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Overview

• Servers need to deal with multiple clients at the same time.

• Dealing with clients may involve I/O to/from the disk or
communication with other processes, meaning that at times, the CPU
does no real work for a task (but waits for I/O completion)?

• The CPU time can be used more efficiently if “shared” between
clients.

• Threads allow for having multiple, independent, (quasi-)parallel
streams of execution in a program.

• Threads are resources that can be pooled and cached.
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So far. . .

• Distributed systems are inherently parallel

• On each node, some process may be running

• Multiple nodes may communicate at the same time

• Multiple connection requests or data packets may arrive at a server
socket at the same time or close to each other

• The examples so far process one request (= job) at a time, roughly in
FIFO order

• If we have a single processor and no blocking (system) calls during a
job, this is OK

• Usually, we have multiple (virtual) processors AND blocking system
calls

• We waste runtime.

• So what to do?
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Single-Machine Parallelism

• First and second generation systems: only single program in execution

• For better resource utilization: multiple programs loaded, “switching”
of active process

• Preemptive multitasking: “switching” performed by the operating
system, e.g., via timer interrupt

• Scheduling: decision about which activity should be execute when in
order to optimize characteristics (response time, throughput)

• 3rd generation systems: virtualization: memory, processors

Distributed Computing Thomas Weise 5/20



Processes

• Processes are the basic activities of a system

Distributed Computing Thomas Weise 6/20



Processes

• Processes are the basic activities of a system

• Processes use resources exclusively

Distributed Computing Thomas Weise 6/20



Processes

• Processes are the basic activities of a system

• Processes use resources exclusively, e.g.,

1 (virtual) memory

Distributed Computing Thomas Weise 6/20



Processes

• Processes are the basic activities of a system
• Processes use resources exclusively, e.g.,

1 (virtual) memory:
• each process has an own virtual address space

Distributed Computing Thomas Weise 6/20



Processes

• Processes are the basic activities of a system
• Processes use resources exclusively, e.g.,

1 (virtual) memory:
• each process has an own virtual address space
• other processes cannot read or write into this memory (except for

shared memory)

Distributed Computing Thomas Weise 6/20



Processes

• Processes are the basic activities of a system
• Processes use resources exclusively, e.g.,

1 (virtual) memory:
• each process has an own virtual address space
• other processes cannot read or write into this memory (except for

shared memory)
• processes thus “think” that they are “alone” in the memory

Distributed Computing Thomas Weise 6/20



Processes

• Processes are the basic activities of a system
• Processes use resources exclusively, e.g.,

1 (virtual) memory:
• each process has an own virtual address space
• other processes cannot read or write into this memory (except for

shared memory)
• processes thus “think” that they are “alone” in the memory
• see operating systems lectures [1–11]. . .

Distributed Computing Thomas Weise 6/20



Processes

• Processes are the basic activities of a system

• Processes use resources exclusively, e.g.,

1 (virtual) memory
2 (virtual) processor

Distributed Computing Thomas Weise 6/20



Processes

• Processes are the basic activities of a system
• Processes use resources exclusively, e.g.,

1 (virtual) memory
2 (virtual) processor:

• scheduling transparent for processes

Distributed Computing Thomas Weise 6/20



Processes

• Processes are the basic activities of a system
• Processes use resources exclusively, e.g.,

1 (virtual) memory
2 (virtual) processor:

• scheduling transparent for processes
• processes think they have their own processor on which only they are

executed

Distributed Computing Thomas Weise 6/20



Processes

• Processes are the basic activities of a system
• Processes use resources exclusively, e.g.,

1 (virtual) memory
2 (virtual) processor:

• scheduling transparent for processes
• processes think they have their own processor on which only they are

executed
• see operating systems lectures [1–11]. . .

Distributed Computing Thomas Weise 6/20



Processes

• Processes are the basic activities of a system

• Processes use resources exclusively, e.g.,

1 (virtual) memory
2 (virtual) processor
3 other resources

Distributed Computing Thomas Weise 6/20



Processes

• Processes are the basic activities of a system

• Processes use resources exclusively, e.g.,

1 (virtual) memory
2 (virtual) processor
3 other resources

• usually via “handles”, i.e., unique IDs identifying resource owner which
are valid only inside the process which acquired them

• sockets in C are such handles, socket objects in Java map to handles

Distributed Computing Thomas Weise 6/20



Processes
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• Processes use resources exclusively, e.g.,

1 (virtual) memory
2 (virtual) processor
3 other resources

• usually via “handles”, i.e., unique IDs identifying resource owner which
are valid only inside the process which acquired them

• sockets in C are such handles, socket objects in Java map to handles
• handles not visible/useful for other processes
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Parallelism: Context Switch

• Processes run quasi-parallel: OS performs context switches [1–11]

• storing registers and process counter in PCB

• selecting next process (PCB)

• restoring registers, instruction pointer, virtual memory table pointer

• flushing of caches
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Process Creation

• Creation of a new process involves a couple of steps:
• allocating new Process Control Block (PCB)
• initializing other data structures (e.g., for virtual memory)
• loading first few pages from program code
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• Advantages?
• Security: other processes cannot read memory / confidential data
• Safety: if one process fails, it cannot influence other processes directly
• Virtual memory: More memory can be used than actually physically

available

• Disadvantages?
• Inter-process communication (IPC) slow
• context switch slow
• explicit sharing of data/information complicated
• initialization/management time and resource consuming
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• “Lightweight Processes”
• a process can own an arbitrary number of threads
• all threads of a process run quasi-parallel to each other
• scheduling via OS (kernel-mode threads) or owning process (usermode

threads)
• all threads of one process share the resources of this process
• all threads of one process reside in this processes address space
• each thread has private stack and virtual processor

• Context switch much faster: caches do not need to be flushed, virtual
memory does not need to be switched

• No security threat: all threads in one process are part of the same
program
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What to use?

• Traditionally: Web Servers fork ed in Unix:
• multi-process systems
• safe
• high resource consumption
• for each request, a new process is created, which costs time before the

request is processed

• Multi-threaded servers:
• multiple threads process client requests in parallel
• faster
• less secure/safe: 1 compromised thread can compromise the whole

server process
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Threads in Java

• Java has built-in, easy-to-use support for multi-threadding [12–16]
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• Java has built-in, easy-to-use support for multi-threadding [12–16]

• Class Thread :

• has method void run() which does the work and can be overridden

• is started with void start()

• we can wait until it is finished with void join()

• Interface Runnable

• has method void run() which may do some work

• can be passed into the constructor of Thread , thread will then

execute run() when started
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Multi-Threaded HTTP Server / Java

Listing: MinHTTPServerMultiThread.java Multi-Threaded HTTP Server / Java

import java.io.BufferedReader; import java.io.File; import java.io.FileInputStream; import java.io.InputStreamReader;

import java.io.OutputStreamWriter; import java.io.PrintWriter; import java.net.ServerSocket; import java.net.Socket;

public class MinHTTPServerMultiThread {

public static final void main(final String [] args) {

ServerSocket server; Socket client;

try {

server = new ServerSocket (9995); // create server socket 1 + 2)

for (;;) { // forever ...

client = server.accept (); //wait for and accept incoming connection 3)

new Thread(new Job(client)).start(); // create and start a new thread to process the request

}

} catch (Throwable t) {

t.printStackTrace ();

}

}

private static final class Job implements Runnable { //the job class: process one request; Runnable is the key interface

private final Socket m_client; //the client socket to process

Job(final Socket client){ // create a job for a given socket

this.m_client=client;

}

@Override //this method is executed by the thread that was created with this object as constructor parameter

public final void run(){ // process the client socket: exactly the same as in the MinHTTPServer example

BufferedReader br; PrintWriter pw; String s; File f;

byte[] bs; FileInputStream fis; Throwable x; int i;

try{

br = new BufferedReader(new InputStreamReader(this.m_client.getInputStream ())); // read character data

pw = new PrintWriter(new OutputStreamWriter(this.m_client.getOutputStream (), "ISO_8859 -1")); //chose the right encoding! [17, 18]

process: { // 4 + 3)

x = null;

try {

while ((s = br.readLine ()) != null) { //read text from connection line -by-line until end

if (s.startsWith("GET ")) { // try to find the GET command in the HTTP request [17, 18]

f = new File(s.substring(4, s.indexOf(' ', 4)).replace('/', File.separatorChar)); //in a very crude way , extract the requested path from that command

bs = new byte[(int) (f.length ())]; // allocate a buffer of the right size

fis = new FileInputStream(f); //open the file

i = fis.read(bs); //read the complete file into memory

fis.close(); //close the file

pw.write("HTTP /1.1 200 OK\r\n\r\n"); pw.flush (); //send "success" according to [17, 18]

this.m_client.getOutputStream ().write(bs, 0, i); //... and the file content (4 + 3))

break process; //ok, we are finished here

}

}

} catch (Throwable t) { x= t; } //if request fails , remember why

//hm , we did not find the file or had an error [17, 18]

pw.write("HTTP /1.1 404 Not Found\r\n\r\n<html ><head ><title >404</title ></head ><body ><h1 >404 - Not found </h1><pre >");

if(x != null) { x.printStackTrace(pw); } //write the error message (notice the <pre >...</pre > wrapper)

pw.write(" </pre ></body ></html"); //end the html body

pw.flush(); //and flush (4 + 3))

}

this.m_client.close (); }// 4)

catch(Throwable error) { error.printStackTrace (); }

}

}
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• A thread pool keeps n threads and has a job queue
• If a thread is idle, it takes a job out of the queue and processes it
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Thread-Pooled HTTP Server / Java

Listing: MinHTTPServerThreadPool.java Thread-Pooled HTTP Server / Java

import java.io.BufferedReader; import java.io.File; import java.io.FileInputStream; import java.io.InputStreamReader; import java.io.OutputStreamWriter;

import java.io.PrintWriter; import java.net.ServerSocket; import java.net.Socket; import java.util.concurrent.ExecutorService; import java.util.concurrent.Executors;

public class MinHTTPServerThreadPool {

public static final void main(final String [] args) {

ServerSocket server; Socket client; ExecutorService pool;

try {

pool = Executors.newFixedThreadPool (10); // create a pool of 10 threads waiting to execute something

server = new ServerSocket (9994); // 1 + 2)

for (;;) {

client = server.accept (); //wait for and accept new connection 3)

pool.execute(new Job(client)); // enqueue the job into the pool's job queue , it will be executed when a thread is ready

}

} catch (Throwable t) {

t.printStackTrace ();

}

}

private static final class Job implements Runnable { //the job class: process one request; Runnable is the key interface

private final Socket m_client; //the client socket to process

Job(final Socket client){ // create a job for a given socket

this.m_client=client;

}

@Override //this method is executed by a thread in the thread pool

public final void run(){

BufferedReader br; PrintWriter pw; String s; File f;

byte[] bs; FileInputStream fis; Throwable x; int i;

try{

br = new BufferedReader(new InputStreamReader(this.m_client.getInputStream ())); // read character data

pw = new PrintWriter(new OutputStreamWriter(this.m_client.getOutputStream (), "ISO_8859 -1")); //chose the right encoding! [17, 18]

process: { // 4 + 3)

x = null;

try {

while ((s = br.readLine ()) != null) { //read text from connection line -by-line until end

if (s.startsWith("GET ")) { // try to find the GET command in the HTTP request [17, 18]

f = new File(s.substring(4, s.indexOf(' ', 4)).replace('/', File.separatorChar)); //in a very crude way , extract the requested path from that command

bs = new byte[(int) (f.length ())]; // allocate a buffer of the right size

fis = new FileInputStream(f); //open the file

i = fis.read(bs); //read the complete file into memory

fis.close(); //close the file

pw.write("HTTP /1.1 200 OK\r\n\r\n"); pw.flush (); //send "success" according to [17, 18]

this.m_client.getOutputStream ().write(bs, 0, i); //... and the file content (4 + 3))

break process; //ok, we are finished here

}

}

} catch (Throwable t) { x= t; } //if request fails , remember why

//hm , we did not find the file or had an error [17, 18]

pw.write("HTTP /1.1 404 Not Found\r\n\r\n<html ><head ><title >404</title ></head ><body ><h1 >404 - Not found </h1><pre >");

if(x != null) { x.printStackTrace(pw); } //write the error message (notice the <pre >...</pre > wrapper)

pw.write(" </pre ></body ></html"); //end the html body

pw.flush(); //and flush (4 + 3))

}

this.m_client.close (); }// 4)

catch(Throwable error) { error.printStackTrace (); }

}

}
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Summary

• Parallelism may increase server performance significantly.

• The concept of threads allows for pre-emptive multi-tasking of
different (quasi-)parallel strands of a process.

• The class Thread implements this in Java.

• Each client of a server can be processed by a different thread.

• Since Thread s are expensive system resources, thread pools can hold
a set of threads to be re-used for future clients after having
completed a task.
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Caspar David Friedrich, “Der Wanderer über dem Nebelmeer”, 1818
http://en.wikipedia.org/wiki/Wanderer_above_the_Sea_of_Fog
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