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e How can we deal with text?

E’:" and

e How can we know that a sequence of bits stands for “/% 2
not for “Oliiberschusslander”?
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e Originally, storage of text data was mainly designed for US English
e Here, 1B per character is sufficient: Ascir / 1s0/IEC 8859-1 [l

e Original idea: bytes have different meaning, depending on language
(for German, we can e.g., replace some less important characters with
“d" and "B"...)
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o Different languages have different characters

e Originally, storage of text data was mainly designed for US English
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o Different languages have different characters

e Originally, storage of text data was mainly designed for US English
o Here, 1B per character is sufficient: asc1r / 1S0/IEC 8859-1

e Original idea: bytes have different meaning, depending on language

e B2312 P encoding especially for Chinese characters (2B for each
non- ASCII char)

e These approaches are insufficient for other languages
e Universal Coded Character Set (UCS) ¥ and Unicode [*°!

e Encoded as utF-7, uTF-8 ! (compatible to AsciI ), UTF-16, and
UTF-32
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Character Encoding %V

o Different languages have different characters

e Originally, storage of text data was mainly designed for US English
o Here, 1B per character is sufficient: asc1r / 1S0/IEC 8859-1

e Original idea: bytes have different meaning, depending on language

e B2312 P encoding especially for Chinese characters (2B for each
non- ASCII char)

e These approaches are insufficient for other languages

e Universal Coded Character Set (UCS) ¥ and Unicode [*°!

e Encoded as utF-7, uTF-8 ! (compatible to AsciI ), UTF-16, and
UTF-32

e When sending text data, we need to make sure to use the right
encoding!
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e In Java, we can use the more general Character Stream API ¥ to deal
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e Input:
e Reader s read one or multiple unicode characters
e InputStreamReader s are readers which take their data from a
byte-based input stream
e Output:
e Writer s write one or multiple unicode characters
e QOutputStreamWriter s are writers which store all characters written to
them in a specified encoding into byte-based output streams
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In Java, we can use the more general Character Stream API P to deal
with data conversation

Input:
e Reader s read one or multiple unicode characters
e InputStreamReader s are readers which take their data from a
byte-based input stream
Output:
e Writer s write one or multiple unicode characters
e QutputStreamWriter s are writers which store all characters written to
them in a specified encoding into byte-based output streams

TCP sockets: plug the InputStreamReader and OutputStreamWriter S
directly into the streams that the socket offers to us
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e In Java, we can use the more general Character Stream API ¥l to deal
with data conversation
e |nput:
e Reader s read one or multiple unicode characters
e InputStreamReader s are readers which take their data from a
byte-based input stream
e Qutput:
e Writer s write one or multiple unicode characters
e QutputStreamWriter s are writers which store all characters written to
them in a specified encoding into byte-based output streams

o TCP sockets: plug the InputStreamReader and OutputStreamWriter S
directly into the streams that the socket offers to us

e UDP sockets: create the packets in memory
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e Usually determined at compile-time




e Usually determined at compile-time

o Different types for different characters and encodings: char , TCHAR ,

wchar_t , ...




Minimum HTTP Server / Java

Listing: MinHTTPServer java Minimum HTTP Server / Java

import java.io.BufferedReader; import java.io.File; import java.io.FileInputStream; import java.io.InputStreamReader;
import java.io.OutputStreamWriter; import java.io.PrintWriter; import java.net.ServerSocket; import java.net.Socket;
public class MinHTTPServer {
public static fimal void main(final String[] args) {
ServerSocket server; Socket cliemt; BufferedReader br; int i; bytel] bs;
PrintWriter pw; String s; FileImputStream fis; File f; Throwable x;
ery {

server = new ServerSocket (9995);

for (;5) {
client = server.accept();

(client.getInp 0
o

new BufferedReader (new Inp:
"1S0_8859-1"));

br
PrintWriter (new OutputStreamiriter(client.getOutputStream(),

pv = new

process: { /@ + @
x = null;
try €
while ((s = br.readLine())
if (s.startsWith("GET,")) {
£ = new File(s.substring(4, s.index0f('.', 4)).replace('/',

null) {
o

File.separatorChar));

bs = new byte[(int) (f.lemgth())];
fis = new FileInputStream(f);

= fis.read(bs);
SO,
pw.vrite ("HTTP/1.1,200,0K\r\n\r\n"); pw.flush(); (o)
client.getOutputStrean () .urite(bs, 0, 1); B+ B
break process;

}

b

} catch (Throwable t) { x= t; }
-
pw.write ("HTTP/1.1,404 Not_ Found\r\n\r\n<html><head><title>404</title></head><body><h1>404 - Not found</h1><pre>");
if (x != null) { x.printStackTrace(pw);
pu.write("</pre></body></html");
pu.flush O ; @+ @
b

client.close();

}
} catch (Throwable t) {
t.printStackTrace () ;
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HTTP Client: Java

ava HTTP Client

import java.io.BufferedReader; import java.io.InputStreamReader;

import java.io.OutputStreamWriter; import java.net.Socket;
public class MinHTTPClient {

public static final void main(final Stringl[] args) {

String dest, request, response;  Socket sock;
OutputStreamiriter w; BufferedReader r;
dest "www.baidu.com";
request = "GET,/index.html HTTP/1.1\nHost:," + dest + "\m\n\n";
try {

sock = new Socket (dest, 80);

w new OutputStreamWriter (sock.getOutputStream());

w.write(request); a1

w.flush )
sock.shutdownOutput () ;

r = new BufferedReader (new InputStreamReader (sock.getInputStream(), "UTF-8"));

while ((response = r.readLine()) null) {

System.out.println(response);

sock.close();
catch (Throwable t) {
t.printStackTrace();

-

+
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HTTP Client: Java 1.7

Listing: MinHTTPClientJaval7.java Min HTTP Client + Try-Witt

inport java.io.BufferedReader; import java.io.InputStreamReader;
import java.io.OutputStreamWriter; import java.net.Socket;

public class MinHTTPClientJavai7 {
public static final void main(final String[] args) {
String dest, request, response;

dest = "www.baidu.com";
request = "GET,/index.html HTTP/1.1\nHost:, " + dest + "\n\n\n";

try(Socket sock = new Socket(dest, 80)) {
try (OutputStreamWriter w = new OutputStreamWriter (sock.getOutputStream())) {
w.write(request); e
w.flush )
sock.shutdownOutput () ;

try (InputStreamReader is = new InputStreamReader (sock.getInputStream());

BufferedReader T = new BufferedReader(is)) {
while ((response = r.readLinme()) != null) {
System.out.println(response);
i3
s
¥
} catch (Throwable t) {
t.printStackTrace();
}
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Summary %\

e Text is a very complex variable-length data structure.

e Historically, there exist many different mappings from characters to
bits and bytes.

e Unicode assigns an integer number to a character.

e UTF-8 defines how such a number can be translated to a
variable-length list of bits.

e UTF-8 is now the prevalent text encoding in the internet, i.e., you
should store all your text-based documents (txt, html, xml, ...) in
UTF-8 encoding.
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