LR B

HEFEI UNIVERSITY

Distributed Computing

Lesson 8: Threads and Parallelism

Thomas Weise -

tweise@hfuu.edu.cn -

Hefei University, South Campus 2
Faculty of Computer Science and Technology
Institute of Applied Optimization
230601 Shushan District, Hefei, Anhui, China
Econ. & Tech. Devel. Zone, Jinxiu Dadao 99

H LR
http://www.it-weise.de

i =4
T H A

ri]?@féﬂ#i[;’;/éJZB
5HRA

R AR ACHE RBT
TE ks ST . R 230601
BFBARTER %%

#99%

mailto:tweise@hfuu.edu.cn
http://www.it-weise.de

QOutline

@ Processing Models

@ Java

Distributed Computing

Thomas Weise

Overview %\

1AQ

e Servers need to deal with multiple clients at the same time.

¢ Dealing with clients may involve 1/O to/from the disk or
communication with other processes, meaning that at times, the CPU
does no real work for a task (but waits for 1/O completion)?

e The CPU time can be used more efficiently if “shared” between
clients.

e Threads allow for having multiple, independent, (quasi-)parallel
streams of execution in a program.

e Threads are resources that can be pooled and cached.

Distributed Computing Thomas Weise 3/20

o Distributed systems are inherently parallel

e Distributed systems are inherently parallel

e On each node, some process may be running

e Distributed systems are inherently parallel

e On each node, some process may be running

e Multiple nodes may communicate at the same time

Distributed systems are inherently parallel

On each node, some process may be running

Multiple nodes may communicate at the same time

Multiple connection requests or data packets may arrive at a server
socket at the same time or close to each other

e Distributed systems are inherently parallel
e On each node, some process may be running
e Multiple nodes may communicate at the same time

e Multiple connection requests or data packets may arrive at a server
socket at the same time or close to each other

e The examples so far process one request (= job) at a time, roughly in
FIFO order

So far... %\

e Distributed systems are inherently parallel
e On each node, some process may be running
e Multiple nodes may communicate at the same time

e Multiple connection requests or data packets may arrive at a server
socket at the same time or close to each other

e The examples so far process one request (= job) at a time, roughly in
FIFO order

e If we have a single processor and no blocking (system) calls during a
job, this is OK

Distributed Computing Thomas Weise 4/20

So far... %\

1AQ

e Distributed systems are inherently parallel
e On each node, some process may be running
e Multiple nodes may communicate at the same time

e Multiple connection requests or data packets may arrive at a server
socket at the same time or close to each other

e The examples so far process one request (= job) at a time, roughly in
FIFO order

e If we have a single processor and no blocking (system) calls during a
job, this is OK

e Usually, we have multiple (virtual) processors AND blocking system
calls

Distributed Computing Thomas Weise 4/20

So far... %\

1AQ

e Distributed systems are inherently parallel
e On each node, some process may be running
e Multiple nodes may communicate at the same time

e Multiple connection requests or data packets may arrive at a server
socket at the same time or close to each other

e The examples so far process one request (= job) at a time, roughly in
FIFO order

e If we have a single processor and no blocking (system) calls during a
job, this is OK

e Usually, we have multiple (virtual) processors AND blocking system
calls

e We waste runtime.

Distributed Computing Thomas Weise 4/20

So far... %\

1AQ

e Distributed systems are inherently parallel
e On each node, some process may be running
e Multiple nodes may communicate at the same time

e Multiple connection requests or data packets may arrive at a server
socket at the same time or close to each other

e The examples so far process one request (= job) at a time, roughly in
FIFO order

e If we have a single processor and no blocking (system) calls during a
job, this is OK

e Usually, we have multiple (virtual) processors AND blocking system
calls

e \We waste runtime.
e So what to do?

Distributed Computing Thomas Weise 4/20

e First and second generation systems: only single program in execution

e First and second generation systems: only single program in execution

o For better resource utilization: multiple programs loaded, “switching”
of active process

e First and second generation systems: only single program in execution
o For better resource utilization: multiple programs loaded, “switching”
of active process

e Preemptive multitasking: “switching” performed by the operating
system, e.g., via timer interrupt

Single-Machine Parallelism %\’

e First and second generation systems: only single program in execution

e For better resource utilization: multiple programs loaded, “switching”
of active process

e Preemptive multitasking: “switching” performed by the operating
system, e.g., via timer interrupt

o Scheduling: decision about which activity should be execute when in
order to optimize characteristics (response time, throughput)

Distributed Computing Thomas Weise 5/20

Single-Machine Parallelism §\

e First and second generation systems: only single program in execution

e For better resource utilization: multiple programs loaded, “switching”
of active process

e Preemptive multitasking: “switching” performed by the operating
system, e.g., via timer interrupt

o Scheduling: decision about which activity should be execute when in
order to optimize characteristics (response time, throughput)

e 3rd generation systems: virtualization: memory, processors

Distributed Computing Thomas Weise 5/20

e Processes are the basic activities of a system

e Processes are the basic activities of a system
e Processes use resources exclusively

e Processes are the basic activities of a system
e Processes use resources exclusively, e.g.,
@ (virtual) memory

o Processes are the basic activities of a system
e Processes use resources exclusively, e.g.,
® (virtual) memory:
e each process has an own virtual address space

o Processes are the basic activities of a system
e Processes use resources exclusively, e.g.,
® (virtual) memory:
e each process has an own virtual address space
e other processes cannot read or write into this memory (except for
shared memory)

o Processes are the basic activities of a system
e Processes use resources exclusively, e.g.,
® (virtual) memory:
e each process has an own virtual address space
e other processes cannot read or write into this memory (except for
shared memory)
® processes thus “think” that they are “alone” in the memory

o Processes are the basic activities of a system
e Processes use resources exclusively, e.g.,
® (virtual) memory:
e each process has an own virtual address space
e other processes cannot read or write into this memory (except for
shared memory)
® processes thus “think” that they are “alone” in the memory
e see operating systems lectures™ ™. ..

e Processes are the basic activities of a system
e Processes use resources exclusively, e.g.,

@ (virtual) memory
@ (virtual) processor

o Processes are the basic activities of a system
e Processes use resources exclusively, e.g.,
@ (virtual) memory
@ (virtual) processor:
e scheduling transparent for processes

o Processes are the basic activities of a system
e Processes use resources exclusively, e.g.,
@ (virtual) memory
@ (virtual) processor:
e scheduling transparent for processes
® processes think they have their own processor on which only they are
executed

o Processes are the basic activities of a system
e Processes use resources exclusively, e.g.,
@ (virtual) memory
@ (virtual) processor:
e scheduling transparent for processes
® processes think they have their own processor on which only they are
executed
e see operating systems lectures™™". ..

e Processes are the basic activities of a system
e Processes use resources exclusively, e.g.,

@ (virtual) memory
@ (virtual) processor
® other resources

e Processes are the basic activities of a system

e Processes use resources exclusively, e.g.,

@ (virtual) memory
@ (virtual) processor
® other resources

e usually via "handles”, i.e., unique IDs identifying resource owner which
are valid only inside the process which acquired them
® sockets in C are such handles, socket objects in Java map to handles

e Processes are the basic activities of a system

e Processes use resources exclusively, e.g.,

@ (virtual) memory
@ (virtual) processor
@ other resources
e usually via "handles”, i.e., unique IDs identifying resource owner which
are valid only inside the process which acquired them
® sockets in C are such handles, socket objects in Java map to handles
e handles not visible/useful for other processes

e Processes run quasi-parallel: OS performs context switches "

e Processes run quasi-parallel: OS performs context switches "

P1 P2 P3

e Processes run quasi-parallel: OS performs context switches "

P1 P2 P3

System

d

e Processes run quasi-parallel: OS performs context switches "

P1 P2 P3

System

d

e Processes run quasi-parallel: OS performs context switches "

P1 P2 P3

System

d

%‘4"‘\6&

e Processes run quasi-parallel: OS performs context switches "

P1 J

2 P3
System * - *

e Processes run quasi-parallel: OS performs context switches "

e Processes run quasi-parallel: OS performs context switches "

e Processes run quasi-parallel: OS performs context switches "

e Processes run quasi-parallel: OS performs context switches "

e Processes run quasi-parallel: OS performs context switches "

e Processes run quasi-parallel: OS performs context switches "

e Processes run quasi-parallel: OS performs context switches "

P2 P3

System

— U

e Processes run quasi-parallel: OS performs context switches "

P2 P3

System

— U

e Processes run quasi-parallel: OS performs context switches "

e storing registers and process counter in PCB

e Processes run quasi-parallel: OS performs context switches "

e storing registers and process counter in PCB

e selecting next process (PCB)

Processes run quasi-parallel: OS performs context switches '

storing registers and process counter in PCB

selecting next process (PCB)

restoring registers, instruction pointer, virtual memory table pointer

Processes run quasi-parallel: OS performs context switches '

storing registers and process counter in PCB

selecting next process (PCB)
e restoring registers, instruction pointer, virtual memory table pointer

flushing of caches

e Creation of a new process involves a couple of steps

e Creation of a new process involves a couple of steps:
e allocating new Process Control Block (PCB)

e Creation of a new process involves a couple of steps:

e allocating new Process Control Block (PCB)
e initializing other data structures (e.g., for virtual memory)

e Creation of a new process involves a couple of steps:
e allocating new Process Control Block (PCB)
e initializing other data structures (e.g., for virtual memory)
o loading first few pages from program code

e Creation of a new process involves a couple of steps:

e allocating new Process Control Block (PCB)

e initializing other data structures (e.g., for virtual memory)
o loading first few pages from program code

o loading required libraries

¢ Advantages?

¢ Disadvantages?

¢ Advantages?
o Security: other processes cannot read memory / confidential data

¢ Disadvantages?

¢ Advantages?

o Security: other processes cannot read memory / confidential data
o Safety: if one process fails, it cannot influence other processes directly

¢ Disadvantages?

¢ Advantages?
o Security: other processes cannot read memory / confidential data
o Safety: if one process fails, it cannot influence other processes directly
e Virtual memory: More memory can be used than actually physically
available

¢ Disadvantages?

¢ Advantages?

o Security: other processes cannot read memory / confidential data

o Safety: if one process fails, it cannot influence other processes directly

e Virtual memory: More memory can be used than actually physically
available

¢ Disadvantages?

e Inter-process communication (IPC) slow

¢ Advantages?

o Security: other processes cannot read memory / confidential data

o Safety: if one process fails, it cannot influence other processes directly

e Virtual memory: More memory can be used than actually physically
available

¢ Disadvantages?

e Inter-process communication (IPC) slow
e context switch slow

¢ Advantages?

o Security: other processes cannot read memory / confidential data

o Safety: if one process fails, it cannot influence other processes directly

e Virtual memory: More memory can be used than actually physically
available

¢ Disadvantages?

e Inter-process communication (IPC) slow
e context switch slow
e explicit sharing of data/information complicated

¢ Advantages?
o Security: other processes cannot read memory / confidential data
o Safety: if one process fails, it cannot influence other processes directly
e Virtual memory: More memory can be used than actually physically

available
¢ Disadvantages?
e Inter-process communication (IPC) slow

e context switch slow
e explicit sharing of data/information complicated
e initialization/management time and resource consuming

¢ Advantages?

o Security: other processes cannot read memory / confidential data

o Safety: if one process fails, it cannot influence other processes directly

e Virtual memory: More memory can be used than actually physically
available

¢ Disadvantages?

e Inter-process communication (IPC) slow
context switch slow
explicit sharing of data/information complicated
initialization/management time and resource consuming
passing of handles complex

e “Lightweight Processes”

e “Lightweight Processes”
e a process can own an arbitrary number of threads

e “Lightweight Processes”

e a process can own an arbitrary number of threads
o all threads of a process run quasi-parallel to each other

e “Lightweight Processes”
e a process can own an arbitrary number of threads
o all threads of a process run quasi-parallel to each other
o scheduling via OS (kernel-mode threads) or owning process (usermode
threads)

e “Lightweight Processes”

a process can own an arbitrary number of threads

all threads of a process run quasi-parallel to each other

scheduling via OS (kernel-mode threads) or owning process (usermode
threads)

all threads of one process share the resources of this process

e “Lightweight Processes”

e a process can own an arbitrary number of threads

o all threads of a process run quasi-parallel to each other

o scheduling via OS (kernel-mode threads) or owning process (usermode
threads)

e all threads of one process share the resources of this process

o all threads of one process reside in this processes address space

e “Lightweight Processes”
e a process can own an arbitrary number of threads
o all threads of a process run quasi-parallel to each other
o scheduling via OS (kernel-mode threads) or owning process (usermode
threads)
e all threads of one process share the resources of this process
o all threads of one process reside in this processes address space
o each thread has private stack and virtual processor

Threads %ﬁ)

e “Lightweight Processes”

a process can own an arbitrary number of threads

all threads of a process run quasi-parallel to each other

scheduling via OS (kernel-mode threads) or owning process (usermode
threads)

all threads of one process share the resources of this process

all threads of one process reside in this processes address space

each thread has private stack and virtual processor

e Context switch much faster: caches do not need to be flushed, virtual
memory does not need to be switched

Distributed Computing Thomas Weise 10/20

Threads §\

1AQ

e “Lightweight Processes”

e a process can own an arbitrary number of threads

e all threads of a process run quasi-parallel to each other

e scheduling via OS (kernel-mode threads) or owning process (usermode
threads)

e all threads of one process share the resources of this process

o all threads of one process reside in this processes address space

e each thread has private stack and virtual processor

e Context switch much faster: caches do not need to be flushed, virtual
memory does not need to be switched

o No security threat: all threads in one process are part of the same
program

Distributed Computing Thomas Weise 10/20

e Traditionally: Web Servers fork ed in Unix

e Traditionally: Web Servers fork ed in Unix:
o multi-process systems

e Traditionally: Web Servers fork ed in Unix:

e multi-process systems
o safe

e Traditionally: Web Servers fork ed in Unix:
e multi-process systems
o safe
e high resource consumption

e Traditionally: Web Servers fork ed in Unix:
o multi-process systems
o safe

e high resource consumption
o for each request, a new process is created, which costs time before the

request is processed

e Traditionally: Web Servers fork ed in Unix:

e multi-process systems

e safe

e high resource consumption

o for each request, a new process is created, which costs time before the

request is processed
e Multi-threaded servers

e Traditionally: Web Servers fork ed in Unix:

e multi-process systems

e safe

e high resource consumption

o for each request, a new process is created, which costs time before the

request is processed
e Multi-threaded servers:
e multiple threads process client requests in parallel

o faster
e less secure/safe: 1 compromised thread can compromise the whole

Server process

16]

e Java has built-in, easy-to-use support for multi-threadding >~

e Java has built-in, easy-to-use support for multi-threadding [*>-*°

e Class Thread

e Java has built-in, easy-to-use support for multi-threadding [*>-*°

e Class Thread :

e has method void run() which does the work and can be overridden

e Java has built-in, easy-to-use support for multi-threadding [*>-*°

e Class Thread :

e has method void run() which does the work and can be overridden

e is started with void start()

16]

e Java has built-in, easy-to-use support for multi-threadding >~

e Class Thread :

e has method void run() which does the work and can be overridden
e is started with void start()

e we can wait until it is finished with void join()

16]

e Java has built-in, easy-to-use support for multi-threadding >~

e Class Thread :
e has method void run() which does the work and can be overridden
o is started with void start()
e we can wait until it is finished with void join()

e |nterface Runmnable

[12-16]

e Java has built-in, easy-to-use support for multi-threadding
e Class Thread :

e has method void run() which does the work and can be overridden
e is started with void start()
e we can wait until it is finished with void join()

e |nterface Runmnable

e has method void run() which may do some work

16]

e Java has built-in, easy-to-use support for multi-threadding >~

e Class Thread :

e has method void run() which does the work and can be overridden
e is started with void start()
e we can wait until it is finished with void join()

e |nterface Runmnable

e has method void run() which may do some work
e can be passed into the constructor of Thread , thread will then

execute run() when started

Multi-Threaded HTTP Server / Java

Listing: MinHTTPServerMultiThread.java Multi-Threaded HTTP Server / Java

import java.io.BuffersdReadsr; import java.ie.File

port java.io.FileInputStrean;
import java.ie.OutputStreamiriter;

iz inport java.io.InputStreamReader;
inport java.ie.PrintWriter; isport java.net.ServerSockst;

import java.met.Socket;

public class MinKTTPServerMultiThread {

public static timl vold main(tinal Stringl] args) {
ServerSocket server; oc

ey
server = new ServerSocket (9995);
for i) {

client = server.accept
A S

»

¥ catch (Throvable ©) {
©.printStackTrace O ;

3

3

private static fimal class Job implements Rumnabls {

hie.n_client=cliont;

override

public final void runO{

BufferedReader br; Printériter pu; String s File f;
bytel] bs; FilolnputStream fis; Throvable x; int 1;
eyt

br = ne (this.m_cli

s
v it P T R L ST

process: { /@ +
x = null;

v <
hile (6 = brireadtine0) 1= mui) ¢

it (s.startaRich (“GE «

S b, ¢ indesot(

bycol(int) (£ length ()1
new FileInputstreas(f);
£1s.read(ba);
fis. 10000

. 4)).replace('/', File.separatorChar));

Bu-erite CHITP/I 1200, 0K\ . £10sb 0
m_client.getOutputStrean().urite(bs, 0, 1);

B+m
ak process;
3
3

¥ caten (Throvable t) { x= t; }

pu.urite (“NTTP/1.1,404 Not, Found\r\n\r\n<htsl><haad><titla>04</title></haad><body><hi>404 - Not, found </hi><pre>");

i£(x 1= null) { x.printStackTrace(pw); }

pu.write (" </pre></body></Btal");

P flush(); LRy}
)

this.m_client.close();

i mrovaris seror) { scior prineseackTrace(; 3

) Distributed Computing Thomas Weise 13/20

e Now we create a new thread for every single request

e Now we create a new thread for every single request

o Wasteful: many threads are created and used only once (threads are
OS resources)

e Now we create a new thread for every single request
o Wasteful: many threads are created and used only once (threads are

OS resources)
o What if very many requests come at a time? Fraction of

runtime/thread will go down to 0

e Now we create a new thread for every single request
o Wasteful: many threads are created and used only once (threads are
OS resources)
o What if very many requests come at a time? Fraction of
runtime/thread will go down to 0

e A thread pool keeps n threads and has a job queue

e Now we create a new thread for every single request

o Wasteful: many threads are created and used only once (threads are
OS resources)

o What if very many requests come at a time? Fraction of
runtime/thread will go down to 0

e A thread pool keeps n threads and has a job queue
o If a thread is idle, it takes a job out of the queue and processes it

e Now we create a new thread for every single request
o Wasteful: many threads are created and used only once (threads are
OS resources)
o What if very many requests come at a time? Fraction of
runtime/thread will go down to 0
e A thread pool keeps n threads and has a job queue

o If a thread is idle, it takes a job out of the queue and processes it
e If no job is in the queue, it waits for the next job

e Now we create a new thread for every single request
o Wasteful: many threads are created and used only once (threads are
OS resources)
o What if very many requests come at a time? Fraction of
runtime/thread will go down to 0

e A thread pool keeps n threads and has a job queue

o If a thread is idle, it takes a job out of the queue and processes it
e If no job is in the queue, it waits for the next job
o After it is finished, it becomes idle again

Thread Pools in Java §\

e Now we create a new thread for every single request
e Wasteful: many threads are created and used only once (threads are

OS resources)
e What if very many requests come at a time? Fraction of
runtime/thread will go down to 0
e A thread pool keeps n threads and has a job queue
If a thread is idle, it takes a job out of the queue and processes it
If no job is in the queue, it waits for the next job
After it is finished, it becomes idle again
A job is executed by at most 1 thread

Distributed Computing Thomas Weise 14/20

Thread Pools in Java %0,

e Now we create a new thread for every single request
e Wasteful: many threads are created and used only once (threads are

OS resources)
e What if very many requests come at a time? Fraction of
runtime/thread will go down to 0

e A thread pool keeps n threads and has a job queue

e If a thread is idle, it takes a job out of the queue and processes it
e If no job is in the queue, it waits for the next job

o After it is finished, it becomes idle again

e A job is executed by at most 1 thread

e ExecutorService Iis an interface of classes that can execute Runnable s

Distributed Computing Thomas Weise 14/20

Thread Pools in Java

”

>
<

e Now we create a new thread for every single request
e Wasteful: many threads are created and used only once (threads are
OS resources)
e What if very many requests come at a time? Fraction of
runtime/thread will go down to 0
A thread pool keeps n threads and has a job queue
e If a thread is idle, it takes a job out of the queue and processes it
e If no job is in the queue, it waits for the next job
o After it is finished, it becomes idle again
e A job is executed by at most 1 thread

ExecutorService is an interface of classes that can execute Runnable S

® Executors.newFixedThreadPool(n) creates a thread-pool based

ExecutorService

Distributed Computing Thomas Weise 14/20

Thread-Pooled HTTP Server / Java

Listing: MinHTTPServerThreadPool.java Thread-Pooled HTTP Server / Java

import java.io.BuffersdReadsr;

smport java.io.File; import java.io.File i import java
import java.io.Printiriter; e S ol e

sport java.io.QutputStrasmiriter;

P $0 Y PG PECmir Ay AEor S0 08 P GG, CECRR oD

public class MinKTTPServerThreadPool {
public static final sadn(tinal Seringl] axgs) ¢
ServerSocket server; lient; ExecutorService pool;
ey ©
ool = Exscutors.newFix

edThrandPosl (1005

new ServerSocket (9994) ;

client = sarver.accept();
Pool.execute(new Job(client));

Y catch (Throvable ©) {
©.printStackTrace O ;
3

3

private static fimal class Job implements Rumnabls {

hie.n_client=cliont;

override

public final void runO{

BufferedReader br; PrintWriter pu; String s File f;
bytel] bs; FilolnputStream fis; Throvable x; int 1;
eyt

br (this.m_cli

s
v it P T R L ST
process: { /@ +

x = null;

it (s.startaRich (“GE
S b, ¢ indesot(

bycol(int) (£ length ()1

new FileInputstreas(f);

£1s.read(ba);

fis. 10000

X
¥iile (o = brceadline) 1= m) ¢
€

. 4)).replace('/', File.separatorChar));

Pu-erise CHITP/I. 13000\ R RV \)

pu.flush O
m_client.getOutputStrean().urite(bs, 0, 1); B+m
ak process;
3
3
¥ caten (Throvable t) { x= t; }
pu.urite (“NTTP/1.1,404 Not, Found\r\n\r\n<htsl><haad><titla>04</title></haad><body><hi>404 - Not, found </hi><pre>");
i£(x 1= null) { x.printStackTrace(pw); }
pu.write (" </pre></body></Btal");
P flush(); LRy}
)

this.m_client.close();

i mrovaris seror) { scior prineseackTrace(; 3

Distributed Computing Thomas Weise 15/20

Summary %\

e Parallelism may increase server performance significantly.

e The concept of threads allows for pre-emptive multi-tasking of
different (quasi-)parallel strands of a process.

e The class Thread implements this in Java.
e Each client of a server can be processed by a different thread.

e Since Thread s are expensive system resources, thread pools can hold
a set of threads to be re-used for future clients after having
completed a task.

Distributed Computing Thomas Weise 16,/20

il
Thank you

Thomas Weise [i% 2 .&]
tweise@hfuu.edu.cn
http://www.it-weise.de

Hefei University, South Campus 2
Institute of Applied Optimization
Shushan District, Hefei, Anhui,
China

Distributed Computing

Thomas Weise

Caspar David Fried
hitp:/fen.wikip

mailto:tweise@hfuu.edu.cn
mailto:http://www.it-weise.de

Bibliography |

W

1AQ

1. William Stallings. Operating Systems: Internals and Design Principles. Gradience Online Accelerated Learning Series
(GOAL). Upper Saddle River, NJ, USA: Pearson Education and Upper Saddle River, NJ, USA: Prentice Hall International
Inc., 2004. ISBN 0029464919, 0130319996, 0131479547, 0131809776, 0136006329, 0138874077, 0139179984,
9780029464915, 9780130319999, 978-0131479548, 9780131809772, 978-0136006329, 9780138874070, and
9780139179983. URL http://books.google.de/books?id=dBQFXs5NPEYC.

2. Gary J. Nutt. Operating Systems: A Modern Perspective. Reading, MA, USA: Addison-Wesley Publishing Co. Inc., 2002.
ISBN 0201741962 and 9780201741964. URL http://books.google.de/books?id=AHBGAAAAYAAJ.

3. Andrew Stuart Tanenbaum. Modern Operating Systems. Upper Saddle River, NJ, USA: Pearson Education and Upper
Saddle River, NJ, USA: Prentice Hall International Inc., 2008. ISBN 0136006639 and 978-0136006633. URL
http://books.google.de/books?id=y22rPwAACAAJ.

4. Jean Bacon and Tim Harris. Operating Systems: Concurrent and Distributed Software Design. International Computer
Science Series. Reading, MA, USA: Addison-Wesley Publishing Co. Inc., 2003. ISBN 0321117891 and 9780321117892.
URL http://books.google.de/books?id=kkaaH3Q19Z4C.

5. Harvey M. Deitel, Paul J. Deitel, and David R. Choffnes. Operating Systems. Upper Saddle River, NJ, USA: Pearson
Education and Upper Saddle River, NJ, USA: Prentice Hall International Inc., 2004. ISBN 0131828274 and
9780131828278. URL http://books.google.de/books?id=M45QAAAAMAAT.

6. Mukesh Singhal and Niranjan G. Shivaratri. Advanced Concepts in Operating Systems. McGraw-Hill Series in Computer
Science: Systems and Languages. Maidenhead, England, UK: McGraw-Hill Ltd., 1994. ISBN 007057572X and
9780070575721. URL http://books.google.de/books?id=sL1QAAAAMAA].

7. Andrew Stuart Tanenbaum and Albert S. Woodhull. Operating Systems: Design and Implementation. Upper Saddle River,
NJ, USA: Pearson Education, 2009. ISBN 0135053765 and 9780135053768. URL
http://books.google.de/books?id=MOQhQAAACAAJ.

8. David A. Solomon and Mark E. Russinovich. Inside Microsoft Windows 2000. Microsoft Programming Series. Redmond,
WA, USA: Microsoft Press, 2000. ISBN 0735610215 and 9780735610217. URL
http://books.google.de/books?id=3xqBRAAACAAJ.

9. Len Bass, Paul Clements, and Rick Kazman. Software Architecture in Practice. SE| Series in Software Engineering.
Reading, MA, USA: Addison-Wesley Professional, 2003. ISBN 0321154959 and 9780321154958. URL
http://books.google.de/books?id=mdiIu8Kk1WMC.

10. Winfried Kalfa. Betriebssysteme, volume 24 of Informatik, Kybernetik, Rechentechnik. Berlin, Germany: Akademie Verlag,
1988. ISBN 3055004779 and 9783055004773. URL http://books.google.de/books?id=Pm8mAAAACAAJ.

Distributed Computing Thomas Weise 19/20

http://books.google.de/books?id=dBQFXs5NPEYC
http://books.google.de/books?id=AHBGAAAAYAAJ
http://books.google.de/books?id=y22rPwAACAAJ
http://books.google.de/books?id=kkaaH3Q19Z4C
http://books.google.de/books?id=M45QAAAAMAAJ
http://books.google.de/books?id=sLlQAAAAMAAJ
http://books.google.de/books?id=MOQhQAAACAAJ
http://books.google.de/books?id=3xqBRAAACAAJ
http://books.google.de/books?id=mdiIu8Kk1WMC
http://books.google.de/books?id=Pm8mAAAACAAJ

Bibliography 11

W

>
<

11. Jiirgen Grothe and Winfried Kalfa. Grundlagen der Betriebssysteme, volume 2-1500 of Lehrbriefe fiir das
Hochschulfernstudium. Dresden, Sachsen, Germany: Zentralstelle fiir das Hochschulfernstudium des Ministeriums fiir
Hoch- und Fachschulwesen, 1988. URL http://books.google.de/books?id=-62uPgAACAAJ.

12. Scott Oaks and Henry Wong. Java Threads. The Java Series. Upper Saddle River, NJ, USA: Prentice Hall International
Inc., Santa Clara, CA, USA: Sun Microsystems Press (SMP), and Reading, MA, USA: Addison-Wesley Professional, 3rd
edition, 2004. ISBN 0596007825 and 9780596007829. URL http://books.google.de/books?id=mB_92VqJbsMC.

13. James Gosling, William Nelson Joy, Guy Lewis Steele Jr., and Gilad Bracha. The Java™ Language Specification. The Java
Series. Upper Saddle River, NJ, USA: Prentice Hall International Inc., Santa Clara, CA, USA: Sun Microsystems Press
(SMP), and Reading, MA, USA: Addison-Wesley Professional, 3rd edition, May 2005. ISBN 0-321-24678-0 and
978-0321246783. URL http://java.sun.com/docs/books/jls/.

14. Guido Kriiger. Handbuch der Java-Programmierung. 4. aktualisierte edition. ISBN 3-8273-2361-4 and 3-8273-2447-5. URL
http://www.javabuch.de/.

15. Christian Ullenboom. Java ist auch eine Insel — Programmieren mit der Java Standard Edition Version 6. Bonn, North
Rhine-Westphalia, Germany: Galileo-Press, 6. aktualisierte und erweiterte edition, 2007. ISBN 3-89842-838-9 and
978-3-89842-838-5. URL http://www.galileocomputing.de/openbook/javainsel6/.

16. Santa Clara, CA, USA: Sun Microsystems, Inc. Java™ 2 Platform Standard Edition 5.0 — API Specification, October 19,
2010.

17. Timothy John Berners-Lee, R. Fielding, and H. Frystyk. Hypertext Transfer Protocol — HTTP/1.0, volume 1945 of
Request for Comments (RFC). Network Working Group, May 1996. URL http://tools.ietf.org/html/rfc1945.

18. R. Fielding, J. Gettys, Jeffrey Mogul, H. Frystyk, L. Masinter, P. Leach, and Timothy John Berners-Lee. Hypertext
Transfer Protocol — HTTP/1.1, volume 2616 of Request for Comments (RFC). Network Working Group, June 1999. URL
http://tools.ietf.org/html/rfc2616.

Distributed Computing Thomas Weise 20/20

http://books.google.de/books?id=-62uPgAACAAJ
http://books.google.de/books?id=mB_92VqJbsMC
http://java.sun.com/docs/books/jls/
http://www.javabuch.de/
http://www.galileocomputing.de/openbook/javainsel6/
http://tools.ietf.org/html/rfc1945
http://tools.ietf.org/html/rfc2616

	Outline
	Overview
	Processing Models
	So far…
	Single-Machine Parallelism
	Processes
	Parallelism: Context Switch
	Process Creation
	Processes: Advantages/Disadvantages
	Threads
	What to use?

	Java
	Threads in Java
	Multi-Threaded HTTP Server / Java
	Thread Pools in Java
	Thread-Pooled HTTP Server / Java
	Summary

	Presentation End
	Bibliography

