
Distributed Computing
Lesson 6: Data Types and Marshalling

Thomas Weise · 汤卫思

tweise@hfuu.edu.cn · http://www.it-weise.de

Hefei University, South Campus 2 合肥学院 南艳湖校区/南2区
Faculty of Computer Science and Technology 计算机科学与技术系

Institute of Applied Optimization 应用优化研究所

230601 Shushan District, Hefei, Anhui, China 中国 安徽省 合肥市 蜀山区 230601
Econ. & Tech. Devel. Zone, Jinxiu Dadao 99 经济技术开发区 锦绣大道99号

mailto:tweise@hfuu.edu.cn
http://www.it-weise.de

Outline

1 Data Types and Marshalling

Distributed Computing Thomas Weise 2/16

w
e
b
s
it
e

Overview

• What to consider when exchanging data between hosts in a
heterogeneous system?

Distributed Computing Thomas Weise 3/16

Introduction

• Heterogeneous distributed system can consist of computers that. . .

Distributed Computing Thomas Weise 4/16

Introduction

• Heterogeneous distributed system can consist of computers that. . .
• run different operating systems (Linux, Windows, . . .)

Distributed Computing Thomas Weise 4/16

Introduction

• Heterogeneous distributed system can consist of computers that. . .
• run different operating systems (Linux, Windows, . . .)
• are composed of different hardware (80x86, Alpha, Atmel, Motorola,

Power PC, . . .)

Distributed Computing Thomas Weise 4/16

Introduction

• Heterogeneous distributed system can consist of computers that. . .
• run different operating systems (Linux, Windows, . . .)
• are composed of different hardware (80x86, Alpha, Atmel, Motorola,

Power PC, . . .)
• run communicating software created with different programming

languages

Distributed Computing Thomas Weise 4/16

Introduction

• Heterogeneous distributed system can consist of computers that. . .
• run different operating systems (Linux, Windows, . . .)
• are composed of different hardware (80x86, Alpha, Atmel, Motorola,

Power PC, . . .)
• run communicating software created with different programming

languages

• Each of these aspects may influence the way in which data is
represented

Distributed Computing Thomas Weise 4/16

Introduction

• Heterogeneous distributed system can consist of computers that. . .
• run different operating systems (Linux, Windows, . . .)
• are composed of different hardware (80x86, Alpha, Atmel, Motorola,

Power PC, . . .)
• run communicating software created with different programming

languages

• Each of these aspects may influence the way in which data is
represented

• The bit-representation of a double on one computer may make no
sense at all at another one

Distributed Computing Thomas Weise 4/16

Introduction

• Heterogeneous distributed system can consist of computers that. . .
• run different operating systems (Linux, Windows, . . .)
• are composed of different hardware (80x86, Alpha, Atmel, Motorola,

Power PC, . . .)
• run communicating software created with different programming

languages

• Each of these aspects may influence the way in which data is
represented

• The bit-representation of a double on one computer may make no
sense at all at another one

• Marshalling [1]: Transforming data into a representation that can be
sent to a different computer/process

Distributed Computing Thomas Weise 4/16

Introduction

• Heterogeneous distributed system can consist of computers that. . .
• run different operating systems (Linux, Windows, . . .)
• are composed of different hardware (80x86, Alpha, Atmel, Motorola,

Power PC, . . .)
• run communicating software created with different programming

languages

• Each of these aspects may influence the way in which data is
represented

• The bit-representation of a double on one computer may make no
sense at all at another one

• Marshalling [1]: Transforming data into a representation that can be
sent to a different computer/process

• Unmarshalling: Transforming received marshalled data into the
internal representation used in a given computer/process

Distributed Computing Thomas Weise 4/16

Endianness

• Byte order in which values are stored in
memory that require more than 1 byte

Distributed Computing Thomas Weise 5/16

Endianness

• Byte order in which values are stored in
memory that require more than 1 byte

• Big Endian

Distributed Computing Thomas Weise 5/16

Endianness

• Byte order in which values are stored in
memory that require more than 1 byte

• Big Endian:
• Store the byte with the most

significant bit at lowest address

Distributed Computing Thomas Weise 5/16

x = 439 041 10110

x =

x =

16

2

1A

00011010

2B

00101011

3C

00111100

4D

01001101

address + 0

address + 1

address + 2

address + 3

Big Endian

=

=

16

2

1A

00011010

=

=

16

2

2B

00101011

=

=

16

2

3C

00111100

=

=

16

2

4D

01001101

Endianness

• Byte order in which values are stored in
memory that require more than 1 byte

• Big Endian:
• Store the byte with the most

significant bit at lowest address
• e.g., MIPS, SPARC, PowerPC, Motorola

6800/68k, Atmel AVR32, and TMS9900

processors

Distributed Computing Thomas Weise 5/16

x = 439 041 10110

x =

x =

16

2

1A

00011010

2B

00101011

3C

00111100

4D

01001101

address + 0

address + 1

address + 2

address + 3

Big Endian

=

=

16

2

1A

00011010

=

=

16

2

2B

00101011

=

=

16

2

3C

00111100

=

=

16

2

4D

01001101

Endianness

• Byte order in which values are stored in
memory that require more than 1 byte

• Big Endian:
• Store the byte with the most

significant bit at lowest address

• Little Endian

Distributed Computing Thomas Weise 5/16

x = 439 041 10110

x =

x =

16

2

1A

00011010

2B

00101011

3C

00111100

4D

01001101

address + 0

address + 1

address + 2

address + 3

Big Endian

=

=

16

2

1A

00011010

=

=

16

2

2B

00101011

=

=

16

2

3C

00111100

=

=

16

2

4D

01001101

Endianness

• Byte order in which values are stored in
memory that require more than 1 byte

• Big Endian:
• Store the byte with the most

significant bit at lowest address

• Little Endian:
• Store the byte with the least

significant bit the lowest address

Distributed Computing Thomas Weise 5/16

x = 439 041 10110

x =

x =

16

2

1A

00011010

2B

00101011

3C

00111100

4D

01001101

address + 0

address + 1

address + 2

address + 3

Big Endian Little Endian

=

=

16

2

1A

00011010

=

=

16

2

1A

00011010

=

=

16

2

2B

00101011

=

=

16

2

2B

00101011

=

=

16

2

3C

00111100

=

=

16

2

3C

00111100

=

=

16

2

4D

01001101

=

=

16

2

4D

01001101

Endianness

• Byte order in which values are stored in
memory that require more than 1 byte

• Big Endian:
• Store the byte with the most

significant bit at lowest address

• Little Endian:
• Store the byte with the least

significant bit the lowest address
• e.g., 80x86-compatible, Alpha, Altera

Nios, Atmel AVR, some

SH3/SH4-Systems, and VAX

Distributed Computing Thomas Weise 5/16

x = 439 041 10110

x =

x =

16

2

1A

00011010

2B

00101011

3C

00111100

4D

01001101

address + 0

address + 1

address + 2

address + 3

Big Endian Little Endian

=

=

16

2

1A

00011010

=

=

16

2

1A

00011010

=

=

16

2

2B

00101011

=

=

16

2

2B

00101011

=

=

16

2

3C

00111100

=

=

16

2

3C

00111100

=

=

16

2

4D

01001101

=

=

16

2

4D

01001101

Endianness

• Byte order in which values are stored in
memory that require more than 1 byte

• Big Endian:
• Store the byte with the most

significant bit at lowest address

• Little Endian:
• Store the byte with the least

significant bit the lowest address

• Sending an int directly from a
Little-Endian machine to a Big-Endian
one will not work

Distributed Computing Thomas Weise 5/16

x = 439 041 10110

x =

x =

16

2

1A

00011010

2B

00101011

3C

00111100

4D

01001101

address + 0

address + 1

address + 2

address + 3

Big Endian Little Endian

=

=

16

2

1A

00011010

=

=

16

2

1A

00011010

=

=

16

2

2B

00101011

=

=

16

2

2B

00101011

=

=

16

2

3C

00111100

=

=

16

2

3C

00111100

=

=

16

2

4D

01001101

=

=

16

2

4D

01001101

Endianness

• Byte order in which values are stored in
memory that require more than 1 byte

• Big Endian:
• Store the byte with the most

significant bit at lowest address

• Little Endian:
• Store the byte with the least

significant bit the lowest address

• Sending an int directly from a
Little-Endian machine to a Big-Endian
one will not work

• It is usually unknown what endianness a
communication partner has

Distributed Computing Thomas Weise 5/16

x = 439 041 10110

x =

x =

16

2

1A

00011010

2B

00101011

3C

00111100

4D

01001101

address + 0

address + 1

address + 2

address + 3

Big Endian Little Endian

=

=

16

2

1A

00011010

=

=

16

2

1A

00011010

=

=

16

2

2B

00101011

=

=

16

2

2B

00101011

=

=

16

2

3C

00111100

=

=

16

2

3C

00111100

=

=

16

2

4D

01001101

=

=

16

2

4D

01001101

Endianness

• So each host has a host byte order

Distributed Computing Thomas Weise 6/16

Endianness

• So each host has a host byte order

• In order to ensure proper data exchange, for each protocol, a so-called
network byte order is defined

Distributed Computing Thomas Weise 6/16

Endianness

• So each host has a host byte order

• In order to ensure proper data exchange, for each protocol, a so-called
network byte order is defined

• Before sending data, each computer translates it from host byte order
to network byte order

Distributed Computing Thomas Weise 6/16

Endianness

• So each host has a host byte order

• In order to ensure proper data exchange, for each protocol, a so-called
network byte order is defined

• Before sending data, each computer translates it from host byte order
to network byte order

• Upon arrival, data is translated from network byte order to host byte
order

Distributed Computing Thomas Weise 6/16

Endianness

• So each host has a host byte order

• In order to ensure proper data exchange, for each protocol, a so-called
network byte order is defined

• Before sending data, each computer translates it from host byte order
to network byte order

• Upon arrival, data is translated from network byte order to host byte
order

• Internet protocol stack: network byte order = Big Endian

Distributed Computing Thomas Weise 6/16

Endianness in C

• In C, a set of translation functions is provided

Distributed Computing Thomas Weise 7/16

Endianness in C

• In C, a set of translation functions is provided

• These functions translate between host byte order and Big Endian

Distributed Computing Thomas Weise 7/16

Endianness in C

• In C, a set of translation functions is provided

• These functions translate between host byte order and Big Endian

Function Datatype Description

Distributed Computing Thomas Weise 7/16

Endianness in C

• In C, a set of translation functions is provided

• These functions translate between host byte order and Big Endian

Function Datatype Description

htonl() long (32bit) host-to-network translation

Distributed Computing Thomas Weise 7/16

Endianness in C

• In C, a set of translation functions is provided

• These functions translate between host byte order and Big Endian

Function Datatype Description

htonl() long (32bit) host-to-network translation

htons() short (16bit) host-to-network translation

Distributed Computing Thomas Weise 7/16

Endianness in C

• In C, a set of translation functions is provided

• These functions translate between host byte order and Big Endian

Function Datatype Description

htonl() long (32bit) host-to-network translation

htons() short (16bit) host-to-network translation

ntohl() long (32bit) network-to-host translation

Distributed Computing Thomas Weise 7/16

Endianness in C

• In C, a set of translation functions is provided

• These functions translate between host byte order and Big Endian

Function Datatype Description

htonl() long (32bit) host-to-network translation

htons() short (16bit) host-to-network translation

ntohl() long (32bit) network-to-host translation

ntohs() short (16bit) network-to-host translation

Distributed Computing Thomas Weise 7/16

Endianness in C

• In C, a set of translation functions is provided

• These functions translate between host byte order and Big Endian

• Not for 64bit int s, as such long integers were not available when
API was designed [2]

Function Datatype Description

htonl() long (32bit) host-to-network translation

htons() short (16bit) host-to-network translation

ntohl() long (32bit) network-to-host translation

ntohs() short (16bit) network-to-host translation

Distributed Computing Thomas Weise 7/16

Endianness in Java

• In Java, we can use the more general Stream API [3] to deal with data
conversation

Distributed Computing Thomas Weise 8/16

Endianness in Java

• In Java, we can use the more general Stream API [3] to deal with data
conversation

• Input

Distributed Computing Thomas Weise 8/16

Endianness in Java

• In Java, we can use the more general Stream API [3] to deal with data
conversation

• Input:
• InputStream s read one or multiple bytes

Distributed Computing Thomas Weise 8/16

Endianness in Java

• In Java, we can use the more general Stream API [3] to deal with data
conversation

• Input:
• InputStream s read one or multiple bytes

• DataInputStream s read structured data from an input stream

Distributed Computing Thomas Weise 8/16

Endianness in Java

• In Java, we can use the more general Stream API [3] to deal with data
conversation

• Input:
• InputStream s read one or multiple bytes

• DataInputStream s read structured data (int , long , double , . . .)

from an input stream, assuming network byte order
• Output

Distributed Computing Thomas Weise 8/16

Endianness in Java

• In Java, we can use the more general Stream API [3] to deal with data
conversation

• Input:
• InputStream s read one or multiple bytes

• DataInputStream s read structured data (int , long , double , . . .)

from an input stream, assuming network byte order
• Output:

• OutputStream s write one or multiple bytes

Distributed Computing Thomas Weise 8/16

Endianness in Java

• In Java, we can use the more general Stream API [3] to deal with data
conversation

• Input:
• InputStream s read one or multiple bytes

• DataInputStream s read structured data (int , long , double , . . .)

from an input stream, assuming network byte order
• Output:

• OutputStream s write one or multiple bytes

• DataOutputStream s write structured data (int , long , double ,

. . .) to an input stream in network byte order

Distributed Computing Thomas Weise 8/16

Endianness in Java

• In Java, we can use the more general Stream API [3] to deal with data
conversation

• Input:
• InputStream s read one or multiple bytes

• DataInputStream s read structured data (int , long , double , . . .)

from an input stream, assuming network byte order
• Output:

• OutputStream s write one or multiple bytes

• DataOutputStream s write structured data (int , long , double ,

. . .) to an input stream in network byte order

• TCP sockets: plug the DataInputStream and DataOutputStream s
directly into the streams that the socket offers to us

Distributed Computing Thomas Weise 8/16

Endianness in Java

• In Java, we can use the more general Stream API [3] to deal with data
conversation

• Input:
• InputStream s read one or multiple bytes

• DataInputStream s read structured data (int , long , double , . . .)

from an input stream, assuming network byte order
• Output:

• OutputStream s write one or multiple bytes

• DataOutputStream s write structured data (int , long , double ,

. . .) to an input stream in network byte order

• TCP sockets: plug the DataInputStream and DataOutputStream s
directly into the streams that the socket offers to us

• UDP sockets: create the packets in memory

Distributed Computing Thomas Weise 8/16

Endianness in Java

• In Java, we can use the more general Stream API [3] to deal with data
conversation

• Input:
• InputStream s read one or multiple bytes

• DataInputStream s read structured data from an input stream

• Output:
• OutputStream s write one or multiple bytes

• DataOutputStream s write structured data to an input stream

• TCP sockets: plug the DataInputStream and DataOutputStream s
directly into the streams that the socket offers to us

• UDP sockets: create the packets in memory:
• ByteArrayOutputStream s are output streams which store all data

written to them as byte

Distributed Computing Thomas Weise 8/16

Endianness in Java

• In Java, we can use the more general Stream API [3] to deal with data
conversation

• Input:
• InputStream s read one or multiple bytes

• DataInputStream s read structured data from an input stream

• Output:
• OutputStream s write one or multiple bytes

• DataOutputStream s write structured data to an input stream

• TCP sockets: plug the DataInputStream and DataOutputStream s
directly into the streams that the socket offers to us

• UDP sockets: create the packets in memory:
• ByteArrayOutputStream s are output streams which store all data

written to them as byte

• ByteArrayInputStream s are input streams which take their data from

an array of bytes

Distributed Computing Thomas Weise 8/16

Structured Data: TCP Server / Java

Listing: TCPServerStructuredData.java Structured Data: TCP Server / Java

import java.io.DataInputStream; import java.io.DataOutputStream;

import java.net.ServerSocket; import java.net.Socket;

public class TCPServerStructuredData {

public static final void main(final String [] args) {

ServerSocket server; Socket client;

DataOutputStream dos; DataInputStream dis;

String s; long a, b,r;

try {

server = new ServerSocket (9996);// 1 + 2)

for (int j = 5; (--j) >= 0;) { // process only 5 clients , so I can show 5) below

client = server.accept (); // 3)

dis = new DataInputStream(client.getInputStream ()); // 4 + 3

s = dis.readUTF (); //read an UTF -encoded string: the operation

r = a = dis.readLong (); //read a 64 bit long integer

b = dis.readLong (); //read another 64 bit long int

if ("add".equalsIgnoreCase(s)) { r += b; } else { // add

if ("sub".equalsIgnoreCase(s)) { r -= b; } // subtract

} // 4 + 3)

System.out.println(s + "(" + a + ", " + b + ") = " + r + " to " + client.getRemoteSocketAddress ());

dos = new DataOutputStream(client.getOutputStream ()); // marshall output

dos.writeLong(r); //write 64bit long integer: 4 + 3)

dos.close(); // flush and close

client.close(); // 4)

}

server.close (); // 5)

} catch (Throwable t) {

t.printStackTrace ();

}

}

}

Distributed Computing Thomas Weise 9/16

Structured Data: TCP Client / Java

Listing: TCPClientStructuredData.java Structured Data: TCP Client / Java

import java.io.DataInputStream; import java.io.DataOutputStream;

import java.net.InetAddress; import java.net.Socket;

public class TCPClientStructuredData {

public static final void main(final String [] args) {

Socket client; InetAddress ia;

DataOutputStream dos; DataInputStream dis;

try {

ia = InetAddress.getByName("localhost");

client = new Socket(ia, 9996); // 1+2)

dos = new DataOutputStream(client.getOutputStream ()); // marshall data

dos.writeUTF("sub"); //send operation name 3)

dos.writeLong (9876); //send 64bit long integer

dos.writeLong (1234); //send another 64bit long integer

dos.flush(); //flush is important , otherwise stuff may just be buffered!

dis = new DataInputStream(client.getInputStream ()); // unmashall input

System.out.println("Result: " + dis.readLong ()); // 3)

client.close (); // 4)

} catch (Throwable t) {

t.printStackTrace ();

}

}

}

Distributed Computing Thomas Weise 10/16

Structured Data: UDP Server / Java

Listing: UDPServerStructuredData.java Structured Data: UDP Server / Java

import java.io.ByteArrayInputStream; import java.io.DataInputStream; import java.io.OutputStream; import

java.net.DatagramPacket;

import java.io.ByteArrayOutputStream; import java.io.DataOutputStream; import java.net.InetAddress; import

java.net.DatagramSocket;

public class UDPServerStructuredData {

public static final void main(final String [] args) {

DatagramSocket server; DatagramPacket p, answer;

ByteArrayOutputStream bos; DataOutputStream dos;

ByteArrayInputStream bis; DataInputStream dis;

byte[] data; String s;

long a, b,r;

try {

server = new DatagramSocket (9997); // 1)

data = new byte [2048];

for (int j = 5; (--j) >= 0;) {

p = new DatagramPacket(data , data.length); // create package

server.receive(p); // receive data 2)

bis = new ByteArrayInputStream(data , 0, p.getLength ()); //wrap in stream 3)

dis = new DataInputStream(bis); //wrap again for unmarshalling

s = dis.readUTF (); //read string with operation id

r = a = dis.readLong (); //read 64bit long integer

b = dis.readLong (); //read 64bit long integer

if ("add".equalsIgnoreCase(s)) { r += b; } else { //add

if ("sub".equalsIgnoreCase(s)) { r -= b; } // subtract

} //end 3)

System.out.println(s + "(" + a + ", " + b + ") = " + r + " to " + p.getSocketAddress ());

bos = new ByteArrayOutputStream (); // create buffered stream for answer

dos = new DataOutputStream(bos); // marshall

dos.writeLong(r); //write 64bit long with result

dos.close(); //flush to buffer and close

answer = new DatagramPacket(bos.toByteArray (), bos.size(), p.getSocketAddress ()); // 4)

server.send(answer); //send marshalled answer data

}

server.close (); // 5)

} catch (Throwable t) {

t.printStackTrace ();

}

}

Distributed Computing Thomas Weise 11/16

Structured Data: UDP Client / Java

Listing: UDPClientStructuredData.java Structured Data: UDP Client / Java

import java.io.ByteArrayInputStream; import java.io.DataInputStream; import java.io.OutputStream;

import java.io.ByteArrayOutputStream; import java.io.DataOutputStream; import java.net.InetAddress;

import java.net.DatagramPacket; import java.net.DatagramSocket;

public class UDPClientStructuredData {

public static final void main(final String [] args) {

DatagramSocket client; InetAddress ia;

ByteArrayOutputStream bos; DataOutputStream dos;

ByteArrayInputStream bis; DataInputStream dis;

DatagramPacket p; byte[] data;

try {

ia = InetAddress.getByName("localhost");

client = new DatagramSocket (); // create socket 1)

bos = new ByteArrayOutputStream (); // create buffered stream for building message

dos = new DataOutputStream(bos); // mashall data

dos.writeUTF("add"); //write operation name

dos.writeLong (1234); //write 64bit long: 1st operand

dos.writeLong (9876); //write 64bit long: 2nd operand

dos.close(); // flush to buffer and close

data = bos.toByteArray (); //get array with marshalled data to send

p = new DatagramPacket(data , data.length , ia , 9997); // create package

client.send(p); //send package to server 2)

client.receive(p); // receive answer

bis = new ByteArrayInputStream(p.getData (), 0, p.getLength ());

dis = new DataInputStream(bis); // unmarshall

System.out.println("Result: " + dis.readLong ()); // 3)

client.close (); // 4)

} catch (Throwable t) {

t.printStackTrace ();

}

}

}

Distributed Computing Thomas Weise 12/16

Summary

• All data exists as a sequence of bits and bytes in the memory of a
computer.

• Data types and formats are basically contracts regarding how a
certain sequence of such bits and bytes is to be interpreted.

• Different programming languages might have different formats for
numbers, text (next lesson), and even Boolean values.

• Different CPU architectures might define different formats as well.

• Thus, a sequence of bytes might be interpreted as different number
on different computers.

• If data is exchanged, it is thus first marshalled from the sending
computer’s local format into a network-wide accepted format before
sending and then unmarshalled into the receiving computer’s local
format upon receipt.

Distributed Computing Thomas Weise 13/16

Caspar David Friedrich, “Der Wanderer über dem Nebelmeer”, 1818
http://en.wikipedia.org/wiki/Wanderer_above_the_Sea_of_Fog

谢谢谢谢谢谢
Thank you

Thomas Weise [汤卫思]
tweise@hfuu.edu.cn

http://www.it-weise.de

Hefei University, South Campus 2
Institute of Applied Optimization
Shushan District, Hefei, Anhui,

China

Distributed Computing Thomas Weise 14/16

mailto:tweise@hfuu.edu.cn
mailto:http://www.it-weise.de

Bibliography

Distributed Computing Thomas Weise 15/16

Bibliography I

1. George F. Coulouris, Jean Dollimore, and Tim Kindberg. Distributed Systems: Concepts and Design. Upper Saddle River,
NJ, USA: Pearson Education and Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 4th rev. edition, June
2005. ISBN 0201180596, 0321263545, 9780201180596, and 9780321263544. URL
http://books.google.de/books?id=d63sQPvBezgC.

2. Tom. Question on stackoverflow.com: 64 bit ntohl() in c++?, May 1, 2009. URL
http://stackoverflow.com/questions/809902/64-bit-ntohl-in-c.

3. Merlin Hughes, Michael Shoffner, and Derek Hamner. Java Network Programming: A Complete Guide to Networking,

Streams, and Distributed Computing. Manning Pubs Co. Greenwich, CT, USA: Manning Publications Co., 1999. ISBN
188477749X and 9781884777493. URL http://books.google.de/books?id=xapQAAAAMAAJ.

Distributed Computing Thomas Weise 16/16

http://books.google.de/books?id=d63sQPvBezgC
http://stackoverflow.com/questions/809902/64-bit-ntohl-in-c
http://books.google.de/books?id=xapQAAAAMAAJ

	Outline
	Overview
	Data Types and Marshalling
	Introduction
	Endianness
	Endianness
	Endianness in
	Endianness in Java
	Structured Data: TCP Server / Java
	Structured Data: TCP Client / Java
	Structured Data: UDP Server / Java
	Structured Data: UDP Client / Java
	Summary

	Presentation End
	Bibliography

