LR B

HEFEI UNIVERSITY

Distributed Computing
Lesson 6: Data Types and Marshalling

Thomas Weise -

tweise@hfuu.edu.cn -

Hefei University, South Campus 2
Faculty of Computer Science and Technology
Institute of Applied Optimization
230601 Shushan District, Hefei, Anhui, China
Econ. & Tech. Devel. Zone, Jinxiu Dadao 99

HLEE

http://www.it-weise.de

& fe AR R /E2R
T E A 2

ZH5H AR A

k2 R A BT

b E 2k ST H LR 230601
ZFBEAFAR % KEIS

mailto:tweise@hfuu.edu.cn
http://www.it-weise.de

QOutline

@ Data Types and Marshalling

Distributed Computing

Thomas Weise

e What to consider when exchanging data between hosts in a
heterogeneous system?

e Heterogeneous distributed system can consist of computers that. . .

e Heterogeneous distributed system can consist of computers that. . .
e run different operating systems (Linux, Windows, . ..)

e Heterogeneous distributed system can consist of computers that. . .

e run different operating systems (Linux, Windows, . ..)
o are composed of different hardware (80x86, Alpha, Atmel, Motorola,
Power PC, ...)

e Heterogeneous distributed system can consist of computers that. . .
e run different operating systems (Linux, Windows, . ..)
o are composed of different hardware (80x86, Alpha, Atmel, Motorola,
Power PC, ...)
e run communicating software created with different programming
languages

e Heterogeneous distributed system can consist of computers that. . .

e run different operating systems (Linux, Windows, . ..)
o are composed of different hardware (80x86, Alpha, Atmel, Motorola,

Power PC, ...)
e run communicating software created with different programming
languages

o Each of these aspects may influence the way in which data is
represented

Introduction %\

e Heterogeneous distributed system can consist of computers that. ..

e run different operating systems (Linux, Windows, ...)
e are composed of different hardware (80x86, Alpha, Atmel, Motorola,

Power PC, ...)
e run communicating software created with different programming
languages

o Each of these aspects may influence the way in which data is
represented

e The bit-representation of a double on one computer may make no
sense at all at another one

Distributed Computing Thomas Weise 4/16

Introduction %\

e Heterogeneous distributed system can consist of computers that. ..

e run different operating systems (Linux, Windows, ...)
e are composed of different hardware (80x86, Alpha, Atmel, Motorola,

Power PC, ...)
e run communicating software created with different programming
languages

o Each of these aspects may influence the way in which data is
represented

e The bit-representation of a double on one computer may make no
sense at all at another one

e Marshalling ™: Transforming data into a representation that can be
sent to a different computer/process

Distributed Computing Thomas Weise 4/16

Introduction %\

Heterogeneous distributed system can consist of computers that. ..

e run different operating systems (Linux, Windows, ...)
e are composed of different hardware (80x86, Alpha, Atmel, Motorola,

Power PC, ...)
e run communicating software created with different programming
languages

Each of these aspects may influence the way in which data is
represented

The bit-representation of a double on one computer may make no
sense at all at another one

Marshalling I: Transforming data into a representation that can be
sent to a different computer/process

Unmarshalling: Transforming received marshalled data into the
internal representation used in a given computer/process

Distributed Computing Thomas Weise 4/16

e Byte order in which values are stored in
memory that require more than 1 byte

e Byte order in which values are stored in
memory that require more than 1 byte

e Big Endian

e Byte order in which values are stored in
memory that require more than 1 byte
e Big Endian:
o Store the byte with the most X =439041 101y

. . =1A 2B 3C 4Dy
SIgmflcant bit at lowest address =00011010 00101011 00111100 01001101,

address + 3

=3Cy6
= 00111100, address + 2

address + 1

address + 0

Big Endian

e Byte order in which values are stored in
memory that require more than 1 byte
e Big Endian:
o Store the byte with the most X =439041 101y
significant bit at lowest address = 1A 28 3¢ 401
= 00011010 00101011 00111100 01001101,
o e.g.,, MIPS, SPARC, PowerPC, Motorola
6800/68k, Atmel AVR32, and TMS9900

processors
address + 3

=3Cy6
= 00111100, address + 2

address + 1

address + 0

Big Endian

e Byte order in which values are stored in
memory that require more than 1 byte
e Big Endian:
o Store the byte with the most X =439041 101y

. o . = 1A 2B 3C 4Dy
SIgmflcant blt at |OW€St address =00011010 00101011 00111100 01001101,
e Little Endian

address + 3

=3Cy6
= 00111100, address + 2

address + 1

address + 0

Big Endian

e Byte order in which values are stored in
memory that require more than 1 byte

e Big Endian:
o Store the byte with the most X =439041 101y
significant bit at lowest address = 1A 28 3¢ 4Dis

=00011010 00101011 00111100 01001101,
e Little Endian:

e Store the byte with the least

significant bit the lowest address address + 3

=3Cy6
= 00111100, address + 2
ddress +1 | =2
adaress 11 = 00111100,

address + 0

Big Endian Little Endian

e Byte order in which values are stored in
memory that require more than 1 byte
e Big Endian:
o Store the byte with the most X =439041 101y

. o . = 1A 2B 3C 4Dy
SIgnIflcant blt at IOWeSt address =00011010 00101011 00111100 01001101,
e Little Endian:

e Store the byte with the least
significant bit the lowest address address + 3

e e.g., 80x86-compatible, Alpha, Altera =3c,
Nios, Atmel AVR, some address + 2

SH3/SH4-Systems, and VAX = G
address + 1 = 00111100,

address + 0

Big Endian Little Endian

e Byte order in which values are stored in
memory that require more than 1 byte
e Big Endian:
o Store the byte with the most X =439041 101y

. o . = 1A 2B 3C 4Dy
SIgnIflcant blt at IOWeSt address =00011010 00101011 00111100 01001101,
e Little Endian:

e Store the byte with the least

significant bit the lowest address address + 3

e Sending an int directly from a sddress + 2
Little-Endian machine to a Big-Endian [22210

ddress +1| ot
address * 11 = po111100,

address + 0

one will not work

Big Endian Little Endian

Endianness

D

1AQ

Byte order in which values are stored in
memory that require more than 1 byte
Big Endian:
o Store the byte with the most
significant bit at lowest address
Little Endian:
e Store the byte with the least
significant bit the lowest address
Sending an int directly from a
Little-Endian machine to a Big-Endian
one will not work

It is usually unknown what endianness a
communication partner has

X =439041101,

= 1A 2B 3C 4Dy
=0001101000101011 00111100 01001101,

= 4Dy
=01001101,

=3Cys
=00111100,

= 2By
=00101011,

= 1A
=00011010,

Big Endian

address + 3

address + 2

address + 1

address + 0

: 1Az
=00011010;

= 2By
=00101011,

= 3Cys
=00111100,

= 4Dy
=01001101,

Little Endian

Distributed Computing Thomas Weise

5/16

e So each host has a host byte order

e So each host has a host byte order

e In order to ensure proper data exchange, for each protocol, a so-called
network byte order is defined

e So each host has a host byte order

e In order to ensure proper data exchange, for each protocol, a so-called
network byte order is defined

e Before sending data, each computer translates it from host byte order
to network byte order

e So each host has a host byte order
e In order to ensure proper data exchange, for each protocol, a so-called
network byte order is defined

e Before sending data, each computer translates it from host byte order
to network byte order

e Upon arrival, data is translated from network byte order to host byte
order

e So each host has a host byte order

e In order to ensure proper data exchange, for each protocol, a so-called
network byte order is defined

e Before sending data, each computer translates it from host byte order
to network byte order

e Upon arrival, data is translated from network byte order to host byte
order

e Internet protocol stack: network byte order = Big Endian

e In C, a set of translation functions is provided

e In C, a set of translation functions is provided

e These functions translate between host byte order and Big Endian

e In C, a set of translation functions is provided

e These functions translate between host byte order and Big Endian

Function | Datatype |Description

e In C, a set of translation functions is provided

e These functions translate between host byte order and Big Endian

Function Datatype Description
htonl () long (32bit) | host-to-network translation

e In C, a set of translation functions is provided

e These functions translate between host byte order and Big Endian

Function Datatype Description
htonl () long (32bit) | host-to-network translation
htons () short (16bit) | host-to-network translation

e In C, a set of translation functions is provided

e These functions translate between host byte order and Big Endian

Function Datatype Description

htonl () long (32bit) | host-to-network translation
htons () short (16bit) | host-to-network translation
ntohl () long (32bit) | network-to-host translation

e In C, a set of translation functions is provided
e These functions translate between host byte order and Big Endian

Function Datatype Description

htonl () long (32bit) | host-to-network translation
htons () short (16bit) | host-to-network translation
ntohl () long (32bit) | network-to-host translation
ntohs () short (16bit) | network-to-host translation

1AQ

Endianness in C %\

e In C, a set of translation functions is provided
e These functions translate between host byte order and Big Endian

e Not for 64bit int s, as such long integers were not available when
API was designed

Function Datatype Description

htonl() long (32bit) | host-to-network translation
htons () short (16bit) | host-to-network translation
ntohl () long (32bit) | network-to-host translation
ntohs () short (16bit) | network-to-host translation

Distributed Computing Thomas Weise 7/16

e In Java, we can use the more general Stream APIF! to deal with data
conversation

e In Java, we can use the more general Stream APIF! to deal with data
conversation

e Input

e In Java, we can use the more general Stream APIF! to deal with data
conversation
e Input:
e InputStream s read one or multiple bytes

e In Java, we can use the more general Stream APIF! to deal with data
conversation

e Input:
e InputStream s read one or multiple bytes

e DatalnputStream s read structured data from an input stream

e In Java, we can use the more general Stream API"! to deal with data
conversation
e Input:
e InputStream s read one or multiple bytes

e DatalnputStream s read structured data (int , long, double, ...)

from an input stream, assuming network byte order
e Output

e In Java, we can use the more general Stream API"! to deal with data
conversation
e Input:
e InputStream s read one or multiple bytes

e DatalnputStream s read structured data (int , long, double, ...)
from an input stream, assuming network byte order
e Output:

e QOutputStream s write one or multiple bytes

e In Java, we can use the more general Stream API"! to deal with data
conversation
e Input:
e InputStream s read one or multiple bytes

e DatalnputStream s read structured data (int , long, double, ...)
from an input stream, assuming network byte order
e Output:

e QOutputStream s write one or multiple bytes

e DatalOutputStream s write structured data (int , long , double,

...) to an input stream in network byte order

Endianness in Java %0,

e In Java, we can use the more general Stream API" to deal with data
conversation
e |nput:
e InputStream s read one or multiple bytes

e DatalnputStream s read structured data (int , long, double, ...)
from an input stream, assuming network byte order
e Qutput:

e QutputStream s write one or multiple bytes
e DataOutputStream s write structured data (int , long , double
...) to an input stream in network byte order
e TCP sockets: plug the DataInputStream and DataOutputStream S
directly into the streams that the socket offers to us

Distributed Computing Thomas Weise 8/16

Endianness in Java %0,

e In Java, we can use the more general Stream API" to deal with data
conversation
e |nput:
e InputStream s read one or multiple bytes

e DataInputStream S read structured data (int , long , double ,)
from an input stream, assuming network byte order
e Qutput:

e QutputStream s write one or multiple bytes
e DataOutputStream s write structured data (int , long , double
...) to an input stream in network byte order
TCP sockets: plug the DataInputStream and DataQutputStream S

directly into the streams that the socket offers to us
UDP sockets: create the packets in memory

Distributed Computing Thomas Weise 8/16

Endianness in Java %0,

e In Java, we can use the more general Stream APIF! to deal with data
conversation

Input:
e InputStream s read one or multiple bytes

e DatalnputStream s read structured data from an input stream

Output:
e (QOutputStream s write one or multiple bytes

e DataOutputStream s write structured data to an input stream

TCP sockets: plug the DataInputStream and DataOutputStream S
directly into the streams that the socket offers to us

UDP sockets: create the packets in memory:
e ByteArrayOutputStream s are output streams which store all data

written to them as byte

Distributed Computing Thomas Weise 8/16

Endianness in Java %0,

e In Java, we can use the more general Stream APIF! to deal with data
conversation

Input:
e InputStream s read one or multiple bytes

e DatalnputStream s read structured data from an input stream

Output:
e (QOutputStream s write one or multiple bytes

e DataOutputStream s write structured data to an input stream

TCP sockets: plug the DataInputStream and DataOutputStream S
directly into the streams that the socket offers to us

UDP sockets: create the packets in memory:
e ByteArrayOutputStream s are output streams which store all data
written to them as byte
e ByteArrayInputStream s are input streams which take their data from
an array of bytes

Distributed Computing Thomas Weise 8/16

Structured Data: TCP Server / Java

rverStructuredData.java Structured Data: TCP Server

inport java.io.DatalnputStream; import java.io.DataOutputStream;
import java.net.ServerSocket; import java.net.Socket;

public class TCPServerStructuredData {
public static final void main(final String[] args) {

ServerSocket server; Socket client;
DataQutputStream dos; DatalnputStream dis;
String s; long a, b,r;
try €

server = new ServerSocket (9996);

for (imt j = 5; (--3) >= 0;) {

client server.accept ();
dis = new DatalnputStream(client.getInputStream()); //@ + [
s dis.readUTF ();
T a = dis.readLong();
b dis.readLong();
if ("add".equalsIgnoreCase(s)) { r += b; } else {
if ("sub".equalsIgnoreCase(s)) { r b; }
T @ + @)
System.out.println(s + "(" + a + ",," + b + "),=," + r + " to," + client.getRemoteSocketAddress());
dos = new DatalutputStream(client.getOutputStream());
dos.writeLong(r); @+

dos.close();

client.close();
}
server.close();
} catch (Throwable t) {
t.printStackTrace();
i

Distributed Computing Thomas Weise 9/16

Structured Data: TCP Client / Java

import java.io.DataInputStream; import java.io.DataOutputStream;

import java.net.InetAddress; import java.net.Socket;
public class TCPClientStructuredData {

public static final void main(final String[] args) {

Socket client; InetAddress iaj;
DataOutputStream dos; DataInputStream dis;
try {

ia = InetAddress.getByName("localhost");

client = new Socket(ia, 9996); 1+:

)

dos = new DataOutputStream(client.getOutputStream());
dos . writeUTF ("sub");
dos.writeLong (9876) ;

dos.writeLong (1234);

dos.flush();

dis = new DatalnputStream(client.getInputStream());
System.out.println("Result:, " + dis.readLong());

client.close();
catch (Throwable t) {
t.printStackTrace();

-

¥
¥
}

Distributed Computing Thomas Weise

10/16

Structured Data: UDP Server / Java

UDPServerStructuredData.java Structured Data: UDP Server

import java.io.ByteArrayInputStream; import java.io.DatalnputStream; import java.io.OutputStream; import
java.net.DatagramPacket;

import java.io.ByteArrayOutputStream; import java.io.DataOutputStream; import java.net.InetAddress; import
java.net.DatagramSocket;

public class UDPServerStructuredData {
public static final void main(final String[] args) {

DatagramSocket server; DatagramPacket p, ansver;
ByteArrayOutputStream bos; DataQutputStream dos;
ByteArrayInputStream bis; DatalnputStream dis;
byte [] data; String 55
long @y BT
try {

server = new DatagramSocket (9997);

data = new byte[2048];

for (int j = 5; (--3j) >= 0;) {
p = new DatagramPacket(data, data.length);
server.receive(p);

bis = ByteArrayInputStream(data, 0, p.getLength());
dis = DataInputStrean (bis);

s .readUTF () ;

T dis.readLong();

b dis.readLong();

if ("add".equalsIgnoreCase(s)) {
if ("sub".equalsIgnoreCase(s))

}

System.out.println(s + "(" + a +

"Lto," + p.getSocketAddress());

bos = new ByteArrayOutputStream();
dos = new DataOutputStream(bos);
dos.writeLong(r);

dos.close();

answer = new DatagramPacket (bos.toByteArray(), bos.size(), p.getSocketAddress());
server.send (answer);

}
server.close();
— } catch (Throwable t) {

) - prinpp ekt ceet:l()(fomputing Thomas Weise 11/16

Structured Data: UDP Client / Java

LIStIng UDPClientStructuredData.java Structured Data: UDP Client

import java.io.ByteArrayInputStream; import java.io.DatalnputStream; import java.io.DutputStream;
import java.io.ByteArrayOutputStream; import java.io.DatautputStream; import java.net.InetAddress;
import java.net.DatagramPacket; import java.net.DatagramSocket;

public class UDPClientStructuredData {
public static final void main(final String[] args) {

DatagramSocket client; InetAddress ia;
ByteArrayQutputStream bos; DataQutputStreanm dos;
ByteArrayInputStream bis; DatalnputStream dis;
DatagramPacket P byte[] data;
try {

ia = InetAddress.getByName ("localhost");

client = new DatagramSocket ();

new ByteArrayOutputStream();
= new DataOutputStream(bos);
dos.writeUTF("add");

dos.writeLong (1234) ;

dos.writeLong (9876) ;

dos.close();

data = bos.toByteArray();

p = new DatagramPacket (data, data.length, ia,
client.send(p);

client.receive(p);
bis = new ByteArrayInputStream(p.getData(), 0, p.getLength());
dis = new DatalnputStream(bis);

System.out.println("Result: " + dis.readLong());

client.close();
catch (Throwable t) {
t.printStackTrace () ;
¥

-

+
¥

Distributed Computing Thomas Weise 12/16

Summary %\

1AQ

o All data exists as a sequence of bits and bytes in the memory of a
computer.

e Data types and formats are basically contracts regarding how a
certain sequence of such bits and bytes is to be interpreted.

e Different programming languages might have different formats for
numbers, text (next lesson), and even Boolean values.

o Different CPU architectures might define different formats as well.

e Thus, a sequence of bytes might be interpreted as different number
on different computers.

o If data is exchanged, it is thus first marshalled from the sending
computer’s local format into a network-wide accepted format before
sending and then unmarshalled into the receiving computer's local
format upon receipt.

Distributed Computing Thomas Weise 13/16

il
Thank you

Thomas Weise [i% 2 .&]
tweise@hfuu.edu.cn
http://www.it-weise.de

Hefei University, South Campus 2
Institute of Applied Optimization
Shushan District, Hefei, Anhui,
China

Distributed Computing

Thomas Weise

Caspar David Fried
hitp:/fen.wikip

mailto:tweise@hfuu.edu.cn
mailto:http://www.it-weise.de

1. George F. Coulouris, Jean Dollimore, and Tim Kindberg. Distributed Systems: Concepts and Design. Upper Saddle River,
NJ, USA: Pearson Education and Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 4th rev. edition, June
2005. ISBN 0201180596, 0321263545, 9780201180596, and 9780321263544. URL
http://books.google.de/books?id=d63sQPvBezgC.

2. Tom. Question on stackoverflow.com: 64 bit ntohl() in c++7?, May 1, 2009. URL
http://stackoverflow.com/questions/809902/64-bit-ntohl-in-c.

3. Merlin Hughes, Michael Shoffner, and Derek Hamner. Java Network Programming: A Complete Guide to Networking,
Streams, and Distributed Computing. Manning Pubs Co. Greenwich, CT, USA: Manning Publications Co., 1999. ISBN
188477749X and 9781884777493. URL http://books.google.de/books?id=xapQAAAAMAAJ.

http://books.google.de/books?id=d63sQPvBezgC
http://stackoverflow.com/questions/809902/64-bit-ntohl-in-c
http://books.google.de/books?id=xapQAAAAMAAJ

	Outline
	Overview
	Data Types and Marshalling
	Introduction
	Endianness
	Endianness
	Endianness in
	Endianness in Java
	Structured Data: TCP Server / Java
	Structured Data: TCP Client / Java
	Structured Data: UDP Server / Java
	Structured Data: UDP Client / Java
	Summary

	Presentation End
	Bibliography

