LR B

HEFEI UNIVERSITY

Distributed Computing

Lesson 7: Text Encoding

Thomas Weise -

tweise@hfuu.edu.cn -

Hefei University, South Campus 2
Faculty of Computer Science and Technology
Institute of Applied Optimization
230601 Shushan District, Hefei, Anhui, China
Econ. & Tech. Devel. Zone, Jinxiu Dadao 99

HLEE

http://www.it-weise.de

& fe AR R /E2R
T E A 2

ZH5H AR A

k2 R A BT

b E 2k ST H LR 230601
ZFBEAFAR % KEIS

mailto:tweise@hfuu.edu.cn
http://www.it-weise.de

QOutline

@ Character Encoding

Distributed Computing

Thomas Weise

e How can we deal with text?

E’:" and

e How can we know that a sequence of bits stands for “/% 2
not for “Oliiberschusslander”?

o Different languages have different characters

o Different languages have different characters

e Originally, storage of text data was mainly designed for US English

o Different languages have different characters

e Originally, storage of text data was mainly designed for US English

o Here, 1B per character is sufficient: Ascir / 1sS0/IEC 8859-1 [l

o Different languages have different characters
e Originally, storage of text data was mainly designed for US English
o Here, 1B per character is sufficient: Ascir / 1sS0/IEC 8859-1 [l

e Original idea: bytes have different meaning, depending on language

o Different languages have different characters
e Originally, storage of text data was mainly designed for US English
e Here, 1B per character is sufficient: Ascir / 1s0/IEC 8859-1 [l

e Original idea: bytes have different meaning, depending on language
(for German, we can e.g., replace some less important characters with
“d" and "B"...)

o Different languages have different characters
e Originally, storage of text data was mainly designed for US English
Here, 1B per character is sufficient: Asci / 1so/1Ec 8ss59-1 I

Original idea: bytes have different meaning, depending on language

cB2312 encoding especially for Chinese characters (2B for each
non- ASCII char)

Character Encoding %}

Different languages have different characters

Originally, storage of text data was mainly designed for US English
Here, 1B per character is sufficient: asc1r / 1so/1EC 8859-1 !

Original idea: bytes have different meaning, depending on language

eB2312) encoding especially for Chinese characters (2B for each
non- ASCII char)

These approaches are insufficient for other languages

Distributed Computing Thomas Weise 4/13

Character Encoding %V

o Different languages have different characters

e Originally, storage of text data was mainly designed for US English
o Here, 1B per character is sufficient: asc1r / 1S0/IEC 8859-1

e Original idea: bytes have different meaning, depending on language

e B2312 P encoding especially for Chinese characters (2B for each
non- ASCII char)

e These approaches are insufficient for other languages
e Universal Coded Character Set (UCS) ¥ and Unicode [*°!

Distributed Computing Thomas Weise 4/13

Character Encoding %}

o Different languages have different characters

e Originally, storage of text data was mainly designed for US English
o Here, 1B per character is sufficient: asc1r / 1S0/IEC 8859-1

e Original idea: bytes have different meaning, depending on language

e B2312 P encoding especially for Chinese characters (2B for each
non- ASCII char)

e These approaches are insufficient for other languages
e Universal Coded Character Set (UCS) ¥ and Unicode [*°!

e Encoded as utF-7, uTF-8 ! (compatible to AsciI), UTF-16, and
UTF-32

Distributed Computing Thomas Weise 4/13

1AQ

Character Encoding %V

o Different languages have different characters

e Originally, storage of text data was mainly designed for US English
o Here, 1B per character is sufficient: asc1r / 1S0/IEC 8859-1

e Original idea: bytes have different meaning, depending on language

e B2312 P encoding especially for Chinese characters (2B for each
non- ASCII char)

e These approaches are insufficient for other languages

e Universal Coded Character Set (UCS) ¥ and Unicode [*°!

e Encoded as utF-7, uTF-8 ! (compatible to AsciI), UTF-16, and
UTF-32

e When sending text data, we need to make sure to use the right
encoding!

Distributed Computing Thomas Weise 4/13

e In Java, we can use the more general Character Stream API ¥ to deal
with data conversation

e In Java, we can use the more general Character Stream API ¥ to deal
with data conversation

e Input

e In Java, we can use the more general Character Stream API ¥ to deal
with data conversation
e Input:
e Reader s read one or multiple unicode characters

e In Java, we can use the more general Character Stream API ¥ to deal
with data conversation
e Input:
e Reader s read one or multiple unicode characters
e InputStreamReader s are readers which take their data from a
byte-based input stream

e In Java, we can use the more general Character Stream API ¥ to deal
with data conversation
e Input:
e Reader s read one or multiple unicode characters
e InputStreamReader s are readers which take their data from a
byte-based input stream
e Output

e In Java, we can use the more general Character Stream API ¥ to deal
with data conversation
e Input:
e Reader s read one or multiple unicode characters
e InputStreamReader s are readers which take their data from a
byte-based input stream
e Output:
e Writer s write one or multiple unicode characters

e In Java, we can use the more general Character Stream API ¥ to deal
with data conversation

e Input:
e Reader s read one or multiple unicode characters
e InputStreamReader s are readers which take their data from a
byte-based input stream
e Output:
e Writer s write one or multiple unicode characters
e QOutputStreamWriter s are writers which store all characters written to
them in a specified encoding into byte-based output streams

Character Encoding in Java %o»

In Java, we can use the more general Character Stream API P to deal
with data conversation

Input:
e Reader s read one or multiple unicode characters
e InputStreamReader s are readers which take their data from a
byte-based input stream
Output:
e Writer s write one or multiple unicode characters
e QutputStreamWriter s are writers which store all characters written to
them in a specified encoding into byte-based output streams

TCP sockets: plug the InputStreamReader and OutputStreamWriter S
directly into the streams that the socket offers to us

Distributed Computing Thomas Weise 5/13

Character Encoding in Java

”

>
<

e In Java, we can use the more general Character Stream API ¥l to deal
with data conversation
e |nput:
e Reader s read one or multiple unicode characters
e InputStreamReader s are readers which take their data from a
byte-based input stream
e Qutput:
e Writer s write one or multiple unicode characters
e QutputStreamWriter s are writers which store all characters written to
them in a specified encoding into byte-based output streams

o TCP sockets: plug the InputStreamReader and OutputStreamWriter S
directly into the streams that the socket offers to us

e UDP sockets: create the packets in memory

Distributed Computing Thomas Weise 5/13

e Usually determined at compile-time

e Usually determined at compile-time

o Different types for different characters and encodings: char , TCHAR ,

wchar_t , ...

Minimum HTTP Server / Java

Listing: MinHTTPServer java Minimum HTTP Server / Java

import java.io.BufferedReader; import java.io.File; import java.io.FileInputStream; import java.io.InputStreamReader;
import java.io.OutputStreamWriter; import java.io.PrintWriter; import java.net.ServerSocket; import java.net.Socket;
public class MinHTTPServer {
public static fimal void main(final String[] args) {
ServerSocket server; Socket cliemt; BufferedReader br; int i; bytel] bs;
PrintWriter pw; String s; FileImputStream fis; File f; Throwable x;
ery {

server = new ServerSocket (9995);

for (;5) {
client = server.accept();

(client.getInp 0
o

new BufferedReader (new Inp:
"1S0_8859-1"));

br
PrintWriter (new OutputStreamiriter(client.getOutputStream(),

pv = new

process: { /@ + @
x = null;
try €
while ((s = br.readLine())
if (s.startsWith("GET,")) {
£ = new File(s.substring(4, s.index0f('.', 4)).replace('/',

null) {
o

File.separatorChar));

bs = new byte[(int) (f.lemgth())];
fis = new FileInputStream(f);

= fis.read(bs);
SO,
pw.vrite ("HTTP/1.1,200,0K\r\n\r\n"); pw.flush(); (o)
client.getOutputStrean () .urite(bs, 0, 1); B+ B
break process;

}

b

} catch (Throwable t) { x= t; }
-
pw.write ("HTTP/1.1,404 Not_ Found\r\n\r\n<html><head><title>404</title></head><body><h1>404 - Not found</h1><pre>");
if (x != null) { x.printStackTrace(pw);
pu.write("</pre></body></html");
pu.flush O ; @+ @
b

client.close();

}
} catch (Throwable t) {
t.printStackTrace () ;

3 Distributed Computing Thomas Weise 7/13

HTTP Client: Java

ava HTTP Client

import java.io.BufferedReader; import java.io.InputStreamReader;

import java.io.OutputStreamWriter; import java.net.Socket;
public class MinHTTPClient {

public static final void main(final Stringl[] args) {

String dest, request, response; Socket sock;
OutputStreamiriter w; BufferedReader r;
dest "www.baidu.com";
request = "GET,/index.html HTTP/1.1\nHost:," + dest + "\m\n\n";
try {

sock = new Socket (dest, 80);

w new OutputStreamWriter (sock.getOutputStream());

w.write(request); a1

w.flush)
sock.shutdownOutput () ;

r = new BufferedReader (new InputStreamReader (sock.getInputStream(), "UTF-8"));

while ((response = r.readLine()) null) {

System.out.println(response);

sock.close();
catch (Throwable t) {
t.printStackTrace();

-

+

Distributed Computing

Thomas Weise

8/13

HTTP Client: Java 1.7

Listing: MinHTTPClientJaval7.java Min HTTP Client + Try-Witt

inport java.io.BufferedReader; import java.io.InputStreamReader;
import java.io.OutputStreamWriter; import java.net.Socket;

public class MinHTTPClientJavai7 {
public static final void main(final String[] args) {
String dest, request, response;

dest = "www.baidu.com";
request = "GET,/index.html HTTP/1.1\nHost:, " + dest + "\n\n\n";

try(Socket sock = new Socket(dest, 80)) {
try (OutputStreamWriter w = new OutputStreamWriter (sock.getOutputStream())) {
w.write(request); e
w.flush)
sock.shutdownOutput () ;

try (InputStreamReader is = new InputStreamReader (sock.getInputStream());

BufferedReader T = new BufferedReader(is)) {
while ((response = r.readLinme()) != null) {
System.out.println(response);
i3
s
¥
} catch (Throwable t) {
t.printStackTrace();
}

Distributed Computing Thomas Weise

9/13

Summary %\

e Text is a very complex variable-length data structure.

e Historically, there exist many different mappings from characters to
bits and bytes.

e Unicode assigns an integer number to a character.

e UTF-8 defines how such a number can be translated to a
variable-length list of bits.

e UTF-8 is now the prevalent text encoding in the internet, i.e., you
should store all your text-based documents (txt, html, xml, ...) in
UTF-8 encoding.

Distributed Computing Thomas Weise 10/13

il
Thank you

Thomas Weise [i% 2 .&]
tweise@hfuu.edu.cn
http://www.it-weise.de

Hefei University, South Campus 2
Institute of Applied Optimization
Shushan District, Hefei, Anhui,
China

Distributed Computing

Thomas Weise

Caspar David Fried
hitp:/fen.wikip

mailto:tweise@hfuu.edu.cn
mailto:http://www.it-weise.de

Bibliography |

W

1AQ

10.

11.

ISO/IEC 8859-1 — Final Text of DIS 8859-1, 8-bit Single-Byte Coded Graphic Character Sets — Part 1: Latin Alphabet
No.1, volume ISO/IEC 8859-1:1997 (E). Geneva, Switzerland: International Organization for Standardization (ISO),
February 12, 1998. URL http://std.dkuug.dk/jtcl/sc2/wg3/docs/n411.pdf.

Ken Lunde. CJKV Information Processing. Sebastopol, CA, USA: O'Reilly & Associates, Inc., 1999. ISBN 0-596-51447-6
and 1-56592-224-7. URL http://examples.oreilly.de/english_examples/cjkvinfo/AppE/gb2312.pdf.

Information Technology — Universal Coded Character Set (UCS) (ISO/IEC 10646:2011). Geneva, Switzerland:
International Organization for Standardization (ISO), 2011.

USA: The Unicode Consortium Mountain View, CA and Julie D. Allen. The Unicode Standard, Version 5.0. Reading, MA,
USA: Addison-Wesley Professional, fifth edition, 2007. ISBN 0-321-48091-0 and 978-0-321-48091-0. URL
http://books.google.de/books?id=Yn1UAAAAMAAJ.

The unicode consortium, 2011. URL http://www.unicode.org/.

Jukka K. Korpela. Unicode Explained. Internationalize Documents, Programs, and Web Sites. Sebastopol, CA, USA:
O'Reilly Media, Inc., June 28, 2006. ISBN 059610121X and 9780596101213. URL
http://books.google.de/books?id=PcWU2yxc8WkC.

Francois Yergeau. STD 63: UTF-8, A Transformation Format of ISO 10646, volume 3629 of Request for Comments (RFC).
Network Working Group, November 2003. URL https://tools.ietf.org/html/rfc3629.

Herbert Schildt. Java 2: A Beginner's Guide. Essential Skills for First-Time Programmers. Maidenhead, England, UK:
McGraw-Hill Ltd., 2002. ISBN 0072225130 and 9780072225136. URL
http://books.google.de/books?id=YWDJJIGYaLG4C.

Timothy John Berners-Lee, R. Fielding, and H. Frystyk. Hypertext Transfer Protocol — HTTP/1.0, volume 1945 of
Request for Comments (RFC). Network Working Group, May 1996. URL http://tools.ietf.org/html/rfc1945.

R. Fielding, J. Gettys, Jeffrey Mogul, H. Frystyk, L. Masinter, P. Leach, and Timothy John Berners-Lee. Hypertext
Transfer Protocol — HTTP/1.1, volume 2616 of Request for Comments (RFC). Network Working Group, June 1999. URL
http://tools.ietf.org/html/rfc2616.

David Gourley and Brian Totty. HTTP: The Definitive Guide. Definitive Guide. Sebastopol, CA, USA: O'Reilly Media, Inc.,
2002. ISBN 1565925092 and 9781565925090. URL http://books.google.de/books?id=qE0019bcV_cC.

Distributed Computing Thomas Weise 13/13

http://std.dkuug.dk/jtc1/sc2/wg3/docs/n411.pdf
http://examples.oreilly.de/english_examples/cjkvinfo/AppE/gb2312.pdf
http://books.google.de/books?id=Yn1UAAAAMAAJ
http://www.unicode.org/
http://books.google.de/books?id=PcWU2yxc8WkC
https://tools.ietf.org/html/rfc3629
http://books.google.de/books?id=YWDJJGYaLG4C
http://tools.ietf.org/html/rfc1945
http://tools.ietf.org/html/rfc2616
http://books.google.de/books?id=qEoOl9bcV_cC

	Outline
	Overview
	Character Encoding
	Character Encoding
	Character Encoding in Java
	Character Encoding in
	Minimum HTTP Server / Java
	HTTP Client: Java
	HTTP Client: Java 1.7
	Summary

	Presentation End
	Bibliography

