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Overview

• What to consider when exchanging data between hosts in a
heterogeneous system?
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Power PC, . . . )
• run communicating software created with different programming

languages

• Each of these aspects may influence the way in which data is
represented

• The bit-representation of a double on one computer may make no
sense at all at another one

• Marshalling [1]: Transforming data into a representation that can be
sent to a different computer/process

• Unmarshalling: Transforming received marshalled data into the
internal representation used in a given computer/process
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Endianness

• Byte order in which values are stored in
memory that require more than 1 byte

• Big Endian:
• Store the byte with the most

significant bit at lowest address
• e.g., MIPS, SPARC, PowerPC, Motorola

6800/68k, Atmel AVR32, and TMS9900

processors
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Endianness

• Byte order in which values are stored in
memory that require more than 1 byte

• Big Endian:
• Store the byte with the most

significant bit at lowest address

• Little Endian:
• Store the byte with the least

significant bit the lowest address
• e.g., 80x86-compatible, Alpha, Altera

Nios, Atmel AVR, some

SH3/SH4-Systems, and VAX
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Endianness

• Byte order in which values are stored in
memory that require more than 1 byte

• Big Endian:
• Store the byte with the most

significant bit at lowest address

• Little Endian:
• Store the byte with the least

significant bit the lowest address

• Sending an int directly from a
Little-Endian machine to a Big-Endian
one will not work

• It is usually unknown what endianness a
communication partner has
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Endianness

• So each host has a host byte order

• In order to ensure proper data exchange, for each protocol, a so-called
network byte order is defined

• Before sending data, each computer translates it from host byte order
to network byte order

• Upon arrival, data is translated from network byte order to host byte
order

• Internet protocol stack: network byte order = Big Endian
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Endianness in C

• In C, a set of translation functions is provided

• These functions translate between host byte order and Big Endian

• Not for 64bit int s, as such long integers were not available when
API was designed [2]

Function Datatype Description

htonl() long (32bit) host-to-network translation

htons() short (16bit) host-to-network translation

ntohl() long (32bit) network-to-host translation

ntohs() short (16bit) network-to-host translation
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Endianness in Java

• In Java, we can use the more general Stream API [3] to deal with data
conversation

• Input:
• InputStream s read one or multiple bytes

• DataInputStream s read structured data from an input stream

• Output:
• OutputStream s write one or multiple bytes

• DataOutputStream s write structured data to an input stream

• TCP sockets: plug the DataInputStream and DataOutputStream s
directly into the streams that the socket offers to us

• UDP sockets: create the packets in memory:
• ByteArrayOutputStream s are output streams which store all data

written to them as byte

• ByteArrayInputStream s are input streams which take their data from

an array of bytes
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Structured Data: TCP Server / Java

Listing: TCPServerStructuredData.java Structured Data: TCP Server / Java

import java.io.DataInputStream; import java.io.DataOutputStream;

import java.net.ServerSocket; import java.net.Socket;

public class TCPServerStructuredData {

public static final void main(final String [] args) {

ServerSocket server; Socket client;

DataOutputStream dos; DataInputStream dis;

String s; long a, b,r;

try {

server = new ServerSocket (9996);// 1 + 2)

for (int j = 5; (--j) >= 0;) { // process only 5 clients , so I can show 5) below

client = server.accept (); // 3)

dis = new DataInputStream(client.getInputStream ()); // 4 + 3

s = dis.readUTF (); //read an UTF -encoded string: the operation

r = a = dis.readLong (); //read a 64 bit long integer

b = dis.readLong (); //read another 64 bit long int

if ("add".equalsIgnoreCase(s)) { r += b; } else { // add

if ("sub".equalsIgnoreCase(s)) { r -= b; } // subtract

} // 4 + 3)

System.out.println(s + "(" + a + ", " + b + ") = " + r + " to " + client.getRemoteSocketAddress ());

dos = new DataOutputStream(client.getOutputStream ()); // marshall output

dos.writeLong(r); //write 64bit long integer: 4 + 3)

dos.close(); // flush and close

client.close(); // 4)

}

server.close (); // 5)

} catch (Throwable t) {

t.printStackTrace ();

}

}

}
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Structured Data: TCP Client / Java

Listing: TCPClientStructuredData.java Structured Data: TCP Client / Java

import java.io.DataInputStream; import java.io.DataOutputStream;

import java.net.InetAddress; import java.net.Socket;

public class TCPClientStructuredData {

public static final void main(final String [] args) {

Socket client; InetAddress ia;

DataOutputStream dos; DataInputStream dis;

try {

ia = InetAddress.getByName("localhost");

client = new Socket(ia, 9996); // 1+2)

dos = new DataOutputStream(client.getOutputStream ()); // marshall data

dos.writeUTF("sub"); //send operation name 3)

dos.writeLong (9876); //send 64bit long integer

dos.writeLong (1234); //send another 64bit long integer

dos.flush(); //flush is important , otherwise stuff may just be buffered!

dis = new DataInputStream(client.getInputStream ()); // unmashall input

System.out.println("Result: " + dis.readLong ()); // 3)

client.close (); // 4)

} catch (Throwable t) {

t.printStackTrace ();

}

}

}
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Structured Data: UDP Server / Java

Listing: UDPServerStructuredData.java Structured Data: UDP Server / Java

import java.io.ByteArrayInputStream; import java.io.DataInputStream; import java.io.OutputStream; import

java.net.DatagramPacket;

import java.io.ByteArrayOutputStream; import java.io.DataOutputStream; import java.net.InetAddress; import

java.net.DatagramSocket;

public class UDPServerStructuredData {

public static final void main(final String [] args) {

DatagramSocket server; DatagramPacket p, answer;

ByteArrayOutputStream bos; DataOutputStream dos;

ByteArrayInputStream bis; DataInputStream dis;

byte[] data; String s;

long a, b,r;

try {

server = new DatagramSocket (9997); // 1)

data = new byte [2048];

for (int j = 5; (--j) >= 0;) {

p = new DatagramPacket(data , data.length); // create package

server.receive(p); // receive data 2)

bis = new ByteArrayInputStream(data , 0, p.getLength ()); //wrap in stream 3)

dis = new DataInputStream(bis); //wrap again for unmarshalling

s = dis.readUTF (); //read string with operation id

r = a = dis.readLong (); //read 64bit long integer

b = dis.readLong (); //read 64bit long integer

if ("add".equalsIgnoreCase(s)) { r += b; } else { //add

if ("sub".equalsIgnoreCase(s)) { r -= b; } // subtract

} //end 3)

System.out.println(s + "(" + a + ", " + b + ") = " + r + " to " + p.getSocketAddress ());

bos = new ByteArrayOutputStream (); // create buffered stream for answer

dos = new DataOutputStream(bos); // marshall

dos.writeLong(r); //write 64bit long with result

dos.close(); //flush to buffer and close

answer = new DatagramPacket(bos.toByteArray (), bos.size(), p.getSocketAddress ()); // 4)

server.send(answer); //send marshalled answer data

}

server.close (); // 5)

} catch (Throwable t) {

t.printStackTrace ();

}

}
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Structured Data: UDP Client / Java

Listing: UDPClientStructuredData.java Structured Data: UDP Client / Java

import java.io.ByteArrayInputStream; import java.io.DataInputStream; import java.io.OutputStream;

import java.io.ByteArrayOutputStream; import java.io.DataOutputStream; import java.net.InetAddress;

import java.net.DatagramPacket; import java.net.DatagramSocket;

public class UDPClientStructuredData {

public static final void main(final String [] args) {

DatagramSocket client; InetAddress ia;

ByteArrayOutputStream bos; DataOutputStream dos;

ByteArrayInputStream bis; DataInputStream dis;

DatagramPacket p; byte[] data;

try {

ia = InetAddress.getByName("localhost");

client = new DatagramSocket (); // create socket 1)

bos = new ByteArrayOutputStream (); // create buffered stream for building message

dos = new DataOutputStream(bos); // mashall data

dos.writeUTF("add"); //write operation name

dos.writeLong (1234); //write 64bit long: 1st operand

dos.writeLong (9876); //write 64bit long: 2nd operand

dos.close(); // flush to buffer and close

data = bos.toByteArray (); //get array with marshalled data to send

p = new DatagramPacket(data , data.length , ia , 9997); // create package

client.send(p); //send package to server 2)

client.receive(p); // receive answer

bis = new ByteArrayInputStream(p.getData (), 0, p.getLength ());

dis = new DataInputStream(bis); // unmarshall

System.out.println("Result: " + dis.readLong ()); // 3)

client.close (); // 4)

} catch (Throwable t) {

t.printStackTrace ();

}

}

}
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Summary

• All data exists as a sequence of bits and bytes in the memory of a
computer.

• Data types and formats are basically contracts regarding how a
certain sequence of such bits and bytes is to be interpreted.

• Different programming languages might have different formats for
numbers, text (next lesson), and even Boolean values.

• Different CPU architectures might define different formats as well.

• Thus, a sequence of bytes might be interpreted as different number
on different computers.

• If data is exchanged, it is thus first marshalled from the sending
computer’s local format into a network-wide accepted format before
sending and then unmarshalled into the receiving computer’s local
format upon receipt.
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Caspar David Friedrich, “Der Wanderer über dem Nebelmeer”, 1818
http://en.wikipedia.org/wiki/Wanderer_above_the_Sea_of_Fog

谢谢谢谢谢谢
Thank you
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