
Distributed Computing
Lesson 5: Sockets

Thomas Weise · 汤卫思

tweise@hfuu.edu.cn · http://www.it-weise.de

Hefei University, South Campus 2 合肥学院 南艳湖校区/南2区
Faculty of Computer Science and Technology 计算机科学与技术系

Institute of Applied Optimization 应用优化研究所

230601 Shushan District, Hefei, Anhui, China 中国 安徽省 合肥市 蜀山区 230601
Econ. & Tech. Devel. Zone, Jinxiu Dadao 99 经济技术开发区 锦绣大道99号

mailto:tweise@hfuu.edu.cn
http://www.it-weise.de

Outline

1 Introduction

2 TCP Sockets

3 UDP Sockets

4 Summary

Distributed Computing Thomas Weise 2/41

w
e
b
s
it
e

Overview

• What are sockets?

• Which protocols can they offer?

• How is the API for sockets designed in languages such as Java and C?

• What to consider when exchanging data between hosts in a
heterogeneous system?

Distributed Computing Thomas Weise 3/41

Introduction

• What are sockets in networking?

Distributed Computing Thomas Weise 4/41

Introduction

• What are sockets in networking?

• API provided by OS for accessing protocols of OSI Layer 4 and
below [1]

Distributed Computing Thomas Weise 4/41

Introduction

• What are sockets in networking?

• API provided by OS for accessing protocols of OSI Layer 4 and
below [1]

• Available for all major programming languages

Distributed Computing Thomas Weise 4/41

Introduction

• What are sockets in networking?

• API provided by OS for accessing protocols of OSI Layer 4 and
below [1]

• Available for all major programming languages:
• Java [2–11]

Distributed Computing Thomas Weise 4/41

Introduction

• What are sockets in networking?

• API provided by OS for accessing protocols of OSI Layer 4 and
below [1]

• Available for all major programming languages:
• Java [2–11]

• C/C++ [12–15]

Distributed Computing Thomas Weise 4/41

Introduction

• What are sockets in networking?

• API provided by OS for accessing protocols of OSI Layer 4 and
below [1]

• Available for all major programming languages:
• Java [2–11]

• C/C++ [12–15]

• C# [16, 17]

Distributed Computing Thomas Weise 4/41

Introduction

• What are sockets in networking?

• API provided by OS for accessing protocols of OSI Layer 4 and
below [1]

• Available for all major programming languages:
• Java [2–11]

• C/C++ [12–15]

• C# [16, 17]

• Python [18]

Distributed Computing Thomas Weise 4/41

Introduction

• What are sockets in networking?

• API provided by OS for accessing protocols of OSI Layer 4 and
below [1]

• Available for all major programming languages:
• Java [2–11]

• C/C++ [12–15]

• C# [16, 17]

• Python [18]

• Allow data exchange via IP [19], UDP [19], and TCP [19, 20] protocols

Distributed Computing Thomas Weise 4/41

Sockets

Distributed Computing Thomas Weise 5/41

Identification & Addressing

• Assumption: Communication via TCP/IP or UDP/IP

Distributed Computing Thomas Weise 6/41

Identification & Addressing

• Assumption: Communication via TCP/IP or UDP/IP
• Internet Layer

Distributed Computing Thomas Weise 6/41

Identification & Addressing

• Assumption: Communication via TCP/IP or UDP/IP
• Internet Layer:

• Identify network interface of a host: IP-Address (v4, v6)

Distributed Computing Thomas Weise 6/41

Identification & Addressing

• Assumption: Communication via TCP/IP or UDP/IP
• Internet Layer:

• Identify network interface of a host: IP-Address (v4, v6)
• There are many computers in the internet

Distributed Computing Thomas Weise 6/41

Identification & Addressing

• Assumption: Communication via TCP/IP or UDP/IP
• Internet Layer:

• Identify network interface of a host: IP-Address (v4, v6)
• There are many computers in the internet
• Each host may have more than one network adater, each with a

different IP address (Example: routers)

Distributed Computing Thomas Weise 6/41

Identification & Addressing

• Assumption: Communication via TCP/IP or UDP/IP
• Internet Layer:

• Identify network interface of a host: IP-Address (v4, v6)
• There are many computers in the internet
• Each host may have more than one network adater, each with a

different IP address (Example: routers)

• Transport Layer

Distributed Computing Thomas Weise 6/41

Identification & Addressing

• Assumption: Communication via TCP/IP or UDP/IP
• Internet Layer:

• Identify network interface of a host: IP-Address (v4, v6)
• There are many computers in the internet
• Each host may have more than one network adater, each with a

different IP address (Example: routers)

• Transport Layer:
• For each network adapter, OS provides transport layer protocols

Distributed Computing Thomas Weise 6/41

Identification & Addressing

• Assumption: Communication via TCP/IP or UDP/IP
• Internet Layer:

• Identify network interface of a host: IP-Address (v4, v6)
• There are many computers in the internet
• Each host may have more than one network adater, each with a

different IP address (Example: routers)

• Transport Layer:
• For each network adapter, OS provides transport layer protocols
• Each protocol can be used by multiple processes for each network

adapter

Distributed Computing Thomas Weise 6/41

Identification & Addressing

• Assumption: Communication via TCP/IP or UDP/IP
• Internet Layer:

• Identify network interface of a host: IP-Address (v4, v6)
• There are many computers in the internet
• Each host may have more than one network adater, each with a

different IP address (Example: routers)

• Transport Layer:
• For each network adapter, OS provides transport layer protocols
• Each protocol can be used by multiple processes for each network

adapter

• A socket uniquely identifies a communication channel used by one
process using one transport layer protocol to communicate via one
network adapter

Distributed Computing Thomas Weise 6/41

Identification & Addressing

• Assumption: Communication via TCP/IP or UDP/IP
• Internet Layer:

• Identify network interface of a host: IP-Address (v4, v6)
• There are many computers in the internet
• Each host may have more than one network adater, each with a

different IP address (Example: routers)

• Transport Layer:
• For each network adapter, OS provides transport layer protocols
• Each protocol can be used by multiple processes for each network

adapter

• A socket uniquely identifies a communication channel used by one
process using one transport layer protocol to communicate via one
network adapter

• (client) sockets can be uniquely identified by

Distributed Computing Thomas Weise 6/41

Identification & Addressing

• Assumption: Communication via TCP/IP or UDP/IP
• Internet Layer:

• Identify network interface of a host: IP-Address (v4, v6)
• There are many computers in the internet
• Each host may have more than one network adater, each with a

different IP address (Example: routers)

• Transport Layer:
• For each network adapter, OS provides transport layer protocols
• Each protocol can be used by multiple processes for each network

adapter

• A socket uniquely identifies a communication channel used by one
process using one transport layer protocol to communicate via one
network adapter

• (client) sockets can be uniquely identified by:
1 IP Address (Internet Layer)

Distributed Computing Thomas Weise 6/41

Identification & Addressing

• Assumption: Communication via TCP/IP or UDP/IP
• Internet Layer:

• Identify network interface of a host: IP-Address (v4, v6)
• There are many computers in the internet
• Each host may have more than one network adater, each with a

different IP address (Example: routers)

• Transport Layer:
• For each network adapter, OS provides transport layer protocols
• Each protocol can be used by multiple processes for each network

adapter

• A socket uniquely identifies a communication channel used by one
process using one transport layer protocol to communicate via one
network adapter

• (client) sockets can be uniquely identified by:
1 IP Address (Internet Layer) +
2 Transport Layer protocol name (e.g., TCP or UDP)

Distributed Computing Thomas Weise 6/41

Identification & Addressing

• Assumption: Communication via TCP/IP or UDP/IP
• Internet Layer:

• Identify network interface of a host: IP-Address (v4, v6)
• There are many computers in the internet
• Each host may have more than one network adater, each with a

different IP address (Example: routers)

• Transport Layer:
• For each network adapter, OS provides transport layer protocols
• Each protocol can be used by multiple processes for each network

adapter

• A socket uniquely identifies a communication channel used by one
process using one transport layer protocol to communicate via one
network adapter

• (client) sockets can be uniquely identified by:
1 IP Address (Internet Layer) +
2 Transport Layer protocol name (e.g., TCP or UDP) +
3 Transport Layer port (0. . . 65535)

Distributed Computing Thomas Weise 6/41

Identification & Addressing

• Domain Name System (DNS): Translates textual names to IP
Addresses

Distributed Computing Thomas Weise 7/41

Identification & Addressing

• Domain Name System (DNS): Translates textual names to IP
Addresses

• e.g., www.baidu.com ≡ 119.75.218.70

Distributed Computing Thomas Weise 7/41

Identification & Addressing

• Domain Name System (DNS): Translates textual names to IP
Addresses

• e.g., www.baidu.com ≡ 119.75.218.70

• localhost ≡ 127.0.0.1

Distributed Computing Thomas Weise 7/41

Sockets

• Sockets are network-wide unique resources owned by processes

Distributed Computing Thomas Weise 8/41

Sockets

• Sockets are network-wide unique resources owned by processes

• Division between client and server sockets

Distributed Computing Thomas Weise 8/41

Sockets

• Sockets are network-wide unique resources owned by processes

• Division between client and server sockets

• Server sockets accept incoming client connections or data

Distributed Computing Thomas Weise 8/41

Sockets

• Sockets are network-wide unique resources owned by processes

• Division between client and server sockets

• Server sockets accept incoming client connections or data

• Client sockets initiate communication with a server

Distributed Computing Thomas Weise 8/41

TCP Sockets

• TCP [19, 20] is a connection-oriented protocol

Distributed Computing Thomas Weise 9/41

TCP Sockets

• TCP [19, 20] is a connection-oriented protocol

• Server sockets wait for incomming connection requests

Distributed Computing Thomas Weise 9/41

TCP Sockets

• TCP [19, 20] is a connection-oriented protocol

• Server sockets wait for incomming connection requests

• Client sockets try to establish a connection

Distributed Computing Thomas Weise 9/41

TCP Sockets

• TCP [19, 20] is a connection-oriented protocol

• Server sockets wait for incomming connection requests

• Client sockets try to establish a connection

• Server socket

Distributed Computing Thomas Weise 9/41

TCP Sockets

• TCP [19, 20] is a connection-oriented protocol

• Server sockets wait for incomming connection requests

• Client sockets try to establish a connection

• Server socket
1) is bound to a specific (usually well-known) port

Distributed Computing Thomas Weise 9/41

TCP Sockets

• TCP [19, 20] is a connection-oriented protocol

• Server sockets wait for incomming connection requests

• Client sockets try to establish a connection

• Server socket
1) is bound to a specific (usually well-known) port
2) listens at that port for new clients

Distributed Computing Thomas Weise 9/41

TCP Sockets

• TCP [19, 20] is a connection-oriented protocol

• Server sockets wait for incomming connection requests

• Client sockets try to establish a connection

• Server socket
1) is bound to a specific (usually well-known) port
2) listens at that port for new clients
3) creates a new socket for each client it accepts

Distributed Computing Thomas Weise 9/41

TCP Sockets

• TCP [19, 20] is a connection-oriented protocol

• Server sockets wait for incomming connection requests

• Client sockets try to establish a connection

• Server socket
1) is bound to a specific (usually well-known) port
2) listens at that port for new clients
3) creates a new socket for each client it accepts
4) new socket: continue at “client socket” 3)

Distributed Computing Thomas Weise 9/41

TCP Sockets

• TCP [19, 20] is a connection-oriented protocol

• Server sockets wait for incomming connection requests

• Client sockets try to establish a connection

• Server socket
1) is bound to a specific (usually well-known) port
2) listens at that port for new clients
3) creates a new socket for each client it accepts
4) new socket: continue at “client socket” 3)
5) close server socket

Distributed Computing Thomas Weise 9/41

TCP Sockets

• TCP [19, 20] is a connection-oriented protocol

• Server sockets wait for incomming connection requests

• Client sockets try to establish a connection

• Server socket
1) is bound to a specific (usually well-known) port
2) listens at that port for new clients
3) creates a new socket for each client it accepts
4) new socket: continue at “client socket” 3)
5) close server socket

• Client socket

Distributed Computing Thomas Weise 9/41

TCP Sockets

• TCP [19, 20] is a connection-oriented protocol

• Server sockets wait for incomming connection requests

• Client sockets try to establish a connection

• Server socket
1) is bound to a specific (usually well-known) port
2) listens at that port for new clients
3) creates a new socket for each client it accepts
4) new socket: continue at “client socket” 3)
5) close server socket

• Client socket
1) client socket is bound to random free port

Distributed Computing Thomas Weise 9/41

TCP Sockets

• TCP [19, 20] is a connection-oriented protocol

• Server sockets wait for incomming connection requests

• Client sockets try to establish a connection

• Server socket
1) is bound to a specific (usually well-known) port
2) listens at that port for new clients
3) creates a new socket for each client it accepts
4) new socket: continue at “client socket” 3)
5) close server socket

• Client socket
1) client socket is bound to random free port
2) connect to a server socket

Distributed Computing Thomas Weise 9/41

TCP Sockets

• TCP [19, 20] is a connection-oriented protocol

• Server sockets wait for incomming connection requests

• Client sockets try to establish a connection

• Server socket
1) is bound to a specific (usually well-known) port
2) listens at that port for new clients
3) creates a new socket for each client it accepts
4) new socket: continue at “client socket” 3)
5) close server socket

• Client socket
1) client socket is bound to random free port
2) connect to a server socket
3) communicates by sending und receiving data

Distributed Computing Thomas Weise 9/41

TCP Sockets

• TCP [19, 20] is a connection-oriented protocol

• Server sockets wait for incomming connection requests

• Client sockets try to establish a connection

• Server socket
1) is bound to a specific (usually well-known) port
2) listens at that port for new clients
3) creates a new socket for each client it accepts
4) new socket: continue at “client socket” 3)
5) close server socket

• Client socket
1) client socket is bound to random free port
2) connect to a server socket
3) communicates by sending und receiving data
4) close the socket

Distributed Computing Thomas Weise 9/41

TCP Sockets in Java

• In Java
[21, 22], using TCP/IP sockets is fairly easy

Distributed Computing Thomas Weise 10/41

TCP Sockets in Java

• In Java
[21, 22], using TCP/IP sockets is fairly easy

• The server socket that accepts connections is an instance of the class
ServerSocket

Distributed Computing Thomas Weise 10/41

TCP Sockets in Java

• In Java
[21, 22], using TCP/IP sockets is fairly easy

• The server socket that accepts connections is an instance of the class
ServerSocket

• In its constructor, we pass in the port

Distributed Computing Thomas Weise 10/41

TCP Sockets in Java

• In Java
[21, 22], using TCP/IP sockets is fairly easy

• The server socket that accepts connections is an instance of the class
ServerSocket

• In its constructor, we pass in the port
• The constructor carries out 1) and 2) as one step

Distributed Computing Thomas Weise 10/41

TCP Sockets in Java

• In Java
[21, 22], using TCP/IP sockets is fairly easy

• The server socket that accepts connections is an instance of the class
ServerSocket

• In its constructor, we pass in the port
• The constructor carries out 1) and 2) as one step
• The method accept performs a blocking wait for incoming

connections

Distributed Computing Thomas Weise 10/41

TCP Sockets in Java

• In Java
[21, 22], using TCP/IP sockets is fairly easy

• The server socket that accepts connections is an instance of the class
ServerSocket

• In its constructor, we pass in the port
• The constructor carries out 1) and 2) as one step
• The method accept performs a blocking wait for incoming

connections, which are returned as Socket s, i.e., client sockets

• A client is an instance of the class Socket

Distributed Computing Thomas Weise 10/41

TCP Sockets in Java

• In Java
[21, 22], using TCP/IP sockets is fairly easy

• The server socket that accepts connections is an instance of the class
ServerSocket

• In its constructor, we pass in the port
• The constructor carries out 1) and 2) as one step
• The method accept performs a blocking wait for incoming

connections, which are returned as Socket s, i.e., client sockets

• A client is an instance of the class Socket

• it can be connected to a server by passing the server’s address
(InetAddress) and port into the constructor 1)

Distributed Computing Thomas Weise 10/41

TCP Sockets in Java

• In Java
[21, 22], using TCP/IP sockets is fairly easy

• The server socket that accepts connections is an instance of the class
ServerSocket

• In its constructor, we pass in the port
• The constructor carries out 1) and 2) as one step
• The method accept performs a blocking wait for incoming

connections, which are returned as Socket s, i.e., client sockets

• A client is an instance of the class Socket

• it can be connected to a server by passing the server’s address
(InetAddress) and port into the constructor 1)

• For communication (4 + 2), each (client) socket has

Distributed Computing Thomas Weise 10/41

TCP Sockets in Java

• In Java
[21, 22], using TCP/IP sockets is fairly easy

• The server socket that accepts connections is an instance of the class
ServerSocket

• In its constructor, we pass in the port
• The constructor carries out 1) and 2) as one step
• The method accept performs a blocking wait for incoming

connections, which are returned as Socket s, i.e., client sockets

• A client is an instance of the class Socket

• it can be connected to a server by passing the server’s address
(InetAddress) and port into the constructor 1)

• For communication (4 + 2), each (client) socket has
• an InputStream for reading incoming data (get with

getInputStream)

Distributed Computing Thomas Weise 10/41

TCP Sockets in Java

• In Java
[21, 22], using TCP/IP sockets is fairly easy

• The server socket that accepts connections is an instance of the class
ServerSocket

• In its constructor, we pass in the port
• The constructor carries out 1) and 2) as one step
• The method accept performs a blocking wait for incoming

connections, which are returned as Socket s, i.e., client sockets

• A client is an instance of the class Socket

• it can be connected to a server by passing the server’s address
(InetAddress) and port into the constructor 1)

• For communication (4 + 2), each (client) socket has
• an InputStream for reading incoming data (get with

getInputStream)

• an OutputStream for sending data (get with getOutputStream)

Distributed Computing Thomas Weise 10/41

TCP Sockets in Java

• In Java
[21, 22], using TCP/IP sockets is fairly easy

• The server socket that accepts connections is an instance of the class
ServerSocket

• In its constructor, we pass in the port
• The constructor carries out 1) and 2) as one step
• The method accept performs a blocking wait for incoming

connections, which are returned as Socket s, i.e., client sockets

• A client is an instance of the class Socket

• it can be connected to a server by passing the server’s address
(InetAddress) and port into the constructor 1)

• For communication (4 + 2), each (client) socket has
• an InputStream for reading incoming data (get with

getInputStream)

• an OutputStream for sending data (get with getOutputStream)

• reads are blocking, writes are non-blocking

Distributed Computing Thomas Weise 10/41

TCP Sockets in Java

• In Java
[21, 22], using TCP/IP sockets is fairly easy

• The server socket that accepts connections is an instance of the class
ServerSocket

• In its constructor, we pass in the port
• The constructor carries out 1) and 2) as one step
• The method accept performs a blocking wait for incoming

connections, which are returned as Socket s, i.e., client sockets

• A client is an instance of the class Socket

• it can be connected to a server by passing the server’s address
(InetAddress) and port into the constructor 1)

• For communication (4 + 2), each (client) socket has
• an InputStream for reading incoming data (get with

getInputStream)

• an OutputStream for sending data (get with getOutputStream)

• reads are blocking, writes are non-blocking

• Sockets are closed with their close method 3) + 5)

Distributed Computing Thomas Weise 10/41

TCP Sockets in Java

• In Java
[21, 22], using TCP/IP sockets is fairly easy

• The server socket that accepts connections is an instance of the class
ServerSocket

• In its constructor, we pass in the port
• The constructor carries out 1) and 2) as one step
• The method accept performs a blocking wait for incoming

connections, which are returned as Socket s, i.e., client sockets

• A client is an instance of the class Socket

• it can be connected to a server by passing the server’s address
(InetAddress) and port into the constructor 1)

• For communication (4 + 2), each (client) socket has
• an InputStream for reading incoming data (get with

getInputStream)

• an OutputStream for sending data (get with getOutputStream)

• reads are blocking, writes are non-blocking

• Sockets are closed with their close method 3) + 5)
• All the above may cause errors, thrown as IOException s

Distributed Computing Thomas Weise 10/41

TCP: 3-way Handshake

Distributed Computing Thomas Weise 11/41

TCP: 3-way Handshake

Distributed Computing Thomas Weise 11/41

TCP: 3-way Handshake

Distributed Computing Thomas Weise 11/41

TCP: 3-way Handshake

Distributed Computing Thomas Weise 11/41

TCP: 3-way Handshake

Distributed Computing Thomas Weise 11/41

TCP: 3-way Handshake

Distributed Computing Thomas Weise 11/41

TCP: 3-way Handshake

Distributed Computing Thomas Weise 11/41

TCP: 3-way Handshake

Distributed Computing Thomas Weise 11/41

TCP: 3-way Handshake

Distributed Computing Thomas Weise 11/41

TCP: 3-way Handshake

Distributed Computing Thomas Weise 11/41

TCP: 3-way Handshake

Distributed Computing Thomas Weise 11/41

TCP: 3-way Handshake

Distributed Computing Thomas Weise 11/41

TCP: 3-way Handshake

Distributed Computing Thomas Weise 11/41

TCP: 3-way Handshake

Distributed Computing Thomas Weise 11/41

TCP: 3-way Handshake

Distributed Computing Thomas Weise 11/41

TCP: 3-way Handshake

Distributed Computing Thomas Weise 11/41

TCP: 3-way Handshake

Distributed Computing Thomas Weise 11/41

TCP: 3-way Handshake

Distributed Computing Thomas Weise 11/41

TCP: 3-way Handshake

Distributed Computing Thomas Weise 11/41

TCP: 3-way Handshake

Distributed Computing Thomas Weise 11/41

TCP: 3-way Handshake

Distributed Computing Thomas Weise 11/41

TCP: 3-way Handshake

Distributed Computing Thomas Weise 11/41

TCP: 3-way Handshake

Distributed Computing Thomas Weise 11/41

TCP: 3-way Handshake

Distributed Computing Thomas Weise 11/41

TCP: 3-way Handshake

Distributed Computing Thomas Weise 11/41

TCP: 3-way Handshake

Distributed Computing Thomas Weise 11/41

TCP Sockets in Java

• Connection-oriented sockets offer sequential sending and receiving of
data

Distributed Computing Thomas Weise 12/41

TCP Sockets in Java

• Connection-oriented sockets offer sequential sending and receiving of
data

• For sequential input and output of bytes, there is the stream API in
Java

[2, 23]

Distributed Computing Thomas Weise 12/41

TCP Sockets in Java

• Connection-oriented sockets offer sequential sending and receiving of
data

• For sequential input and output of bytes, there is the stream API in
Java

[2, 23]

Distributed Computing Thomas Weise 12/41

TCP Sockets in Java

• Connection-oriented sockets offer sequential sending and receiving of
data

• For sequential input and output of bytes, there is the stream API in
Java

[2, 23]:

• OutputStream : write bytes sequentially

Distributed Computing Thomas Weise 12/41

TCP Sockets in Java

• Connection-oriented sockets offer sequential sending and receiving of
data

• For sequential input and output of bytes, there is the stream API in
Java

[2, 23]:

• OutputStream : write bytes sequentially

• InputStream : read bytes sequentially

Distributed Computing Thomas Weise 12/41

TCP Sockets in Java

• Connection-oriented sockets offer sequential sending and receiving of
data

• For sequential input and output of bytes, there is the stream API in
Java

[2, 23]:

• OutputStream : write bytes sequentially

• InputStream : read bytes sequentially

• Socket offers getInputStream() and getOutputStream() to access
streams for reading and writing of data

Distributed Computing Thomas Weise 12/41

TCP Sockets in Java

• Connection-oriented sockets offer sequential sending and receiving of
data

• For sequential input and output of bytes, there is the stream API in
Java

[2, 23]:

• OutputStream : write bytes sequentially

• InputStream : read bytes sequentially

• Socket offers getInputStream() and getOutputStream() to access
streams for reading and writing of data

Distributed Computing Thomas Weise 12/41

TCP Sockets in Java

• Connection-oriented sockets offer sequential sending and receiving of
data

• For sequential input and output of bytes, there is the stream API in
Java

[2, 23]:

• OutputStream : write bytes sequentially

• InputStream : read bytes sequentially

• Socket offers getInputStream() and getOutputStream() to access
streams for reading and writing of data

Distributed Computing Thomas Weise 12/41

TCP Sockets in Java

• Connection-oriented sockets offer sequential sending and receiving of
data

• For sequential input and output of bytes, there is the stream API in
Java

[2, 23]:

• OutputStream : write bytes sequentially

• InputStream : read bytes sequentially

• Socket offers getInputStream() and getOutputStream() to access
streams for reading and writing of data

Distributed Computing Thomas Weise 12/41

TCP Sockets in Java: Server

Listing: TCPServer.java TCP Server in Java

import java.io.InputStream; import java.net.ServerSocket; import java.net.Socket;

public class TCPServer {

public static final void main(final String [] args) {

ServerSocket server; InputStream is;

Socket client;

try {

server = new ServerSocket (9999);// 1 + 2)

for (int j = 5; (--j) >= 0;) { // process only 5 clients , so I can show 5) below

client = server.accept (); //wait for incoming connection 3)

System.out.println("New connection from " + client.getRemoteSocketAddress ());

is = client.getInputStream (); //get stream to read from

System.out.println(is.read());// 4 + 3)

client.close(); //close connection to client

}

server.close (); // 5)

} catch (Throwable t) {

t.printStackTrace ();

}

}

}

Distributed Computing Thomas Weise 13/41

TCP Sockets in Java: Client

Listing: TCPClient.java TCP Client in Java

import java.io.OutputStream; import java.net.InetAddress; import java.net.Socket;

public class TCPClient {

public static final void main(final String [] args) {

Socket client;

OutputStream os;

InetAddress ia;

try {

ia = InetAddress.getByName("localhost");//get local host address

client = new Socket(ia, 9999); // create socket 1+2)

os = client.getOutputStream (); //get stream to write to

os.write (1); //write one byte of value 1 3)

client.close (); // close 4)

} catch (Throwable t) {

t.printStackTrace ();

}

}

}

Distributed Computing Thomas Weise 14/41

TCP Server in Java: Printing Text

Listing: TCPServerPrintingRawChars.java TCP Server in Java

import java.io.InputStream; import java.net.ServerSocket; import java.net.Socket;

public class TCPServerPrintingRawChars {

public static final void main(final String [] args) {

ServerSocket serv; Socket client; InputStream is; int i;

try {

serv = new ServerSocket (9999); // start server 1 + 2)

for (;;) {

client = serv.accept (); //wait for incoming connection 3)

is = client.getInputStream (); //get stream to read from connection

while ((i = is.read()) >= 0) {//read bytes until connection closed 4 + 3)

System.out.print ((char) i); //cast byte to char: dangerous!

}

System.out.println (); //print newline

is.close (); //close reading stream of connection

client.close(); //close connection 4)

}

} catch (Throwable t) {

t.printStackTrace ();

}

}

}

Distributed Computing Thomas Weise 15/41

TCP Client in Java: Sending Text

Listing: TCPClientSendingRawChars.java TCP Client in Java

import java.io.OutputStream; import java.net.InetAddress; import

java.net.Socket;

public class TCPClientSendingRawChars {

public static final void main(final String [] args) {

Socket client; OutputStream os;

InetAddress ia; int ch;

try {

ia = InetAddress.getByName("localhost");

client = new Socket(ia, 9999); // 1+2)

os = client.getOutputStream ();

while ((ch = System.in.read()) != '\n'){ //read 1 char (until newline)

os.write(ch); // write char to connection , may be buffered and not yet sent 3)

}

client.close (); // flush and close connection 4)

} catch (Throwable t) {

t.printStackTrace ();

}

}

}

Distributed Computing Thomas Weise 16/41

Java 1.7 Try-With-Resource Statement

• Since Java 1.7, there is the so-called try-with-resource statement [24]

Distributed Computing Thomas Weise 17/41

Java 1.7 Try-With-Resource Statement

• Since Java 1.7, there is the so-called try-with-resource statement [24]

• This statement makes sure that resources (implementing
AutoCloseable) are automatically closed

Distributed Computing Thomas Weise 17/41

Java 1.7 Try-With-Resource Statement

• Since Java 1.7, there is the so-called try-with-resource statement [24]

• This statement makes sure that resources (implementing
AutoCloseable) are automatically closed, even if Exceptions (errors)
occurs

Distributed Computing Thomas Weise 17/41

Java 1.7 Try-With-Resource Statement

• Since Java 1.7, there is the so-called try-with-resource statement [24]

• This statement makes sure that resources (implementing
AutoCloseable) are automatically closed, even if Exceptions (errors)
occurs

• try-with-resource is similar to a special try-final statement

Distributed Computing Thomas Weise 17/41

Java 1.7 Try-With-Resource Statement

• Since Java 1.7, there is the so-called try-with-resource statement [24]

• This statement makes sure that resources (implementing
AutoCloseable) are automatically closed, even if Exceptions (errors)
occurs

• try-with-resource is similar to a special try-final statement

• This makes code more compact and less error prone

Distributed Computing Thomas Weise 17/41

Java 1.7 Try-With-Resource Statement

• Since Java 1.7, there is the so-called try-with-resource statement [24]

• This statement makes sure that resources (implementing
AutoCloseable) are automatically closed, even if Exceptions (errors)
occurs

• try-with-resource is similar to a special try-final statement

• This makes code more compact and less error prone

• Resources that can automatically closed are all types of sockets and
streams

Distributed Computing Thomas Weise 17/41

Java 1.7 Try-With-Resource Statement

• Since Java 1.7, there is the so-called try-with-resource statement [24]

• This statement makes sure that resources (implementing
AutoCloseable) are automatically closed, even if Exceptions (errors)
occurs

• try-with-resource is similar to a special try-final statement

• This makes code more compact and less error prone

• Resources that can automatically closed are all types of sockets and
streams

• This makes our socket code much smaller

Distributed Computing Thomas Weise 17/41

General form of the Try-With-Resource Statement

Listing: General form of the Try-With-Resource Statement

...

try(ResourceClass resource = new ResourceClass (...)){ //

create/open resource

... //do something with resource

} // resource is automatically closed when end of block is

reached

...

Distributed Computing Thomas Weise 18/41

TCP Server Socket (Java Try-With-Resource)

Listing: TCPServerJava17.java TCP Server in Java

import java.io.InputStream; import java.net.ServerSocket; import java.net.Socket;

public class TCPServerJava17 {

public static final void main(final String [] args) {

try(ServerSocket server = new ServerSocket (9999)){ // 1 + 2)

for (int j = 5; (--j) >= 0;) { // process only 5 clients , so I can show 5) below

try(Socket client = server.accept ()) { //wait for incoming connection 3)

System.out.println("New connection from " +

client.getRemoteSocketAddress ());

try(InputStream is = client.getInputStream ()){//get stream to read

System.out.println(is.read()); // 4 + 3)

} //close reading end of connection

} // close connection 5)

}

// 5)

} catch (Throwable t) {

t.printStackTrace ();

}

}

}

Distributed Computing Thomas Weise 19/41

TCP Client Socket (Java Try-With-Resource))

Listing: TCPClientJava17.java TCP Client in Java

import java.io.OutputStream; import java.net.InetAddress; import java.net.Socket;

public class TCPClientJava17 {

public static final void main(final String [] args) {

InetAddress ia;

try {

ia = InetAddress.getByName("localhost");

try(Socket client = new Socket(ia , 9999)){ // 1+2)

try(OutputStream os = client.getOutputStream ()) {

os.write (1); //write one byte with value 1 3)

} //close writing end of connection

} // 4)

} catch (Throwable t) {

t.printStackTrace ();

}

}

}

Distributed Computing Thomas Weise 20/41

TCP Sockets in C

• In C
[25], using TCP/IP sockets is a bit more complicated

Distributed Computing Thomas Weise 21/41

TCP Sockets in C

• In C
[25], using TCP/IP sockets is a bit more complicated

• Windows and Unix/Linux have different headers and a slightly
different API

Distributed Computing Thomas Weise 21/41

TCP Sockets in C

• In C
[25], using TCP/IP sockets is a bit more complicated

• Windows and Unix/Linux have different headers and a slightly
different API

• Code is not a priori portable, can maybe made portable with lots of
#define s

Distributed Computing Thomas Weise 21/41

TCP Sockets in C

• In C
[25], using TCP/IP sockets is a bit more complicated

• Windows and Unix/Linux have different headers and a slightly
different API

• Code is not a priori portable, can maybe made portable with lots of
#define s

• Windows: Compile as
gcc fileName windows.c -o fileName windows.exe -lws2 32

Distributed Computing Thomas Weise 21/41

TCP Sockets in C

• In C
[25], using TCP/IP sockets is a bit more complicated

• Windows and Unix/Linux have different headers and a slightly
different API

• Code is not a priori portable, can maybe made portable with lots of
#define s

• Windows: Compile as
gcc fileName windows.c -o fileName windows.exe -lws2 32

where -lws2_32 says “link against Winsock”

Distributed Computing Thomas Weise 21/41

TCP Sockets in C

• In C
[25], using TCP/IP sockets is a bit more complicated

• Windows and Unix/Linux have different headers and a slightly
different API

• Code is not a priori portable, can maybe made portable with lots of
#define s

• Windows: Compile as
gcc fileName windows.c -o fileName windows.exe -lws2 32

where -lws2_32 says “link against Winsock”

• Linux: Compile as
gcc fileName linux.c -o fileName linux

Distributed Computing Thomas Weise 21/41

Distributed Computing Thomas Weise 22/41

Distributed Computing Thomas Weise 22/41

Distributed Computing Thomas Weise 22/41

Distributed Computing Thomas Weise 22/41

Distributed Computing Thomas Weise 22/41

Distributed Computing Thomas Weise 22/41

Distributed Computing Thomas Weise 22/41

Distributed Computing Thomas Weise 22/41

Distributed Computing Thomas Weise 22/41

Distributed Computing Thomas Weise 22/41

Distributed Computing Thomas Weise 22/41

Distributed Computing Thomas Weise 22/41

Distributed Computing Thomas Weise 22/41

Distributed Computing Thomas Weise 22/41

Distributed Computing Thomas Weise 22/41

Distributed Computing Thomas Weise 22/41

Distributed Computing Thomas Weise 22/41

Distributed Computing Thomas Weise 22/41

Distributed Computing Thomas Weise 22/41

Distributed Computing Thomas Weise 22/41

Distributed Computing Thomas Weise 22/41

Distributed Computing Thomas Weise 22/41

Distributed Computing Thomas Weise 22/41

Distributed Computing Thomas Weise 22/41

Distributed Computing Thomas Weise 22/41

Distributed Computing Thomas Weise 22/41

Distributed Computing Thomas Weise 22/41

Distributed Computing Thomas Weise 22/41

Distributed Computing Thomas Weise 22/41

Distributed Computing Thomas Weise 22/41

Distributed Computing Thomas Weise 22/41

TCP Sockets in C/Windows: Server

Listing: TCP Server in C/Windows (gcc TCPServer windows.c -o TCPServer windows.exe -lws2 32)

#include <stdio.h>// compile: gcc TCPServer_windows.c -o TCPServer_windows.exe -lws2_32

#include <winsock.h> // Warning: This program does not perform any error handling.

int main(int argc , char *argv []) {

int server , j, client , addrSize;

struct sockaddr_in serverAddr , clientAddr;

WSADATA wsaData;

char data;

memset (&serverAddr , 0, sizeof(serverAddr));

serverAddr.sin_family = AF_INET; //IPv4 address

serverAddr.sin_addr.s_addr = htonl(INADDR_ANY); //don't care network interface

serverAddr.sin_port = htons (9999); //bind to port 9999

addrSize = sizeof(clientAddr);

WSAStartup(MAKEWORD(2, 0), &wsaData); // Initialize WinSock

server = socket(PF_INET , SOCK_STREAM , IPPROTO_TCP); // Allocate TCP socket

bind(server , (struct sockaddr *) &serverAddr , sizeof(serverAddr));// 1)

listen(server , 5); // 2)

for (j = 5; (--j) >= 0;) {

client = accept(server , (struct sockaddr *) &clientAddr , &addrSize); // 3)

printf("New connection from %s\n", inet_ntoa(clientAddr.sin_addr));

// now receive 1 byte of data to client , flags =0

if(recv(client , &data , 1, 0) == 1) { printf("%d\n", data); } // 4 + 3)

closesocket(client); // 4)

}

closesocket(server); // 5)

WSACleanup (); // Finalize WinSock

}

Distributed Computing Thomas Weise 23/41

TCP Sockets in C/Windows: Client

Listing: TCP Client in C/Windows (gcc TCPClient windows.c -o TCPClient windows.exe -lws2 32)

#include <stdio.h>// compile: gcc TCPClient_windows.c -o TCPClient_windows.exe -lws2_32

#include <winsock.h> // Warning: This program does not perform any error handling.

int main(int argc , char *argv []) {

int client; struct sockaddr_in address;

WSADATA wsaData; char data;

WSAStartup(MAKEWORD(2, 0), &wsaData); // Initialize WinSock

client = socket(PF_INET , SOCK_STREAM , IPPROTO_TCP); // Allocate TCP Socket

memset (&address , 0, sizeof(address)); //clear socket address

address.sin_family = AF_INET; //IPv4 address

address.sin_addr.s_addr = inet_addr("127.0.0.1");//set to (loopback) IP address

address.sin_port = htons (9999); //make port in network byte order

connect(client , (struct sockaddr *)&address , sizeof(address)); // 1+2)

data = 2;

send(client , &data , 1, 0); // 3) send 1 byte of data to client , flags =0

closesocket(client); // 4)

WSACleanup (); // Finalize WinSock

return 0;

}

Distributed Computing Thomas Weise 24/41

TCP Sockets in C/Linux: Server

Listing: TCP Server in C/Linux (gcc TCPServer linux.c -o TCPServer linux -lpthread)

#include <stdio.h> // compile: gcc TCPServer_linux.c -o TCPServer_linux

#include <sys/socket.h> // Warning: This program does not perform any error handling.

#include <netinet/in.h> //In any real program , you need to handle errors.

#include <arpa/inet.h>

#include <string.h>

#include <unistd.h>

int main(int argc , char *argv []) {

int server , j, client;

socklen_t addrSize;

struct sockaddr_in serverAddr , clientAddr;

char data;

memset (&serverAddr , 0, sizeof(serverAddr));//clear socket address

serverAddr.sin_family = AF_INET; //IPv4 address

serverAddr.sin_addr.s_addr = htonl(INADDR_ANY);//don't care network interface

serverAddr.sin_port = htons (9999); //bind to port 9999

addrSize = sizeof(clientAddr);

server = socket(PF_INET , SOCK_STREAM , IPPROTO_TCP); // Allocate TCP socket

bind(server , (struct sockaddr *) &serverAddr , sizeof(serverAddr)); // 1)

listen(server , 5); // 2)

for (j = 5; (--j) >= 0;) {

client = accept(server , (struct sockaddr *) &clientAddr , &addrSize); // 3)

printf("New connection from %s\n", inet_ntoa(clientAddr.sin_addr));

// now receive 1 byte of data to client , flags =0

if(recv(client , &data , 1, 0) == 1) { printf("%d\n", data); } // 4 + 3)

close(client); // 4)

}

close(server); // 5)

}
Distributed Computing Thomas Weise 25/41

TCP Sockets in C/Linux: Client

Listing: TCP Client in C/Linux (gcc TCPClient linux.c -o TCPClient linux -lpthread)

#include <stdio.h> // compile: gcc TCPClient_linux.c -o TCPClient_linux

#include <sys/socket.h> // Warning: This program does not perform any error handling.

#include <arpa/inet.h> //In any real program , you need to handle errors.

#include <string.h>

#include <unistd.h>

int main(int argc , char *argv []) {

int client; struct sockaddr_in address; char data;

client = socket(PF_INET , SOCK_STREAM , IPPROTO_TCP); // Allocate TCP Socket

memset (&address , 0, sizeof(address)); //clear socket address

address.sin_family = AF_INET; //IPv4 address

address.sin_addr.s_addr = inet_addr("127.0.0.1");//set to (loopback) IP address

address.sin_port = htons (9999); //make port in network byte order

connect(client , (struct sockaddr *)&address , sizeof(address)); // 1+2)

data = 2;

send(client , &data , 1, 0); // 3) send 1 byte of data to client , flags =0

close(client); // 4)

return 0;

}

Distributed Computing Thomas Weise 26/41

UDP Sockets

• UDP [19] is an unreliable and connection-less protocol

Distributed Computing Thomas Weise 27/41

UDP Sockets

• UDP [19] is an unreliable and connection-less protocol

• Server sockets therefore wait for incomming packets (which may
come from anywhere) instead of connection

Distributed Computing Thomas Weise 27/41

UDP Sockets

• UDP [19] is an unreliable and connection-less protocol

• Server sockets therefore wait for incomming packets (which may
come from anywhere) instead of connection

• Clients try to send packets to server without establishing connections

Distributed Computing Thomas Weise 27/41

UDP Sockets

• UDP [19] is an unreliable and connection-less protocol

• Server sockets therefore wait for incomming packets (which may
come from anywhere) instead of connection

• Clients try to send packets to server without establishing connections

• Server socket

Distributed Computing Thomas Weise 27/41

UDP Sockets

• UDP [19] is an unreliable and connection-less protocol

• Server sockets therefore wait for incomming packets (which may
come from anywhere) instead of connection

• Clients try to send packets to server without establishing connections

• Server socket
1) is bound to a specific (usually well-known) port

Distributed Computing Thomas Weise 27/41

UDP Sockets

• UDP [19] is an unreliable and connection-less protocol

• Server sockets therefore wait for incomming packets (which may
come from anywhere) instead of connection

• Clients try to send packets to server without establishing connections

• Server socket
1) is bound to a specific (usually well-known) port
2) accepts packets at that port from clients

Distributed Computing Thomas Weise 27/41

UDP Sockets

• UDP [19] is an unreliable and connection-less protocol

• Server sockets therefore wait for incomming packets (which may
come from anywhere) instead of connection

• Clients try to send packets to server without establishing connections

• Server socket
1) is bound to a specific (usually well-known) port
2) accepts packets at that port from clients
3) processes packet data on arrival

Distributed Computing Thomas Weise 27/41

UDP Sockets

• UDP [19] is an unreliable and connection-less protocol

• Server sockets therefore wait for incomming packets (which may
come from anywhere) instead of connection

• Clients try to send packets to server without establishing connections

• Server socket
1) is bound to a specific (usually well-known) port
2) accepts packets at that port from clients
3) processes packet data on arrival
4) maybe also send answer packet (go to 2)

Distributed Computing Thomas Weise 27/41

UDP Sockets

• UDP [19] is an unreliable and connection-less protocol

• Server sockets therefore wait for incomming packets (which may
come from anywhere) instead of connection

• Clients try to send packets to server without establishing connections

• Server socket
1) is bound to a specific (usually well-known) port
2) accepts packets at that port from clients
3) processes packet data on arrival
4) maybe also send answer packet (go to 2)
5) close server socket when finished with everything

Distributed Computing Thomas Weise 27/41

UDP Sockets

• UDP [19] is an unreliable and connection-less protocol

• Server sockets therefore wait for incomming packets (which may
come from anywhere) instead of connection

• Clients try to send packets to server without establishing connections

• Server socket
1) is bound to a specific (usually well-known) port
2) accepts packets at that port from clients
3) processes packet data on arrival
4) maybe also send answer packet (go to 2)
5) close server socket when finished with everything

• Client socket

Distributed Computing Thomas Weise 27/41

UDP Sockets

• UDP [19] is an unreliable and connection-less protocol

• Server sockets therefore wait for incomming packets (which may
come from anywhere) instead of connection

• Clients try to send packets to server without establishing connections

• Server socket
1) is bound to a specific (usually well-known) port
2) accepts packets at that port from clients
3) processes packet data on arrival
4) maybe also send answer packet (go to 2)
5) close server socket when finished with everything

• Client socket
1) client socket bound to random free port

Distributed Computing Thomas Weise 27/41

UDP Sockets

• UDP [19] is an unreliable and connection-less protocol

• Server sockets therefore wait for incomming packets (which may
come from anywhere) instead of connection

• Clients try to send packets to server without establishing connections

• Server socket
1) is bound to a specific (usually well-known) port
2) accepts packets at that port from clients
3) processes packet data on arrival
4) maybe also send answer packet (go to 2)
5) close server socket when finished with everything

• Client socket
1) client socket bound to random free port
2) send packet to server

Distributed Computing Thomas Weise 27/41

UDP Sockets

• UDP [19] is an unreliable and connection-less protocol

• Server sockets therefore wait for incomming packets (which may
come from anywhere) instead of connection

• Clients try to send packets to server without establishing connections

• Server socket
1) is bound to a specific (usually well-known) port
2) accepts packets at that port from clients
3) processes packet data on arrival
4) maybe also send answer packet (go to 2)
5) close server socket when finished with everything

• Client socket
1) client socket bound to random free port
2) send packet to server
3) maybe receive packets from server

Distributed Computing Thomas Weise 27/41

UDP Sockets

• UDP [19] is an unreliable and connection-less protocol

• Server sockets therefore wait for incomming packets (which may
come from anywhere) instead of connection

• Clients try to send packets to server without establishing connections

• Server socket
1) is bound to a specific (usually well-known) port
2) accepts packets at that port from clients
3) processes packet data on arrival
4) maybe also send answer packet (go to 2)
5) close server socket when finished with everything

• Client socket
1) client socket bound to random free port
2) send packet to server
3) maybe receive packets from server
4) close the socket

Distributed Computing Thomas Weise 27/41

UDP Sockets in Java: Server

Listing: UDPServer.java UDP Server in Java

import java.io.OutputStream; import java.net.DatagramPacket;

import java.net.DatagramSocket; import java.net.InetAddress;

public class UDPServer {

public static final void main(final String [] args) {

DatagramSocket server; DatagramPacket p;

try {

server = new DatagramSocket (9998); // create socket 1)

for(int j = 5; (--j) >= 0;){

p = new DatagramPacket(new byte[1], 1); // create package

server.receive(p); //wait for and receive incoming data 2)

System.out.println("New message " + p.getSocketAddress ());

if (p.getLength () > 0) { //is there data? 3)

System.out.println(p.getData ()[0]); // 3)

}

}

server.close (); // 5)

} catch (Throwable t) {

t.printStackTrace ();

}

}

}

Distributed Computing Thomas Weise 28/41

UDP Sockets in Java: Client

Listing: UDPClient.java UDP Client in Java

import java.io.OutputStream; import java.net.DatagramPacket;

import java.net.DatagramSocket; import java.net.InetAddress;

public class UDPClient {

public static final void main(final String [] args) {

DatagramSocket client; InetAddress ia;

DatagramPacket p; byte[] data;

try {

ia = InetAddress.getByName("localhost");

client = new DatagramSocket (); // create socket 1)

data = new byte[] { 1 }; // allocate data for package

p = new DatagramPacket(data , 1, ia , 9998); // create package

client.send(p); //send package to localhost :9998 2)

client.close (); // dispose socket 4)

} catch (Throwable t) {

t.printStackTrace ();

}

}

}

Distributed Computing Thomas Weise 29/41

UDP Server Socket (Java Try-With-Resource)

Listing: UDPServerJava17.java UDP Server in Java

import java.io.OutputStream; import java.net.DatagramPacket;

import java.net.DatagramSocket; import java.net.InetAddress;

public class UDPServerJava17 {

public static final void main(final String [] args) {

DatagramPacket p;

try(DatagramSocket server = new DatagramSocket (9998)) { // 1)

for(int j = 5; (--j) >= 0;){ //only five times ...

p = new DatagramPacket(new byte[1], 1); // create package

server.receive(p); //wait for and receive package 2)

System.out.println("New message " + p.getSocketAddress ());

if (p.getLength () > 0) { //is there data? 3)

System.out.println(p.getData ()[0]); // 3)

}

}

// 5)

} catch (Throwable t) {

t.printStackTrace ();

}

}

}

Distributed Computing Thomas Weise 30/41

UDP Client Socket (Java Try-With-Resource)

Listing: UDPClientJava17.java UDP Client in Java

import java.io.OutputStream; import java.net.DatagramPacket;

import java.net.DatagramSocket; import java.net.InetAddress;

public class UDPClientJava17 {

public static final void main(final String [] args) {

InetAddress ia; DatagramPacket p; byte[] data;

try {

ia = InetAddress.getByName("localhost"); //get local host address

try(DatagramSocket client = new DatagramSocket ()) { // 1)

data = new byte[] { 1 }; // allocate data

p = new DatagramPacket(data , 1, ia , 9998); // create package

client.send(p); //send package to localhost :9998 2)

} // 4)

} catch (Throwable t) {

t.printStackTrace ();

}

}

}

Distributed Computing Thomas Weise 31/41

UDP Sockets in C/Windows: Server

Listing: UDP Server in C/Windows (gcc UDPServer windows.c -o UDPServer windows.exe -lws2 32)

#include <stdio.h>// compile: gcc UDPServer_windows.c -o UDPServer_windows.exe -lws2_32

#include <winsock.h> // Warning: This program does not perform any error handling.

int main(int argc , char *argv []) {

int server , j, addrSize;

struct sockaddr_in serverAddr , clientAddr;

WSADATA wsaData;

char data;

memset (&serverAddr , 0, sizeof(serverAddr));

serverAddr.sin_family = AF_INET; //IPv4 address

serverAddr.sin_addr.s_addr = htonl(INADDR_ANY);//don't care network interface

serverAddr.sin_port = htons (9998); //set port 9998

addrSize = sizeof(clientAddr);

WSAStartup(MAKEWORD(2, 0), &wsaData); // Initialize WinSock

server = socket(PF_INET , SOCK_DGRAM , IPPROTO_UDP);// Allocate UDP socket

bind(server , (struct sockaddr *) &serverAddr , sizeof(serverAddr)); // 1)

for (j = 5; (--j) >= 0;) { // then receive 1 byte package data and get client

address , with flags=0

recvfrom(server , &data , 1, 0, (struct sockaddr *) &clientAddr , &addrSize); // 2)

printf("New message %d from %s\n", data , inet_ntoa(clientAddr.sin_addr)); // 3)

}

closesocket(server); // 5)

WSACleanup (); // Finalize WinSock

}

Distributed Computing Thomas Weise 32/41

UDP Sockets in C/Windows: Client

Listing: UDP Client in C/Windows (gcc UDPClient windows.c -o UDPClient windows.exe -lws2 32)

#include <stdio.h>// compile: gcc UDPClient_windows.c -o UDPClient_windows.exe -lws2_32

#include <winsock.h> // Warning: This program does not perform any error handling.

int main(int argc , char *argv []) {

int client; struct sockaddr_in address;

WSADATA wsaData; char data;

WSAStartup(MAKEWORD(2, 0), &wsaData); // Initialize WinSock

client = socket(PF_INET , SOCK_DGRAM , IPPROTO_UDP); // Allocate client socket

memset (&address , 0, sizeof(address)); //Clear socket address

address.sin_family = AF_INET; //IPv4 address

address.sin_addr.s_addr = inet_addr("127.0.0.1");//Set to (loopback) IP address

address.sin_port = htons (9998); //Make port in network byte order

data = 2; // then send 1 byte package data to client , with flags =0

sendto(client , &data , 1, 0, (struct sockaddr *)&address , sizeof(address)); // 1+2)

closesocket(client); // 4)

WSACleanup (); // Finalize Winsock

return 0;

}

Distributed Computing Thomas Weise 33/41

UDP Sockets in C/Linux: Server

Listing: UDP Server in C/Linux (gcc UDPServer linux.c -o UDPServer linux -lpthread)

#include <stdio.h> // compile: gcc UDPServer_linux.c -o UDPServer_linux

#include <string.h> // Warning: This program does not perform any error handling.

#include <sys/socket.h> //In any real program , you need to handle errors.

#include <arpa/inet.h>

#include <unistd.h>

int main(int argc , char *argv []) {

int server , j;

socklen_t addrSize;

struct sockaddr_in serverAddr , clientAddr;

char data;

memset (&serverAddr , 0, sizeof(serverAddr)); //Clear address struct

serverAddr.sin_family = AF_INET; //IPv4 address

serverAddr.sin_addr.s_addr = htonl(INADDR_ANY);//don't care network interface

serverAddr.sin_port = htons (9998); //serve at port 9998

addrSize = sizeof(clientAddr);

server = socket(PF_INET , SOCK_DGRAM , IPPROTO_UDP); // Allocate UDP socket

bind(server , (struct sockaddr *) &serverAddr , sizeof(serverAddr)); // 1)

for (j = 5; (--j) >= 0;) { // then receive 1 byte package data and get client

address , with flags=0

recvfrom(server , &data , 1, 0, (struct sockaddr *) &clientAddr , &addrSize); // 2)

printf("New message %d from %s\n", data , inet_ntoa(clientAddr.sin_addr)); // 3)

}

close(server); // 5)

}

Distributed Computing Thomas Weise 34/41

UDP Sockets in C/Linux: Client

Listing: UDP Client in C/Linux (gcc UDPClient linux.c -o UDPClient linux -lpthread)

#include <stdio.h> // compile: gcc UDPClient_linux.c -o UDPClient_linux

#include <string.h> // Warning: This program does not perform any error handling.

#include <sys/socket.h> //In any real program , you need to handle errors.

#include <unistd.h>

#include <arpa/inet.h>

int main(int argc , char *argv []) {

int client; struct sockaddr_in address; char data;

client = socket(PF_INET , SOCK_DGRAM , IPPROTO_UDP); // Allocate client socket

memset (&address , 0, sizeof(address)); //Clear socket address

address.sin_family = AF_INET; //IPv4 address

address.sin_addr.s_addr = inet_addr("127.0.0.1");//Set to (loopback) IP address

address.sin_port = htons (9998); //Make port in network byte order

data = 2; // then send 1 byte package data to client , with flags =0

sendto(client , &data , 1, 0, (struct sockaddr *)&address , sizeof(address)); // 1+2)

close(client); // 4)

return 0;

}

Distributed Computing Thomas Weise 35/41

Basic Use Summary

• We can now send bytes from one host to another

• We have seen how this is done both in Java and C

• The example clients and servers written in different languages can
communicate with each other =⇒ Distribution allows us to construct
heterogeneous systems

• By either using TCP (connection-oriented) or UDP (connection-free)

• However. . .
• What if we want to send more complex stuff? int s? double s?

Objects? Text?
• What do we do if more than one client connects to a server at a time?
• We do not have seen some more complex examples

• We will now look at these issues in the next lessons

Distributed Computing Thomas Weise 36/41

Caspar David Friedrich, “Der Wanderer über dem Nebelmeer”, 1818
http://en.wikipedia.org/wiki/Wanderer_above_the_Sea_of_Fog

谢谢谢谢谢谢
Thank you

Thomas Weise [汤卫思]
tweise@hfuu.edu.cn

http://www.it-weise.de

Hefei University, South Campus 2
Institute of Applied Optimization
Shushan District, Hefei, Anhui,

China

Distributed Computing Thomas Weise 37/41

mailto:tweise@hfuu.edu.cn
mailto:http://www.it-weise.de

Bibliography

Distributed Computing Thomas Weise 38/41

Bibliography I

1. Standard for Information Technology – Portable Operating System Interface (POSIX), volume 1003.1,2004. Piscataway,
NJ, USA: IEEE (Institute of Electrical and Electronics Engineers), 2004.

2. Herbert Schildt. Java 2: A Beginner’s Guide. Essential Skills for First-Time Programmers. Maidenhead, England, UK:
McGraw-Hill Ltd., 2002. ISBN 0072225130 and 9780072225136. URL
http://books.google.de/books?id=YWDJJGYaLG4C.

3. Learning java, 2007. URL http://en.wikiversity.org/wiki/Learning_JAVA.
4. Robert Sedgewick. Algorithms in Java, Parts 1–4 (Fundamentals: Data Structures, Sorting, Searching). Reading, MA,

USA: Addison-Wesley Professional, 3rd edition, September 2002. ISBN 0-201-36120-5 and 978-0-201-36120-9. URL
http://books.google.de/books?id=hyvdUQUmf2UC. With Java consultation by Michael Schidlowsky.

5. Zbigniew Michael Sikora. Java: Practical Guide for Programmers. Morgan Kaufmann Practical Guides. San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc., 2003. ISBN 1558609091 and 9781558609099. URL
http://books.google.de/books?id=YQLj_AsVN9QC.

6. Santa Clara, CA, USA: Sun Microsystems, Inc. Java™ 2 Platform Standard Edition 5.0 – API Specification, October 19,
2010.

7. James Gosling, William Nelson Joy, Guy Lewis Steele Jr., and Gilad Bracha. The Java™ Language Specification. The Java
Series. Upper Saddle River, NJ, USA: Prentice Hall International Inc., Santa Clara, CA, USA: Sun Microsystems Press
(SMP), and Reading, MA, USA: Addison-Wesley Professional, 3rd edition, May 2005. ISBN 0-321-24678-0 and
978-0321246783. URL http://java.sun.com/docs/books/jls/.

8. James Gosling and Henry McGilton. The java language environment – a white paper. Technical report, Santa Clara, CA,
USA: Sun Microsystems, Inc., May 1996. URL http://java.sun.com/docs/white/langenv/.

9. Guido Krüger. Handbuch der Java-Programmierung. 4. aktualisierte edition. ISBN 3-8273-2361-4 and 3-8273-2447-5. URL
http://www.javabuch.de/.

10. Christian Ullenboom. Java ist auch eine Insel – Programmieren mit der Java Standard Edition Version 6. Bonn, North
Rhine-Westphalia, Germany: Galileo-Press, 6. aktualisierte und erweiterte edition, 2007. ISBN 3-89842-838-9 and
978-3-89842-838-5. URL http://www.galileocomputing.de/openbook/javainsel6/.

11. William Crawford and Jonathan Kaplan. J2EE Design Patterns. Patterns of the Real World. Sebastopol, CA, USA: O’Reilly
Media, Inc., 2003. ISBN 0596004273 and 9780596004279. URL http://books.google.de/books?id=x-7_W0P9KGsC.

12. Stanley B. Lippman, Josée Lajoie, and Barbara E. Moo. C++ Primer. Upper Saddle River, NJ, USA: Pearson Education,
2005. ISBN 0672334046 and 9780672334047. URL http://books.google.de/books?id=8fXCn3E864sC.

Distributed Computing Thomas Weise 39/41

http://books.google.de/books?id=YWDJJGYaLG4C
http://en.wikiversity.org/wiki/Learning_JAVA
http://books.google.de/books?id=hyvdUQUmf2UC
http://books.google.de/books?id=YQLj_AsVN9QC
http://java.sun.com/docs/books/jls/
http://java.sun.com/docs/white/langenv/
http://www.javabuch.de/
http://www.galileocomputing.de/openbook/javainsel6/
http://books.google.de/books?id=x-7_W0P9KGsC
http://books.google.de/books?id=8fXCn3E864sC

Bibliography II

13. Herbert Schildt. C++: A Beginner’s Guide. Essential Skills for First-Time Programmers. Maidenhead, England, UK:
McGraw-Hill Ltd., 2002. ISBN 0072194677 and 9780072194678. URL
http://books.google.de/books?id=W0siAQAAIAAJ.

14. Randal Albert and Todd Breedlove. C++: An Active Learning Approach. Sudbury, MA, USA: Jones & Bartlett Learning,
2008. ISBN 0763757233 and 9780763757236. URL http://books.google.de/books?id=VwOr2hFIaZoC.

15. Nicolai M. Josuttis. The C++ Standard Library: A Tutorial and Handbook. C++ Programming Languages. Reading, MA,
USA: Addison-Wesley Professional, 1999. ISBN 0201379260 and 9780201379266. URL
http://books.google.de/books?id=n9VEG2Gp5pkC.

16. David Makofske, Michael J. Donahoo, and Kenneth L. Calvert. TCP/IP Sockets in C#: Practical Guide for Programmers.
Morgan Kaufmann Practical Guides. Essex, UK: Elsevier Science Publishers B.V., 2004. ISBN 0080492320 and
9780080492322. URL http://books.google.de/books?id=YQQXHEj6O4QC.

17. Chandrta Chandrasekar. Sockets in c#, October 29, 2003. URL
http://www.codeproject.com/Articles/5252/Sockets-in-C.

18. Alex Martelli. Python in a Nutshell. Nutshell Series. Sebastopol, CA, USA: O’Reilly Media, Inc., 2006. ISBN 0596100469
and 9780596100469. URL http://books.google.de/books?id=JnR9hQA3SncC.

19. Charles M. Kozierok. The TCP/IP Guide: A Comprehensive, Illustrated Internet Protocols Reference. San Francisco, CA,
USA: No Starch Press, 2005. ISBN 159327047X and 9781593270476. URL
http://books.google.de/books?id=Pm4RgYV2w4YC.

20. Douglas Comer. Internetworking with TCP/IP: Principles, Protocols, and Architecture. Upper Saddle River, NJ, USA:
Prentice Hall International Inc., 2006. ISBN 0131876716 and 9780131876712. URL
http://books.google.de/books?id=jonyuTASbWAC.

21. Lesson: All about sockets, 2009. URL http://docs.oracle.com/javase/tutorial/networking/sockets/.
22. Kenneth L. Calvert and Michael J. Donahoo. TCP/IP Sockets in Java: Practical Guide for Programmers. Morgan

Kaufmann Practical Guides. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2008. ISBN 0123742552 and
9780123742551. URL http://books.google.de/books?id=lfHo7uMk7r4C.

23. Merlin Hughes, Michael Shoffner, and Derek Hamner. Java Network Programming: A Complete Guide to Networking,
Streams, and Distributed Computing. Manning Pubs Co. Greenwich, CT, USA: Manning Publications Co., 1999. ISBN
188477749X and 9781884777493. URL http://books.google.de/books?id=xapQAAAAMAAJ.

24. The java tutorials: The try-with-resources statement, March 1, 2013. URL
http://docs.oracle.com/javase/tutorial/essential/exceptions/tryResourceClose.html.

Distributed Computing Thomas Weise 40/41

http://books.google.de/books?id=W0siAQAAIAAJ
http://books.google.de/books?id=VwOr2hFIaZoC
http://books.google.de/books?id=n9VEG2Gp5pkC
http://books.google.de/books?id=YQQXHEj6O4QC
http://www.codeproject.com/Articles/5252/Sockets-in-C
http://books.google.de/books?id=JnR9hQA3SncC
http://books.google.de/books?id=Pm4RgYV2w4YC
http://books.google.de/books?id=jonyuTASbWAC
http://docs.oracle.com/javase/tutorial/networking/sockets/
http://books.google.de/books?id=lfHo7uMk7r4C
http://books.google.de/books?id=xapQAAAAMAAJ
http://docs.oracle.com/javase/tutorial/essential/exceptions/tryResourceClose.html

Bibliography III

25. Michael J. Donahoo and Kenneth L. Calvert. TCP/IP Sockets in C: Practical Guide for Programmers. Morgan Kaufmann
Practical Guides. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2nd edition, 2009. ISBN 0123745403 and
9780123745408. URL http://cs.baylor.edu/~donahoo/practical/CSockets/.

Distributed Computing Thomas Weise 41/41

http://cs.baylor.edu/~donahoo/practical/CSockets/

	Outline
	Overview
	Introduction
	Introduction
	Sockets
	Identification & Addressing
	Identification & Addressing
	Sockets

	TCP Sockets
	TCP Sockets
	TCP Sockets in Java
	TCP: 3-way Handshake
	TCP Sockets in Java
	TCP Sockets in Java: Server
	TCP Sockets in Java: Client
	TCP Server in Java: Printing Text
	TCP Client in Java: Sending Text
	Java 1.7 Try-With-Resource Statement
	General form of the Try-With-Resource Statement
	TCP Server Socket (Try-With-Resource)
	TCP Client Socket (Try-With-Resource))
	TCP Sockets in
	
	TCP Sockets in /Windows: Server
	TCP Sockets in /Windows: Client
	TCP Sockets in /Linux: Server
	TCP Sockets in /Linux: Client

	UDP Sockets
	UDP Sockets
	UDP Sockets in Java: Server
	UDP Sockets in Java: Client
	UDP Server Socket (Try-With-Resource)
	UDP Client Socket (Try-With-Resource)
	UDP Sockets in /Windows: Server
	UDP Sockets in /Windows: Client
	UDP Sockets in /Linux: Server
	UDP Sockets in /Linux: Client

	Summary
	Basic Use Summary

	Presentation End
	Bibliography

