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Overview

• What are sockets?

• Which protocols can they offer?

• How is the API for sockets designed in languages such as Java and C?

• What to consider when exchanging data between hosts in a
heterogeneous system?
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Introduction

• What are sockets in networking?

• API provided by OS for accessing protocols of OSI Layer 4 and
below [1]

• Available for all major programming languages:
• Java [2–11]

• C/C++ [12–15]

• C# [16, 17]

• Python [18]

• Allow data exchange via IP [19], UDP [19], and TCP [19, 20] protocols
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• A socket uniquely identifies a communication channel used by one
process using one transport layer protocol to communicate via one
network adapter

• (client) sockets can be uniquely identified by:
1 IP Address (Internet Layer) +
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Sockets

• Sockets are network-wide unique resources owned by processes

• Division between client and server sockets

• Server sockets accept incoming client connections or data

• Client sockets initiate communication with a server
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getInputStream )

• an OutputStream for sending data (get with getOutputStream )

• reads are blocking, writes are non-blocking

• Sockets are closed with their close method 3) + 5)
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TCP Sockets in Java: Server

Listing: TCPServer.java TCP Server in Java

import java.io.InputStream; import java.net.ServerSocket; import java.net.Socket;

public class TCPServer {

public static final void main(final String [] args) {

ServerSocket server; InputStream is;

Socket client;

try {

server = new ServerSocket (9999);// 1 + 2)

for (int j = 5; (--j) >= 0;) { // process only 5 clients , so I can show 5) below

client = server.accept (); //wait for incoming connection 3)

System.out.println("New connection from " + client.getRemoteSocketAddress ());

is = client.getInputStream (); //get stream to read from

System.out.println(is.read());// 4 + 3)

client.close(); //close connection to client

}

server.close (); // 5)

} catch (Throwable t) {

t.printStackTrace ();

}

}

}
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TCP Sockets in Java: Client

Listing: TCPClient.java TCP Client in Java

import java.io.OutputStream; import java.net.InetAddress; import java.net.Socket;

public class TCPClient {

public static final void main(final String [] args) {

Socket client;

OutputStream os;

InetAddress ia;

try {

ia = InetAddress.getByName("localhost");//get local host address

client = new Socket(ia, 9999); // create socket 1+2)

os = client.getOutputStream (); //get stream to write to

os.write (1); //write one byte of value 1 3)

client.close (); // close 4)

} catch (Throwable t) {

t.printStackTrace ();

}

}

}
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TCP Server in Java: Printing Text

Listing: TCPServerPrintingRawChars.java TCP Server in Java

import java.io.InputStream; import java.net.ServerSocket; import java.net.Socket;

public class TCPServerPrintingRawChars {

public static final void main(final String [] args) {

ServerSocket serv; Socket client; InputStream is; int i;

try {

serv = new ServerSocket (9999); // start server 1 + 2)

for (;;) {

client = serv.accept (); //wait for incoming connection 3)

is = client.getInputStream (); //get stream to read from connection

while ((i = is.read()) >= 0) {//read bytes until connection closed 4 + 3)

System.out.print ((char) i); //cast byte to char: dangerous!

}

System.out.println (); //print newline

is.close (); //close reading stream of connection

client.close(); //close connection 4)

}

} catch (Throwable t) {

t.printStackTrace ();

}

}

}

Distributed Computing Thomas Weise 15/41



TCP Client in Java: Sending Text

Listing: TCPClientSendingRawChars.java TCP Client in Java

import java.io.OutputStream; import java.net.InetAddress; import

java.net.Socket;

public class TCPClientSendingRawChars {

public static final void main(final String [] args) {

Socket client; OutputStream os;

InetAddress ia; int ch;

try {

ia = InetAddress.getByName("localhost");

client = new Socket(ia, 9999); // 1+2)

os = client.getOutputStream ();

while ( (ch = System.in.read()) != '\n' ){ //read 1 char (until newline)

os.write(ch); // write char to connection , may be buffered and not yet sent 3)

}

client.close (); // flush and close connection 4)

} catch (Throwable t) {

t.printStackTrace ();

}

}

}
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• This statement makes sure that resources (implementing
AutoCloseable ) are automatically closed, even if Exceptions (errors)
occurs

• try-with-resource is similar to a special try-final statement

• This makes code more compact and less error prone

• Resources that can automatically closed are all types of sockets and
streams

• This makes our socket code much smaller
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General form of the Try-With-Resource Statement

Listing: General form of the Try-With-Resource Statement

...

try(ResourceClass resource = new ResourceClass (...)){ //

create/open resource

... //do something with resource

} // resource is automatically closed when end of block is

reached

...
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TCP Server Socket (Java Try-With-Resource)

Listing: TCPServerJava17.java TCP Server in Java

import java.io.InputStream; import java.net.ServerSocket; import java.net.Socket;

public class TCPServerJava17 {

public static final void main(final String [] args) {

try(ServerSocket server = new ServerSocket (9999)){ // 1 + 2)

for (int j = 5; (--j) >= 0;) { // process only 5 clients , so I can show 5) below

try(Socket client = server.accept ()) { //wait for incoming connection 3)

System.out.println("New connection from " +

client.getRemoteSocketAddress ());

try(InputStream is = client.getInputStream ()){//get stream to read

System.out.println(is.read()); // 4 + 3)

} //close reading end of connection

} // close connection 5)

}

// 5)

} catch (Throwable t) {

t.printStackTrace ();

}

}

}
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TCP Client Socket (Java Try-With-Resource))

Listing: TCPClientJava17.java TCP Client in Java

import java.io.OutputStream; import java.net.InetAddress; import java.net.Socket;

public class TCPClientJava17 {

public static final void main(final String [] args) {

InetAddress ia;

try {

ia = InetAddress.getByName("localhost");

try(Socket client = new Socket(ia , 9999)){ // 1+2)

try(OutputStream os = client.getOutputStream ()) {

os.write (1); //write one byte with value 1 3)

} //close writing end of connection

} // 4)

} catch (Throwable t) {

t.printStackTrace ();

}

}

}
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TCP Sockets in C

• In C
[25], using TCP/IP sockets is a bit more complicated
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• Code is not a priori portable, can maybe made portable with lots of
#define s

• Windows: Compile as
gcc fileName windows.c -o fileName windows.exe -lws2 32

where -lws2_32 says “link against Winsock”

• Linux: Compile as
gcc fileName linux.c -o fileName linux
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TCP Sockets in C/Windows: Server

Listing: TCP Server in C/Windows (gcc TCPServer windows.c -o TCPServer windows.exe -lws2 32)

#include <stdio.h>// compile: gcc TCPServer_windows.c -o TCPServer_windows.exe -lws2_32

#include <winsock.h> // Warning: This program does not perform any error handling.

int main(int argc , char *argv []) {

int server , j, client , addrSize;

struct sockaddr_in serverAddr , clientAddr;

WSADATA wsaData;

char data;

memset (&serverAddr , 0, sizeof(serverAddr));

serverAddr.sin_family = AF_INET; //IPv4 address

serverAddr.sin_addr.s_addr = htonl(INADDR_ANY); //don't care network interface

serverAddr.sin_port = htons (9999); //bind to port 9999

addrSize = sizeof(clientAddr);

WSAStartup(MAKEWORD(2, 0), &wsaData); // Initialize WinSock

server = socket(PF_INET , SOCK_STREAM , IPPROTO_TCP); // Allocate TCP socket

bind(server , (struct sockaddr *) &serverAddr , sizeof(serverAddr));// 1)

listen(server , 5); // 2)

for (j = 5; (--j) >= 0;) {

client = accept(server , (struct sockaddr *) &clientAddr , &addrSize); // 3)

printf("New connection from %s\n", inet_ntoa(clientAddr.sin_addr));

// now receive 1 byte of data to client , flags =0

if(recv(client , &data , 1, 0) == 1) { printf("%d\n", data); } // 4 + 3)

closesocket(client); // 4)

}

closesocket(server); // 5)

WSACleanup (); // Finalize WinSock

}
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TCP Sockets in C/Windows: Client

Listing: TCP Client in C/Windows (gcc TCPClient windows.c -o TCPClient windows.exe -lws2 32)

#include <stdio.h>// compile: gcc TCPClient_windows.c -o TCPClient_windows.exe -lws2_32

#include <winsock.h> // Warning: This program does not perform any error handling.

int main(int argc , char *argv []) {

int client; struct sockaddr_in address;

WSADATA wsaData; char data;

WSAStartup(MAKEWORD(2, 0), &wsaData); // Initialize WinSock

client = socket(PF_INET , SOCK_STREAM , IPPROTO_TCP); // Allocate TCP Socket

memset (&address , 0, sizeof(address)); //clear socket address

address.sin_family = AF_INET; //IPv4 address

address.sin_addr.s_addr = inet_addr("127.0.0.1");//set to (loopback) IP address

address.sin_port = htons (9999); //make port in network byte order

connect(client , (struct sockaddr *)&address , sizeof(address)); // 1+2)

data = 2;

send(client , &data , 1, 0); // 3) send 1 byte of data to client , flags =0

closesocket(client); // 4)

WSACleanup (); // Finalize WinSock

return 0;

}
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TCP Sockets in C/Linux: Server

Listing: TCP Server in C/Linux (gcc TCPServer linux.c -o TCPServer linux -lpthread)

#include <stdio.h> // compile: gcc TCPServer_linux.c -o TCPServer_linux

#include <sys/socket.h> // Warning: This program does not perform any error handling.

#include <netinet/in.h> //In any real program , you need to handle errors.

#include <arpa/inet.h>

#include <string.h>

#include <unistd.h>

int main(int argc , char *argv []) {

int server , j, client;

socklen_t addrSize;

struct sockaddr_in serverAddr , clientAddr;

char data;

memset (&serverAddr , 0, sizeof(serverAddr));//clear socket address

serverAddr.sin_family = AF_INET; //IPv4 address

serverAddr.sin_addr.s_addr = htonl(INADDR_ANY);//don't care network interface

serverAddr.sin_port = htons (9999); //bind to port 9999

addrSize = sizeof(clientAddr);

server = socket(PF_INET , SOCK_STREAM , IPPROTO_TCP); // Allocate TCP socket

bind(server , (struct sockaddr *) &serverAddr , sizeof(serverAddr)); // 1)

listen(server , 5); // 2)

for (j = 5; (--j) >= 0;) {

client = accept(server , (struct sockaddr *) &clientAddr , &addrSize); // 3)

printf("New connection from %s\n", inet_ntoa(clientAddr.sin_addr));

// now receive 1 byte of data to client , flags =0

if(recv(client , &data , 1, 0) == 1) { printf("%d\n", data); } // 4 + 3)

close(client); // 4)

}

close(server); // 5)

}
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TCP Sockets in C/Linux: Client

Listing: TCP Client in C/Linux (gcc TCPClient linux.c -o TCPClient linux -lpthread)

#include <stdio.h> // compile: gcc TCPClient_linux.c -o TCPClient_linux

#include <sys/socket.h> // Warning: This program does not perform any error handling.

#include <arpa/inet.h> //In any real program , you need to handle errors.

#include <string.h>

#include <unistd.h>

int main(int argc , char *argv []) {

int client; struct sockaddr_in address; char data;

client = socket(PF_INET , SOCK_STREAM , IPPROTO_TCP); // Allocate TCP Socket

memset (&address , 0, sizeof(address)); //clear socket address

address.sin_family = AF_INET; //IPv4 address

address.sin_addr.s_addr = inet_addr("127.0.0.1");//set to (loopback) IP address

address.sin_port = htons (9999); //make port in network byte order

connect(client , (struct sockaddr *)&address , sizeof(address)); // 1+2)

data = 2;

send(client , &data , 1, 0); // 3) send 1 byte of data to client , flags =0

close(client); // 4)

return 0;

}
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UDP Sockets

• UDP [19] is an unreliable and connection-less protocol
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UDP Sockets in Java: Server

Listing: UDPServer.java UDP Server in Java

import java.io.OutputStream; import java.net.DatagramPacket;

import java.net.DatagramSocket; import java.net.InetAddress;

public class UDPServer {

public static final void main(final String [] args) {

DatagramSocket server; DatagramPacket p;

try {

server = new DatagramSocket (9998); // create socket 1)

for(int j = 5; (--j) >= 0; ){

p = new DatagramPacket(new byte[1], 1); // create package

server.receive(p); //wait for and receive incoming data 2)

System.out.println("New message " + p.getSocketAddress ());

if (p.getLength () > 0) { //is there data? 3)

System.out.println(p.getData ()[0]); // 3)

}

}

server.close (); // 5)

} catch (Throwable t) {

t.printStackTrace ();

}

}

}
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UDP Sockets in Java: Client

Listing: UDPClient.java UDP Client in Java

import java.io.OutputStream; import java.net.DatagramPacket;

import java.net.DatagramSocket; import java.net.InetAddress;

public class UDPClient {

public static final void main(final String [] args) {

DatagramSocket client; InetAddress ia;

DatagramPacket p; byte[] data;

try {

ia = InetAddress.getByName("localhost");

client = new DatagramSocket (); // create socket 1)

data = new byte[] { 1 }; // allocate data for package

p = new DatagramPacket(data , 1, ia , 9998); // create package

client.send(p); //send package to localhost :9998 2)

client.close (); // dispose socket 4)

} catch (Throwable t) {

t.printStackTrace ();

}

}

}
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UDP Server Socket (Java Try-With-Resource)

Listing: UDPServerJava17.java UDP Server in Java

import java.io.OutputStream; import java.net.DatagramPacket;

import java.net.DatagramSocket; import java.net.InetAddress;

public class UDPServerJava17 {

public static final void main(final String [] args) {

DatagramPacket p;

try(DatagramSocket server = new DatagramSocket (9998)) { // 1)

for(int j = 5; (--j) >= 0; ){ //only five times ...

p = new DatagramPacket(new byte[1], 1); // create package

server.receive(p); //wait for and receive package 2)

System.out.println("New message " + p.getSocketAddress ());

if (p.getLength () > 0) { //is there data? 3)

System.out.println(p.getData ()[0]); // 3)

}

}

// 5)

} catch (Throwable t) {

t.printStackTrace ();

}

}

}
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UDP Client Socket (Java Try-With-Resource)

Listing: UDPClientJava17.java UDP Client in Java

import java.io.OutputStream; import java.net.DatagramPacket;

import java.net.DatagramSocket; import java.net.InetAddress;

public class UDPClientJava17 {

public static final void main(final String [] args) {

InetAddress ia; DatagramPacket p; byte[] data;

try {

ia = InetAddress.getByName("localhost"); //get local host address

try(DatagramSocket client = new DatagramSocket ()) { // 1)

data = new byte[] { 1 }; // allocate data

p = new DatagramPacket(data , 1, ia , 9998); // create package

client.send(p); //send package to localhost :9998 2)

} // 4)

} catch (Throwable t) {

t.printStackTrace ();

}

}

}
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UDP Sockets in C/Windows: Server

Listing: UDP Server in C/Windows (gcc UDPServer windows.c -o UDPServer windows.exe -lws2 32)

#include <stdio.h>// compile: gcc UDPServer_windows.c -o UDPServer_windows.exe -lws2_32

#include <winsock.h> // Warning: This program does not perform any error handling.

int main(int argc , char *argv []) {

int server , j, addrSize;

struct sockaddr_in serverAddr , clientAddr;

WSADATA wsaData;

char data;

memset (&serverAddr , 0, sizeof(serverAddr));

serverAddr.sin_family = AF_INET; //IPv4 address

serverAddr.sin_addr.s_addr = htonl(INADDR_ANY);//don't care network interface

serverAddr.sin_port = htons (9998); //set port 9998

addrSize = sizeof(clientAddr);

WSAStartup(MAKEWORD(2, 0), &wsaData); // Initialize WinSock

server = socket(PF_INET , SOCK_DGRAM , IPPROTO_UDP);// Allocate UDP socket

bind(server , (struct sockaddr *) &serverAddr , sizeof(serverAddr)); // 1)

for (j = 5; (--j) >= 0;) { // then receive 1 byte package data and get client

address , with flags=0

recvfrom(server , &data , 1, 0, (struct sockaddr *) &clientAddr , &addrSize); // 2)

printf("New message %d from %s\n", data , inet_ntoa(clientAddr.sin_addr)); // 3)

}

closesocket(server); // 5)

WSACleanup (); // Finalize WinSock

}
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UDP Sockets in C/Windows: Client

Listing: UDP Client in C/Windows (gcc UDPClient windows.c -o UDPClient windows.exe -lws2 32)

#include <stdio.h>// compile: gcc UDPClient_windows.c -o UDPClient_windows.exe -lws2_32

#include <winsock.h> // Warning: This program does not perform any error handling.

int main(int argc , char *argv []) {

int client; struct sockaddr_in address;

WSADATA wsaData; char data;

WSAStartup(MAKEWORD(2, 0), &wsaData); // Initialize WinSock

client = socket(PF_INET , SOCK_DGRAM , IPPROTO_UDP); // Allocate client socket

memset (&address , 0, sizeof(address)); //Clear socket address

address.sin_family = AF_INET; //IPv4 address

address.sin_addr.s_addr = inet_addr("127.0.0.1");//Set to (loopback) IP address

address.sin_port = htons (9998); //Make port in network byte order

data = 2; // then send 1 byte package data to client , with flags =0

sendto(client , &data , 1, 0, (struct sockaddr *)&address , sizeof(address)); // 1+2)

closesocket(client); // 4)

WSACleanup (); // Finalize Winsock

return 0;

}
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UDP Sockets in C/Linux: Server

Listing: UDP Server in C/Linux (gcc UDPServer linux.c -o UDPServer linux -lpthread)

#include <stdio.h> // compile: gcc UDPServer_linux.c -o UDPServer_linux

#include <string.h> // Warning: This program does not perform any error handling.

#include <sys/socket.h> //In any real program , you need to handle errors.

#include <arpa/inet.h>

#include <unistd.h>

int main(int argc , char *argv []) {

int server , j;

socklen_t addrSize;

struct sockaddr_in serverAddr , clientAddr;

char data;

memset (&serverAddr , 0, sizeof(serverAddr)); //Clear address struct

serverAddr.sin_family = AF_INET; //IPv4 address

serverAddr.sin_addr.s_addr = htonl(INADDR_ANY);//don't care network interface

serverAddr.sin_port = htons (9998); //serve at port 9998

addrSize = sizeof(clientAddr);

server = socket(PF_INET , SOCK_DGRAM , IPPROTO_UDP); // Allocate UDP socket

bind(server , (struct sockaddr *) &serverAddr , sizeof(serverAddr)); // 1)

for (j = 5; (--j) >= 0;) { // then receive 1 byte package data and get client

address , with flags=0

recvfrom(server , &data , 1, 0, (struct sockaddr *) &clientAddr , &addrSize); // 2)

printf("New message %d from %s\n", data , inet_ntoa(clientAddr.sin_addr)); // 3)

}

close(server); // 5)

}
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UDP Sockets in C/Linux: Client

Listing: UDP Client in C/Linux (gcc UDPClient linux.c -o UDPClient linux -lpthread)

#include <stdio.h> // compile: gcc UDPClient_linux.c -o UDPClient_linux

#include <string.h> // Warning: This program does not perform any error handling.

#include <sys/socket.h> //In any real program , you need to handle errors.

#include <unistd.h>

#include <arpa/inet.h>

int main(int argc , char *argv []) {

int client; struct sockaddr_in address; char data;

client = socket(PF_INET , SOCK_DGRAM , IPPROTO_UDP); // Allocate client socket

memset (&address , 0, sizeof(address)); //Clear socket address

address.sin_family = AF_INET; //IPv4 address

address.sin_addr.s_addr = inet_addr("127.0.0.1");//Set to (loopback) IP address

address.sin_port = htons (9998); //Make port in network byte order

data = 2; // then send 1 byte package data to client , with flags =0

sendto(client , &data , 1, 0, (struct sockaddr *)&address , sizeof(address)); // 1+2)

close(client); // 4)

return 0;

}
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Basic Use Summary

• We can now send bytes from one host to another

• We have seen how this is done both in Java and C

• The example clients and servers written in different languages can
communicate with each other =⇒ Distribution allows us to construct
heterogeneous systems

• By either using TCP (connection-oriented) or UDP (connection-free)

• However. . .
• What if we want to send more complex stuff? int s? double s?

Objects? Text?
• What do we do if more than one client connects to a server at a time?
• We do not have seen some more complex examples

• We will now look at these issues in the next lessons
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Caspar David Friedrich, “Der Wanderer über dem Nebelmeer”, 1818
http://en.wikipedia.org/wiki/Wanderer_above_the_Sea_of_Fog
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