple of steps:
• allocating new Process Control Block (PCB)
• initializing other data structures (e.g., for virtual memory)

Distributed Computing Thomas Weise 8/20



Process Creation

• Creation of a new process involves a couple of steps:
• allocating new Process Control Block (PCB)
• initializing other data structures (e.g., for virtual memory)
• loading first few pages from program code

Distributed Computing Thomas Weise 8/20



Process Creation

• Creation of a new process involves a couple of steps:
• allocating new Process Control Block (PCB)
• initializing other data structures (e.g., for virtual memory)
• loading first few pages from program code
• loading required libraries

Distributed Computing Thomas Weise 8/20



Processes: Advantages/Disadvantages

• Advantages?

• Disadvantages?

Distributed Computing Thomas Weise 9/20



Processes: Advantages/Disadvantages

• Advantages?
• Security: other processes cannot read memory / confidential data

• Disadvantages?

Distributed Computing Thomas Weise 9/20



Processes: Advantages/Disadvantages

• Advantages?
• Security: other processes cannot read memory / confidential data
• Safety: if one process fails, it cannot influence other processes directly

• Disadvantages?

Distributed Computing Thomas Weise 9/20



Processes: Advantages/Disadvantages

• Advantages?
• Security: other processes cannot read memory / confidential data
• Safety: if one process fails, it cannot influence other processes directly
• Virtual memory: More memory can be used than actually physically

available

• Disadvantages?

Distributed Computing Thomas Weise 9/20



Processes: Advantages/Disadvantages

• Advantages?
• Security: other processes cannot read memory / confidential data
• Safety: if one process fails, it cannot influence other processes directly
• Virtual memory: More memory can be used than actually physically

available

• Disadvantages?
• Inter-process communication (IPC) slow

Distributed Computing Thomas Weise 9/20



Processes: Advantages/Disadvantages

• Advantages?
• Security: other processes cannot read memory / confidential data
• Safety: if one process fails, it cannot influence other processes directly
• Virtual memory: More memory can be used than actually physically

available

• Disadvantages?
• Inter-process communication (IPC) slow
• context switch slow

Distributed Computing Thomas Weise 9/20



Processes: Advantages/Disadvantages

• Advantages?
• Security: other processes cannot read memory / confidential data
• Safety: if one process fails, it cannot influence other processes directly
• Virtual memory: More memory can be used than actually physically

available

• Disadvantages?
• Inter-process communication (IPC) slow
• context switch slow
• explicit sharing of data/information complicated

Distributed Computing Thomas Weise 9/20



Processes: Advantages/Disadvantages

• Advantages?
• Security: other processes cannot read memory / confidential data
• Safety: if one process fails, it cannot influence other processes directly
• Virtual memory: More memory can be used than actually physically

available

• Disadvantages?
• Inter-process communication (IPC) slow
• context switch slow
• explicit sharing of data/information complicated
• initialization/management time and resource consuming

Distributed Computing Thomas Weise 9/20



Processes: Advantages/Disadvantages

• Advantages?
• Security: other processes cannot read memory / confidential data
• Safety: if one process fails, it cannot influence other processes directly
• Virtual memory: More memory can be used than actually physically

available

• Disadvantages?
• Inter-process communication (IPC) slow
• context switch slow
• explicit sharing of data/information complicated
• initialization/management time and resource consuming
• passing of handles complex

Distributed Computing Thomas Weise 9/20



Threads

• “Lightweight Processes”

Distributed Computing Thomas Weise 10/20



Threads

• “Lightweight Processes”
• a process can own an arbitrary number of threads

Distributed Computing Thomas Weise 10/20



Threads

• “Lightweight Processes”
• a process can own an arbitrary number of threads
• all threads of a process run quasi-parallel to each other

Distributed Computing Thomas Weise 10/20



Threads

• “Lightweight Processes”
• a process can own an arbitrary number of threads
• all threads of a process run quasi-parallel to each other
• scheduling via OS (kernel-mode threads) or owning process (usermode

threads)

Distributed Computing Thomas Weise 10/20



Threads

• “Lightweight Processes”
• a process can own an arbitrary number of threads
• all threads of a process run quasi-parallel to each other
• scheduling via OS (kernel-mode threads) or owning process (usermode

threads)
• all threads of one process share the resources of this process

Distributed Computing Thomas Weise 10/20



Threads

• “Lightweight Processes”
• a process can own an arbitrary number of threads
• all threads of a process run quasi-parallel to each other
• scheduling via OS (kernel-mode threads) or owning process (usermode

threads)
• all threads of one process share the resources of this process
• all threads of one process reside in this processes address space

Distributed Computing Thomas Weise 10/20



Threads

• “Lightweight Processes”
• a process can own an arbitrary number of threads
• all threads of a process run quasi-parallel to each other
• scheduling via OS (kernel-mode threads) or owning process (usermode

threads)
• all threads of one process share the resources of this process
• all threads of one process reside in this processes address space
• each thread has private stack and virtual processor

Distributed Computing Thomas Weise 10/20



Threads

• “Lightweight Processes”
• a process can own an arbitrary number of threads
• all threads of a process run quasi-parallel to each other
• scheduling via OS (kernel-mode threads) or owning process (usermode

threads)
• all threads of one process share the resources of this process
• all threads of one process reside in this processes address space
• each thread has private stack and virtual processor

• Context switch much faster: caches do not need to be flushed, virtual
memory does not need to be switched

Distributed Computing Thomas Weise 10/20



Threads

• “Lightweight Processes”
• a process can own an arbitrary number of threads
• all threads of a process run quasi-parallel to each other
• scheduling via OS (kernel-mode threads) or owning process (usermode

threads)
• all threads of one process share the resources of this process
• all threads of one process reside in this processes address space
• each thread has private stack and virtual processor

• Context switch much faster: caches do not need to be flushed, virtual
memory does not need to be switched

• No security threat: all threads in one process are part of the same
program

Distributed Computing Thomas Weise 10/20



What to use?

• Traditionally: Web Servers fork ed in Unix

Distributed Computing Thomas Weise 11/20



What to use?

• Traditionally: Web Servers fork ed in Unix:
• multi-process systems

Distributed Computing Thomas Weise 11/20



What to use?

• Traditionally: Web Servers fork ed in Unix:
• multi-process systems
• safe

Distributed Computing Thomas Weise 11/20



What to use?

• Traditionally: Web Servers fork ed in Unix:
• multi-process systems
• safe
• high resource consumption

Distributed Computing Thomas Weise 11/20



What to use?

• Traditionally: Web Servers fork ed in Unix:
• multi-process systems
• safe
• high resource consumption
• for each request, a new process is created, which costs time before the

request is processed

Distributed Computing Thomas Weise 11/20



What to use?

• Traditionally: Web Servers fork ed in Unix:
• multi-process systems
• safe
• high resource consumption
• for each request, a new process is created, which costs time before the

request is processed

• Multi-threaded servers

Distributed Computing Thomas Weise 11/20



What to use?

• Traditionally: Web Servers fork ed in Unix:
• multi-process systems
• safe
• high resource consumption
• for each request, a new process is created, which costs time before the

request is processed

• Multi-threaded servers:
• multiple threads process client requests in parallel
• faster
• less secure/safe: 1 compromised thread can compromise the whole

server process

Distributed Computing Thomas Weise 11/20



Threads in Java

• Java has built-in, easy-to-use support for multi-threadding [12–16]

Distributed Computing Thomas Weise 12/20



Threads in Java

• Java has built-in, easy-to-use support for multi-threadding [12–16]

• Class Thread

Distributed Computing Thomas Weise 12/20



Threads in Java

• Java has built-in, easy-to-use support for multi-threadding [12–16]

• Class Thread :

• has method void run() which does the work and can be overridden

Distributed Computing Thomas Weise 12/20



Threads in Java

• Java has built-in, easy-to-use support for multi-threadding [12–16]

• Class Thread :

• has method void run() which does the work and can be overridden

• is started with void start()

Distributed Computing Thomas Weise 12/20



Threads in Java

• Java has built-in, easy-to-use support for multi-threadding [12–16]

• Class Thread :

• has method void run() which does the work and can be overridden

• is started with void start()

• we can wait until it is finished with void join()

Distributed Computing Thomas Weise 12/20



Threads in Java

• Java has built-in, easy-to-use support for multi-threadding [12–16]

• Class Thread :

• has method void run() which does the work and can be overridden

• is started with void start()

• we can wait until it is finished with void join()

• Interface Runnable

Distributed Computing Thomas Weise 12/20



Threads in Java

• Java has built-in, easy-to-use support for multi-threadding [12–16]

• Class Thread :

• has method void run() which does the work and can be overridden

• is started with void start()

• we can wait until it is finished with void join()

• Interface Runnable

• has method void run() which may do some work

Distributed Computing Thomas Weise 12/20



Threads in Java

• Java has built-in, easy-to-use support for multi-threadding [12–16]

• Class Thread :

• has method void run() which does the work and can be overridden

• is started with void start()

• we can wait until it is finished with void join()

• Interface Runnable

• has method void run() which may do some work

• can be passed into the constructor of Thread , thread will then

execute run() when started

Distributed Computing Thomas Weise 12/20



Multi-Threaded HTTP Server / Java

Listing: MinHTTPServerMultiThread.java Multi-Threaded HTTP Server / Java

import java.io.BufferedReader; import java.io.File; import java.io.FileInputStream; import java.io.InputStreamReader;

import java.io.OutputStreamWriter; import java.io.PrintWriter; import java.net.ServerSocket; import java.net.Socket;

public class MinHTTPServerMultiThread {

public static final void main(final String [] args) {

ServerSocket server; Socket client;

try {

server = new ServerSocket (9995); // create server socket 1 + 2)

for (;;) { // forever ...

client = server.accept (); //wait for and accept incoming connection 3)

new Thread(new Job(client)).start(); // create and start a new thread to process the request

}

} catch (Throwable t) {

t.printStackTrace ();

}

}

private static final class Job implements Runnable { //the job class: process one request; Runnable is the key interface

private final Socket m_client; //the client socket to process

Job(final Socket client){ // create a job for a given socket

this.m_client=client;

}

@Override //this method is executed by the thread that was created with this object as constructor parameter

public final void run(){ // process the client socket: exactly the same as in the MinHTTPServer example

BufferedReader br; PrintWriter pw; String s; File f;

byte[] bs; FileInputStream fis; Throwable x; int i;

try{

br = new BufferedReader(new InputStreamReader(this.m_client.getInputStream ())); // read character data

pw = new PrintWriter(new OutputStreamWriter(this.m_client.getOutputStream (), "ISO_8859 -1")); //chose the right encoding! [17, 18]

process: { // 4 + 3)

x = null;

try {

while ((s = br.readLine ()) != null) { //read text from connection line -by-line until end

if (s.startsWith("GET ")) { // try to find the GET command in the HTTP request [17, 18]

f = new File(s.substring(4, s.indexOf(' ', 4)).replace('/', File.separatorChar)); //in a very crude way , extract the requested path from that command

bs = new byte[(int) (f.length ())]; // allocate a buffer of the right size

fis = new FileInputStream(f); //open the file

i = fis.read(bs); //read the complete file into memory

fis.close(); //close the file

pw.write("HTTP /1.1 200 OK\r\n\r\n"); pw.flush (); //send "success" according to [17, 18]

this.m_client.getOutputStream ().write(bs, 0, i); //... and the file content (4 + 3))

break process; //ok, we are finished here

}

}

} catch (Throwable t) { x= t; } //if request fails , remember why

//hm , we did not find the file or had an error [17, 18]

pw.write("HTTP /1.1 404 Not Found\r\n\r\n<html ><head ><title >404</title ></head ><body ><h1 >404 - Not found </h1><pre >");

if(x != null) { x.printStackTrace(pw); } //write the error message (notice the <pre >...</pre > wrapper)

pw.write(" </pre ></body ></html"); //end the html body

pw.flush(); //and flush (4 + 3))

}

this.m_client.close (); }// 4)

catch(Throwable error) { error.printStackTrace (); }

}

}

} Distributed Computing Thomas Weise 13/20



Thread Pools in Java

• Now we create a new thread for every single request

Distributed Computing Thomas Weise 14/20



Thread Pools in Java

• Now we create a new thread for every single request
• Wasteful: many threads are created and used only once (threads are

OS resources)

Distributed Computing Thomas Weise 14/20



Thread Pools in Java

• Now we create a new thread for every single request
• Wasteful: many threads are created and used only once (threads are

OS resources)
• What if very many requests come at a time? Fraction of

runtime/thread will go down to 0

Distributed Computing Thomas Weise 14/20



Thread Pools in Java

• Now we create a new thread for every single request
• Wasteful: many threads are created and used only once (threads are

OS resources)
• What if very many requests come at a time? Fraction of

runtime/thread will go down to 0

• A thread pool keeps n threads and has a job queue

Distributed Computing Thomas Weise 14/20



Thread Pools in Java

• Now we create a new thread for every single request
• Wasteful: many threads are created and used only once (threads are

OS resources)
• What if very many requests come at a time? Fraction of

runtime/thread will go down to 0

• A thread pool keeps n threads and has a job queue
• If a thread is idle, it takes a job out of the queue and processes it

Distributed Computing Thomas Weise 14/20



Thread Pools in Java

• Now we create a new thread for every single request
• Wasteful: many threads are created and used only once (threads are

OS resources)
• What if very many requests come at a time? Fraction of

runtime/thread will go down to 0

• A thread pool keeps n threads and has a job queue
• If a thread is idle, it takes a job out of the queue and processes it
• If no job is in the queue, it waits for the next job

Distributed Computing Thomas Weise 14/20



Thread Pools in Java

• Now we create a new thread for every single request
• Wasteful: many threads are created and used only once (threads are

OS resources)
• What if very many requests come at a time? Fraction of

runtime/thread will go down to 0

• A thread pool keeps n threads and has a job queue
• If a thread is idle, it takes a job out of the queue and processes it
• If no job is in the queue, it waits for the next job
• After it is finished, it becomes idle again

Distributed Computing Thomas Weise 14/20



Thread Pools in Java

• Now we create a new thread for every single request
• Wasteful: many threads are created and used only once (threads are

OS resources)
• What if very many requests come at a time? Fraction of

runtime/thread will go down to 0

• A thread pool keeps n threads and has a job queue
• If a thread is idle, it takes a job out of the queue and processes it
• If no job is in the queue, it waits for the next job
• After it is finished, it becomes idle again
• A job is executed by at most 1 thread

Distributed Computing Thomas Weise 14/20



Thread Pools in Java

• Now we create a new thread for every single request
• Wasteful: many threads are created and used only once (threads are

OS resources)
• What if very many requests come at a time? Fraction of

runtime/thread will go down to 0

• A thread pool keeps n threads and has a job queue
• If a thread is idle, it takes a job out of the queue and processes it
• If no job is in the queue, it waits for the next job
• After it is finished, it becomes idle again
• A job is executed by at most 1 thread

• ExecutorService is an interface of classes that can execute Runnable s

Distributed Computing Thomas Weise 14/20



Thread Pools in Java

• Now we create a new thread for every single request
• Wasteful: many threads are created and used only once (threads are

OS resources)
• What if very many requests come at a time? Fraction of

runtime/thread will go down to 0

• A thread pool keeps n threads and has a job queue
• If a thread is idle, it takes a job out of the queue and processes it
• If no job is in the queue, it waits for the next job
• After it is finished, it becomes idle again
• A job is executed by at most 1 thread

• ExecutorService is an interface of classes that can execute Runnable s

• Executors.newFixedThreadPool(n) creates a thread-pool based

ExecutorService

Distributed Computing Thomas Weise 14/20



Thread-Pooled HTTP Server / Java

Listing: MinHTTPServerThreadPool.java Thread-Pooled HTTP Server / Java

import java.io.BufferedReader; import java.io.File; import java.io.FileInputStream; import java.io.InputStreamReader; import java.io.OutputStreamWriter;

import java.io.PrintWriter; import java.net.ServerSocket; import java.net.Socket; import java.util.concurrent.ExecutorService; import java.util.concurrent.Executors;

public class MinHTTPServerThreadPool {

public static final void main(final String [] args) {

ServerSocket server; Socket client; ExecutorService pool;

try {

pool = Executors.newFixedThreadPool (10); // create a pool of 10 threads waiting to execute something

server = new ServerSocket (9994); // 1 + 2)

for (;;) {

client = server.accept (); //wait for and accept new connection 3)

pool.execute(new Job(client)); // enqueue the job into the pool's job queue , it will be executed when a thread is ready

}

} catch (Throwable t) {

t.printStackTrace ();

}

}

private static final class Job implements Runnable { //the job class: process one request; Runnable is the key interface

private final Socket m_client; //the client socket to process

Job(final Socket client){ // create a job for a given socket

this.m_client=client;

}

@Override //this method is executed by a thread in the thread pool

public final void run(){

BufferedReader br; PrintWriter pw; String s; File f;

byte[] bs; FileInputStream fis; Throwable x; int i;

try{

br = new BufferedReader(new InputStreamReader(this.m_client.getInputStream ())); // read character data

pw = new PrintWriter(new OutputStreamWriter(this.m_client.getOutputStream (), "ISO_8859 -1")); //chose the right encoding! [17, 18]

process: { // 4 + 3)

x = null;

try {

while ((s = br.readLine ()) != null) { //read text from connection line -by-line until end

if (s.startsWith("GET ")) { // try to find the GET command in the HTTP request [17, 18]

f = new File(s.substring(4, s.indexOf(' ', 4)).replace('/', File.separatorChar)); //in a very crude way , extract the requested path from that command

bs = new byte[(int) (f.length ())]; // allocate a buffer of the right size

fis = new FileInputStream(f); //open the file

i = fis.read(bs); //read the complete file into memory

fis.close(); //close the file

pw.write("HTTP /1.1 200 OK\r\n\r\n"); pw.flush (); //send "success" according to [17, 18]

this.m_client.getOutputStream ().write(bs, 0, i); //... and the file content (4 + 3))

break process; //ok, we are finished here

}

}

} catch (Throwable t) { x= t; } //if request fails , remember why

//hm , we did not find the file or had an error [17, 18]

pw.write("HTTP /1.1 404 Not Found\r\n\r\n<html ><head ><title >404</title ></head ><body ><h1 >404 - Not found </h1><pre >");

if(x != null) { x.printStackTrace(pw); } //write the error message (notice the <pre >...</pre > wrapper)

pw.write(" </pre ></body ></html"); //end the html body

pw.flush(); //and flush (4 + 3))

}

this.m_client.close (); }// 4)

catch(Throwable error) { error.printStackTrace (); }

}

}

} Distributed Computing Thomas Weise 15/20



Summary

• Parallelism may increase server performance significantly.

• The concept of threads allows for pre-emptive multi-tasking of
different (quasi-)parallel strands of a process.

• The class Thread implements this in Java.

• Each client of a server can be processed by a different thread.

• Since Thread s are expensive system resources, thread pools can hold
a set of threads to be re-used for future clients after having
completed a task.

Distributed Computing Thomas Weise 16/20



Caspar David Friedrich, “Der Wanderer über dem Nebelmeer”, 1818
http://en.wikipedia.org/wiki/Wanderer_above_the_Sea_of_Fog

谢谢谢谢谢谢
Thank you

Thomas Weise [汤卫思]
tweise@hfuu.edu.cn

http://www.it-weise.de

Hefei University, South Campus 2
Institute of Applied Optimization
Shushan District, Hefei, Anhui,

China

Distributed Computing Thomas Weise 17/20

mailto:tweise@hfuu.edu.cn
mailto:http://www.it-weise.de


Bibliography

Distributed Computing Thomas Weise 18/20



Bibliography I

1. William Stallings. Operating Systems: Internals and Design Principles. Gradience Online Accelerated Learning Series
(GOAL). Upper Saddle River, NJ, USA: Pearson Education and Upper Saddle River, NJ, USA: Prentice Hall International
Inc., 2004. ISBN 0029464919, 0130319996, 0131479547, 0131809776, 0136006329, 0138874077, 0139179984,
9780029464915, 9780130319999, 978-0131479548, 9780131809772, 978-0136006329, 9780138874070, and
9780139179983. URL http://books.google.de/books?id=dBQFXs5NPEYC.

2. Gary J. Nutt. Operating Systems: A Modern Perspective. Reading, MA, USA: Addison-Wesley Publishing Co. Inc., 2002.
ISBN 0201741962 and 9780201741964. URL http://books.google.de/books?id=AHBGAAAAYAAJ.

3. Andrew Stuart Tanenbaum. Modern Operating Systems. Upper Saddle River, NJ, USA: Pearson Education and Upper
Saddle River, NJ, USA: Prentice Hall International Inc., 2008. ISBN 0136006639 and 978-0136006633. URL
http://books.google.de/books?id=y22rPwAACAAJ.

4. Jean Bacon and Tim Harris. Operating Systems: Concurrent and Distributed Software Design. International Computer
Science Series. Reading, MA, USA: Addison-Wesley Publishing Co. Inc., 2003. ISBN 0321117891 and 9780321117892.
URL http://books.google.de/books?id=kkaaH3Q19Z4C.

5. Harvey M. Deitel, Paul J. Deitel, and David R. Choffnes. Operating Systems. Upper Saddle River, NJ, USA: Pearson
Education and Upper Saddle River, NJ, USA: Prentice Hall International Inc., 2004. ISBN 0131828274 and
9780131828278. URL http://books.google.de/books?id=M45QAAAAMAAJ.

6. Mukesh Singhal and Niranjan G. Shivaratri. Advanced Concepts in Operating Systems. McGraw-Hill Series in Computer
Science: Systems and Languages. Maidenhead, England, UK: McGraw-Hill Ltd., 1994. ISBN 007057572X and
9780070575721. URL http://books.google.de/books?id=sLlQAAAAMAAJ.

7. Andrew Stuart Tanenbaum and Albert S. Woodhull. Operating Systems: Design and Implementation. Upper Saddle River,
NJ, USA: Pearson Education, 2009. ISBN 0135053765 and 9780135053768. URL
http://books.google.de/books?id=MOQhQAAACAAJ.

8. David A. Solomon and Mark E. Russinovich. Inside Microsoft Windows 2000. Microsoft Programming Series. Redmond,
WA, USA: Microsoft Press, 2000. ISBN 0735610215 and 9780735610217. URL
http://books.google.de/books?id=3xqBRAAACAAJ.

9. Len Bass, Paul Clements, and Rick Kazman. Software Architecture in Practice. SEI Series in Software Engineering.
Reading, MA, USA: Addison-Wesley Professional, 2003. ISBN 0321154959 and 9780321154958. URL
http://books.google.de/books?id=mdiIu8Kk1WMC.

10. Winfried Kalfa. Betriebssysteme, volume 24 of Informatik, Kybernetik, Rechentechnik. Berlin, Germany: Akademie Verlag,
1988. ISBN 3055004779 and 9783055004773. URL http://books.google.de/books?id=Pm8mAAAACAAJ.

Distributed Computing Thomas Weise 19/20

http://books.google.de/books?id=dBQFXs5NPEYC
http://books.google.de/books?id=AHBGAAAAYAAJ
http://books.google.de/books?id=y22rPwAACAAJ
http://books.google.de/books?id=kkaaH3Q19Z4C
http://books.google.de/books?id=M45QAAAAMAAJ
http://books.google.de/books?id=sLlQAAAAMAAJ
http://books.google.de/books?id=MOQhQAAACAAJ
http://books.google.de/books?id=3xqBRAAACAAJ
http://books.google.de/books?id=mdiIu8Kk1WMC
http://books.google.de/books?id=Pm8mAAAACAAJ


Bibliography II

11. Jürgen Grothe and Winfried Kalfa. Grundlagen der Betriebssysteme, volume 2-1500 of Lehrbriefe für das
Hochschulfernstudium. Dresden, Sachsen, Germany: Zentralstelle für das Hochschulfernstudium des Ministeriums für
Hoch- und Fachschulwesen, 1988. URL http://books.google.de/books?id=-62uPgAACAAJ.

12. Scott Oaks and Henry Wong. Java Threads. The Java Series. Upper Saddle River, NJ, USA: Prentice Hall International
Inc., Santa Clara, CA, USA: Sun Microsystems Press (SMP), and Reading, MA, USA: Addison-Wesley Professional, 3rd
edition, 2004. ISBN 0596007825 and 9780596007829. URL http://books.google.de/books?id=mB_92VqJbsMC.

13. James Gosling, William Nelson Joy, Guy Lewis Steele Jr., and Gilad Bracha. The Java™ Language Specification. The Java
Series. Upper Saddle River, NJ, USA: Prentice Hall International Inc., Santa Clara, CA, USA: Sun Microsystems Press
(SMP), and Reading, MA, USA: Addison-Wesley Professional, 3rd edition, May 2005. ISBN 0-321-24678-0 and
978-0321246783. URL http://java.sun.com/docs/books/jls/.

14. Guido Krüger. Handbuch der Java-Programmierung. 4. aktualisierte edition. ISBN 3-8273-2361-4 and 3-8273-2447-5. URL
http://www.javabuch.de/.

15. Christian Ullenboom. Java ist auch eine Insel – Programmieren mit der Java Standard Edition Version 6. Bonn, North
Rhine-Westphalia, Germany: Galileo-Press, 6. aktualisierte und erweiterte edition, 2007. ISBN 3-89842-838-9 and
978-3-89842-838-5. URL http://www.galileocomputing.de/openbook/javainsel6/.

16. Santa Clara, CA, USA: Sun Microsystems, Inc. Java™ 2 Platform Standard Edition 5.0 – API Specification, October 19,
2010.

17. Timothy John Berners-Lee, R. Fielding, and H. Frystyk. Hypertext Transfer Protocol – HTTP/1.0, volume 1945 of
Request for Comments (RFC). Network Working Group, May 1996. URL http://tools.ietf.org/html/rfc1945.

18. R. Fielding, J. Gettys, Jeffrey Mogul, H. Frystyk, L. Masinter, P. Leach, and Timothy John Berners-Lee. Hypertext
Transfer Protocol – HTTP/1.1, volume 2616 of Request for Comments (RFC). Network Working Group, June 1999. URL
http://tools.ietf.org/html/rfc2616.

Distributed Computing Thomas Weise 20/20

http://books.google.de/books?id=-62uPgAACAAJ
http://books.google.de/books?id=mB_92VqJbsMC
http://java.sun.com/docs/books/jls/
http://www.javabuch.de/
http://www.galileocomputing.de/openbook/javainsel6/
http://tools.ietf.org/html/rfc1945
http://tools.ietf.org/html/rfc2616

	Outline
	Overview
	Processing Models
	So far…
	Single-Machine Parallelism
	Processes
	Parallelism: Context Switch
	Process Creation
	Processes: Advantages/Disadvantages
	Threads
	What to use?

	Java
	Threads in Java
	Multi-Threaded HTTP Server / Java
	Thread Pools in Java
	Thread-Pooled HTTP Server / Java
	Summary

	Presentation End
	Bibliography

