
Distributed Computing
Lesson 7: Text Encoding

Thomas Weise · 汤卫思

tweise@hfuu.edu.cn · http://www.it-weise.de

Hefei University, South Campus 2 合肥学院 南艳湖校区/南2区
Faculty of Computer Science and Technology 计算机科学与技术系

Institute of Applied Optimization 应用优化研究所

230601 Shushan District, Hefei, Anhui, China 中国 安徽省 合肥市 蜀山区 230601
Econ. & Tech. Devel. Zone, Jinxiu Dadao 99 经济技术开发区 锦绣大道99号

mailto:tweise@hfuu.edu.cn
http://www.it-weise.de

Outline

1 Character Encoding

Distributed Computing Thomas Weise 2/13

w
e
b
s
it
e

Overview

• How can we deal with text?

• How can we know that a sequence of bits stands for “汤卫思” and
not for “Ölüberschussländer”?

Distributed Computing Thomas Weise 3/13

Character Encoding

• Different languages have different characters

Distributed Computing Thomas Weise 4/13

Character Encoding

• Different languages have different characters

• Originally, storage of text data was mainly designed for US English

Distributed Computing Thomas Weise 4/13

Character Encoding

• Different languages have different characters

• Originally, storage of text data was mainly designed for US English

• Here, 1B per character is sufficient: ASCII / ISO/IEC 8859-1 [1]

Distributed Computing Thomas Weise 4/13

Character Encoding

• Different languages have different characters

• Originally, storage of text data was mainly designed for US English

• Here, 1B per character is sufficient: ASCII / ISO/IEC 8859-1 [1]

• Original idea: bytes have different meaning, depending on language

Distributed Computing Thomas Weise 4/13

Character Encoding

• Different languages have different characters

• Originally, storage of text data was mainly designed for US English

• Here, 1B per character is sufficient: ASCII / ISO/IEC 8859-1 [1]

• Original idea: bytes have different meaning, depending on language
(for German, we can e.g., replace some less important characters with
“ä” and “ß”. . .)

Distributed Computing Thomas Weise 4/13

Character Encoding

• Different languages have different characters

• Originally, storage of text data was mainly designed for US English

• Here, 1B per character is sufficient: ASCII / ISO/IEC 8859-1 [1]

• Original idea: bytes have different meaning, depending on language

• GB2312 [2] encoding especially for Chinese characters (2B for each
non- ASCII char)

Distributed Computing Thomas Weise 4/13

Character Encoding

• Different languages have different characters

• Originally, storage of text data was mainly designed for US English

• Here, 1B per character is sufficient: ASCII / ISO/IEC 8859-1 [1]

• Original idea: bytes have different meaning, depending on language

• GB2312 [2] encoding especially for Chinese characters (2B for each
non- ASCII char)

• These approaches are insufficient for other languages

Distributed Computing Thomas Weise 4/13

Character Encoding

• Different languages have different characters

• Originally, storage of text data was mainly designed for US English

• Here, 1B per character is sufficient: ASCII / ISO/IEC 8859-1 [1]

• Original idea: bytes have different meaning, depending on language

• GB2312 [2] encoding especially for Chinese characters (2B for each
non- ASCII char)

• These approaches are insufficient for other languages

• Universal Coded Character Set (UCS) [3] and Unicode [4–6]

Distributed Computing Thomas Weise 4/13

Character Encoding

• Different languages have different characters

• Originally, storage of text data was mainly designed for US English

• Here, 1B per character is sufficient: ASCII / ISO/IEC 8859-1 [1]

• Original idea: bytes have different meaning, depending on language

• GB2312 [2] encoding especially for Chinese characters (2B for each
non- ASCII char)

• These approaches are insufficient for other languages

• Universal Coded Character Set (UCS) [3] and Unicode [4–6]

• Encoded as UTF-7 , UTF-8 [7] (compatible to ASCII), UTF-16 , and
UTF-32

Distributed Computing Thomas Weise 4/13

Character Encoding

• Different languages have different characters

• Originally, storage of text data was mainly designed for US English

• Here, 1B per character is sufficient: ASCII / ISO/IEC 8859-1 [1]

• Original idea: bytes have different meaning, depending on language

• GB2312 [2] encoding especially for Chinese characters (2B for each
non- ASCII char)

• These approaches are insufficient for other languages

• Universal Coded Character Set (UCS) [3] and Unicode [4–6]

• Encoded as UTF-7 , UTF-8 [7] (compatible to ASCII), UTF-16 , and
UTF-32

• When sending text data, we need to make sure to use the right
encoding!

Distributed Computing Thomas Weise 4/13

Character Encoding in Java

• In Java, we can use the more general Character Stream API [8] to deal
with data conversation

Distributed Computing Thomas Weise 5/13

Character Encoding in Java

• In Java, we can use the more general Character Stream API [8] to deal
with data conversation

• Input

Distributed Computing Thomas Weise 5/13

Character Encoding in Java

• In Java, we can use the more general Character Stream API [8] to deal
with data conversation

• Input:
• Reader s read one or multiple unicode characters

Distributed Computing Thomas Weise 5/13

Character Encoding in Java

• In Java, we can use the more general Character Stream API [8] to deal
with data conversation

• Input:
• Reader s read one or multiple unicode characters

• InputStreamReader s are readers which take their data from a

byte-based input stream

Distributed Computing Thomas Weise 5/13

Character Encoding in Java

• In Java, we can use the more general Character Stream API [8] to deal
with data conversation

• Input:
• Reader s read one or multiple unicode characters

• InputStreamReader s are readers which take their data from a

byte-based input stream

• Output

Distributed Computing Thomas Weise 5/13

Character Encoding in Java

• In Java, we can use the more general Character Stream API [8] to deal
with data conversation

• Input:
• Reader s read one or multiple unicode characters

• InputStreamReader s are readers which take their data from a

byte-based input stream

• Output:
• Writer s write one or multiple unicode characters

Distributed Computing Thomas Weise 5/13

Character Encoding in Java

• In Java, we can use the more general Character Stream API [8] to deal
with data conversation

• Input:
• Reader s read one or multiple unicode characters

• InputStreamReader s are readers which take their data from a

byte-based input stream

• Output:
• Writer s write one or multiple unicode characters

• OutputStreamWriter s are writers which store all characters written to

them in a specified encoding into byte-based output streams

Distributed Computing Thomas Weise 5/13

Character Encoding in Java

• In Java, we can use the more general Character Stream API [8] to deal
with data conversation

• Input:
• Reader s read one or multiple unicode characters

• InputStreamReader s are readers which take their data from a

byte-based input stream

• Output:
• Writer s write one or multiple unicode characters

• OutputStreamWriter s are writers which store all characters written to

them in a specified encoding into byte-based output streams

• TCP sockets: plug the InputStreamReader and OutputStreamWriter s
directly into the streams that the socket offers to us

Distributed Computing Thomas Weise 5/13

Character Encoding in Java

• In Java, we can use the more general Character Stream API [8] to deal
with data conversation

• Input:
• Reader s read one or multiple unicode characters

• InputStreamReader s are readers which take their data from a

byte-based input stream

• Output:
• Writer s write one or multiple unicode characters

• OutputStreamWriter s are writers which store all characters written to

them in a specified encoding into byte-based output streams

• TCP sockets: plug the InputStreamReader and OutputStreamWriter s
directly into the streams that the socket offers to us

• UDP sockets: create the packets in memory

Distributed Computing Thomas Weise 5/13

Character Encoding in C

• Usually determined at compile-time

Distributed Computing Thomas Weise 6/13

Character Encoding in C

• Usually determined at compile-time

• Different types for different characters and encodings: char , TCHAR ,
wchar_t , . . .

Distributed Computing Thomas Weise 6/13

Minimum HTTP Server / Java

Listing: MinHTTPServer.java Minimum HTTP [9–11] Server / Java

import java.io.BufferedReader; import java.io.File; import java.io.FileInputStream; import java.io.InputStreamReader;

import java.io.OutputStreamWriter; import java.io.PrintWriter; import java.net.ServerSocket; import java.net.Socket;

public class MinHTTPServer { //this is a minimum web server; see lesson 07 coming later

public static final void main(final String [] args) {

ServerSocket server; Socket client; BufferedReader br; int i; byte[] bs;

PrintWriter pw; String s; FileInputStream fis; File f; Throwable x;

try {

server = new ServerSocket (9995); // create server socket 1 + 2)

for (;;) {

client = server.accept (); //wait for and accept incoming connections 3)

br = new BufferedReader(new InputStreamReader(client.getInputStream ())); // read character data

pw = new PrintWriter(new OutputStreamWriter(client.getOutputStream (), "ISO_8859 -1")); //chose the right encoding! [9, 10]

process: { // 4 + 3)

x = null;

try {

while ((s = br.readLine ()) != null) { //read text from connection line -by-line until end

if (s.startsWith("GET ")) { // try to find the GET command in the HTTP request [9, 10]

f = new File(s.substring(4, s.indexOf(' ', 4)).replace('/', File.separatorChar)); //in a very crude way , extract the

requested path from that command

bs = new byte[(int) (f.length ())]; // allocate a buffer of the right size

fis = new FileInputStream(f); //open the file

i = fis.read(bs); //read the complete file into memory

fis.close(); // close the file

pw.write("HTTP /1.1 200 OK\r\n\r\n"); pw.flush (); //send "success" according to [9, 10]

client.getOutputStream ().write(bs, 0, i); //... and the file content (4 + 3))

break process; //ok , we are finished here

}

}

} catch (Throwable t) { x= t; } //if request fails , remember why

//hm, we did not find the file or had an error [9, 10]

pw.write("HTTP /1.1 404 Not Found\r\n\r\n<html ><head ><title >404</title ></head ><body ><h1 >404 - Not found </h1><pre >");

if(x != null) { x.printStackTrace(pw); } //write the error message (notice the <pre >...</pre > wrapper)

pw.write(" </pre ></body ></html"); //end the html body

pw.flush (); //and flush (4 + 3))

}

client.close (); // 4)

}

} catch (Throwable t) {

t.printStackTrace ();

}

}

} Distributed Computing Thomas Weise 7/13

HTTP Client: Java

Listing: MinHTTPClient.java HTTP Client: Java

import java.io.BufferedReader; import java.io.InputStreamReader;

import java.io.OutputStreamWriter; import java.net.Socket;

public class MinHTTPClient {//this is a minimum web client; see lesson 07 coming later

public static final void main(final String [] args) {

String dest , request , response; Socket sock;

OutputStreamWriter w; BufferedReader r;

dest = "www.baidu.com"; // a random example for a Chinese host

request = "GET /index.html HTTP /1.1\ nHost: " + dest + "\n\n\n";

try {

sock = new Socket(dest , 80); // web servers are usually listening at port 80

w = new OutputStreamWriter(sock.getOutputStream ());

w.write(request); // write the HTTP request [9–11]

w.flush(); // make sure that all data has been sent

sock.shutdownOutput (); // closing down the channel for sending data to the server

r = new BufferedReader(new InputStreamReader(sock.getInputStream (), "UTF -8")); // Baidu uses UTF -8 encoding

// before they used GB2312 [2] encoding

while ((response = r.readLine ()) != null) { // read strings line -by-line until connection closed by server

System.out.println(response); // print to output

}

sock.close ();

} catch (Throwable t) {

t.printStackTrace ();

}

}

}

Distributed Computing Thomas Weise 8/13

HTTP Client: Java 1.7

Listing: MinHTTPClientJava17.java Min HTTP Client + Try-With-Resource

import java.io.BufferedReader; import java.io.InputStreamReader;

import java.io.OutputStreamWriter; import java.net.Socket;

public class MinHTTPClientJava17 {//this is a minimum web client; see lesson 07 coming later

public static final void main(final String [] args) {

String dest , request , response;

dest = "www.baidu.com"; // a random example for a Chinese host

request = "GET /index.html HTTP /1.1\ nHost: " + dest + "\n\n\n";

try(Socket sock = new Socket(dest , 80)) { // web servers are usually listening at port 80

try(OutputStreamWriter w = new OutputStreamWriter(sock.getOutputStream ())) {

w.write(request); // write the HTTP request [9–11]

w.flush(); // make sure that all data has been sent

sock.shutdownOutput (); // closing down the channel for sending data to the server

try (InputStreamReader is = new InputStreamReader(sock.getInputStream ());

BufferedReader r = new BufferedReader(is)) { // Baidu uses UTF -8 encoding

while ((response = r.readLine ()) != null) { // read strings line -by-line until connection closed by serve

System.out.println(response); // print to output

}

}

}

} catch (Throwable t) {

t.printStackTrace ();

}

}

}

Distributed Computing Thomas Weise 9/13

Summary

• Text is a very complex variable-length data structure.

• Historically, there exist many different mappings from characters to
bits and bytes.

• Unicode assigns an integer number to a character.

• UTF-8 defines how such a number can be translated to a
variable-length list of bits.

• UTF-8 is now the prevalent text encoding in the internet, i.e., you
should store all your text-based documents (txt, html, xml, . . .) in
UTF-8 encoding.

Distributed Computing Thomas Weise 10/13

Caspar David Friedrich, “Der Wanderer über dem Nebelmeer”, 1818
http://en.wikipedia.org/wiki/Wanderer_above_the_Sea_of_Fog

谢谢谢谢谢谢
Thank you

Thomas Weise [汤卫思]
tweise@hfuu.edu.cn

http://www.it-weise.de

Hefei University, South Campus 2
Institute of Applied Optimization
Shushan District, Hefei, Anhui,

China

Distributed Computing Thomas Weise 11/13

mailto:tweise@hfuu.edu.cn
mailto:http://www.it-weise.de

Bibliography

Distributed Computing Thomas Weise 12/13

Bibliography I

1. ISO/IEC 8859-1 – Final Text of DIS 8859-1, 8-bit Single-Byte Coded Graphic Character Sets – Part 1: Latin Alphabet
No.1, volume ISO/IEC 8859-1:1997 (E). Geneva, Switzerland: International Organization for Standardization (ISO),
February 12, 1998. URL http://std.dkuug.dk/jtc1/sc2/wg3/docs/n411.pdf.

2. Ken Lunde. CJKV Information Processing. Sebastopol, CA, USA: O’Reilly & Associates, Inc., 1999. ISBN 0-596-51447-6
and 1-56592-224-7. URL http://examples.oreilly.de/english_examples/cjkvinfo/AppE/gb2312.pdf.

3. Information Technology – Universal Coded Character Set (UCS) (ISO/IEC 10646:2011). Geneva, Switzerland:
International Organization for Standardization (ISO), 2011.

4. USA: The Unicode Consortium Mountain View, CA and Julie D. Allen. The Unicode Standard, Version 5.0. Reading, MA,
USA: Addison-Wesley Professional, fifth edition, 2007. ISBN 0-321-48091-0 and 978-0-321-48091-0. URL
http://books.google.de/books?id=Yn1UAAAAMAAJ.

5. The unicode consortium, 2011. URL http://www.unicode.org/.
6. Jukka K. Korpela. Unicode Explained. Internationalize Documents, Programs, and Web Sites. Sebastopol, CA, USA:

O’Reilly Media, Inc., June 28, 2006. ISBN 059610121X and 9780596101213. URL
http://books.google.de/books?id=PcWU2yxc8WkC.

7. François Yergeau. STD 63: UTF-8, A Transformation Format of ISO 10646, volume 3629 of Request for Comments (RFC).
Network Working Group, November 2003. URL https://tools.ietf.org/html/rfc3629.

8. Herbert Schildt. Java 2: A Beginner’s Guide. Essential Skills for First-Time Programmers. Maidenhead, England, UK:
McGraw-Hill Ltd., 2002. ISBN 0072225130 and 9780072225136. URL
http://books.google.de/books?id=YWDJJGYaLG4C.

9. Timothy John Berners-Lee, R. Fielding, and H. Frystyk. Hypertext Transfer Protocol – HTTP/1.0, volume 1945 of
Request for Comments (RFC). Network Working Group, May 1996. URL http://tools.ietf.org/html/rfc1945.

10. R. Fielding, J. Gettys, Jeffrey Mogul, H. Frystyk, L. Masinter, P. Leach, and Timothy John Berners-Lee. Hypertext
Transfer Protocol – HTTP/1.1, volume 2616 of Request for Comments (RFC). Network Working Group, June 1999. URL
http://tools.ietf.org/html/rfc2616.

11. David Gourley and Brian Totty. HTTP: The Definitive Guide. Definitive Guide. Sebastopol, CA, USA: O’Reilly Media, Inc.,
2002. ISBN 1565925092 and 9781565925090. URL http://books.google.de/books?id=qEoOl9bcV_cC.

Distributed Computing Thomas Weise 13/13

http://std.dkuug.dk/jtc1/sc2/wg3/docs/n411.pdf
http://examples.oreilly.de/english_examples/cjkvinfo/AppE/gb2312.pdf
http://books.google.de/books?id=Yn1UAAAAMAAJ
http://www.unicode.org/
http://books.google.de/books?id=PcWU2yxc8WkC
https://tools.ietf.org/html/rfc3629
http://books.google.de/books?id=YWDJJGYaLG4C
http://tools.ietf.org/html/rfc1945
http://tools.ietf.org/html/rfc2616
http://books.google.de/books?id=qEoOl9bcV_cC

	Outline
	Overview
	Character Encoding
	Character Encoding
	Character Encoding in Java
	Character Encoding in
	Minimum HTTP Server / Java
	HTTP Client: Java
	HTTP Client: Java 1.7
	Summary

	Presentation End
	Bibliography

