bookbuildeR

painlessly create computer science books

Thomas Weise

http://github.com/thomasWeise/bookbuildeR

-
Creating Teaching Material

* OK, so you want to write an electronic book or
script for your students or a general audience.

* That is always a good idea.

e But it costs much work.

e Actually: work and overhead.

* work = you write the contents of the book

e overhead = installation of software, compiling,
uploading, synchronizing, versioning, testing
example code, ...

-
Creating Teaching Material pt. 2

e But how do you do write the book?
* Why not use LaTeX and create pdf?

e But maybe you also want to have a html version
for the web?

* Or an epub/azw3 version for handheld devices?
* You may need several conversion tools.

* You will have some sort of build process.

* Which will require some software and packages.

-
Creating Teaching Material pt. 3

 Now you want to add example program code.
* How do you do that?

* Just “write it in the book”?

* Will it compile? Is it correct?

* How to “give it to the students”?

e Put it in another folder structure that you somehow
reference and that you can compile and test?

e Sounds uncomfortable, too.

-
Creating Teaching Material pt. 4

* Now you want to publish the book.
* So you need to upload it to a web space.
 All in all, you will have a process of several minutes.

* Can you collaborate with other authors? How?

* Can your readers/students submit feedback,
guestions, problems, or even directly suggest
changes to the book?

S
ldea

* Write book in markdown text format with svg figures
(and LaTeX math and macros).

e Put book source code in a GitHub (write book
iteratively, get versioning and collaboration for free).

* When you make a change to the book, commit it to the
GitHub repository.

* The book is automatically compiled to pdf, html,
epub, and azw3 and the result is uploaded to a website
(GitHub pages branch of repository).

* Possibility: Comments/issues submitted by users

-
|dea part 2

* You can link to a source code repository where you keep
all example program codes and data.

* You can include snippets from the files in the code
repository as formatted program code into your book
via a simple reference mechanism.

* Whenever you compile the book, the latest version of
the code repository is checked out and used.

* |f you commit to the codes repository, it will trigger a
build/testing which triggers a rebuild of the book.

* You can create fully-fledged programs as examples.

Realization

* We use only 0SS tools such as pandoc, TeX 1live,
and calibre to compile markdown sources with
svg figures to pdf, html, epub, and azw3.

* The tools are executed by a single build process
implemented as R package: bookbuildeR

* The tool chain will find the linked source code
repository, check it out, extract the referenced code
snippets, include them into the book sources, and
compile the book sources

-
Realization pt. 2

* All required software is packaged into a docker container

* The build process using the container is triggered by a
commit to the book repository and runs in a continuous
integration environment (Travis CI, free for OSS)

 Travis CI allows uploading the result of a build to the
GitHub pages branch of a repository, which we use to
automatically publish the compiled book

* Travis CI allows to trigger the build of another
repository after a successful build of one repository, which
we use to automatically rebuild the book after the code
repo changes (and passes its unit tests)

Example

An Introduction to Optimization
Agorithms

Thomas Weise

1 Introduction

Today, algorithms influence a bigger and bigger part in our daily life and the economy. They support us
by suggesting good decisions in a variety of fields, ranging from engineering, timetabling and schedul-
ing, product design, over travel and logistic planning to even product or movie recommendations.
They will be the most important element of the transition of our industry to smarter manufacturing
and intelligent production, where they can automate a variety of tasks, asillustrated in Figure 11
optimized logistics (business-to-customer)

planning and scheduling of maintenance visits
planning and scheduling of supply visits

production planning and scheduling
optimized assignment of jobs/orders to machines
optimization of production processes
optimization of stock-keeping
optimization of intra-enterprise logistics
optimization of supply chains
optimization of factory layouts and -logistics

heuristics
metaheuristics
operations research
linear programming
machine learning
optimization

data mining

scheduling of employee work

optimal assignment of employees to tasks/customers
optimized locations for new branch offices

(based on current or predicted future customers)

optimization of product design

optimization of product feature configuration
optimization of service offers
improved tailoring of products/services to customers

optimization of pricing and offers
mining of customer data for targeted offers
Figure LX: Examples for applications of optimization, computational intelligence, machine leaming
techniques in five fields of smart manufacturing: the production itself, the delivery of the products, the
management of the production, the products and services, and the sales level.

Optimization and Operations Research provide us with algorithms that propose good solutions to
such a wide range of questions. Usually, it is applied in scenarios where we can choose frommany
possible options. The goal is that the algorithms propose solutions which minimize (at least) one
resource requirement, be it costs, energy, space, etc. If they can do this well, they also offer another
important advantage: Solutions that minimize resource consumption are of en not only cheaper from

An Introduction to Optimization Algorithms 2019-10-14

Table 2.2: The lower boundsIbf for the makespan of the optimal solutions for our example problems.
Fortheinstancesabz7, | a24, and yn4, research literature (last column) provides better (i.e., higher)
lower boundsIb(f)*.

source
name n m Ib(f) Ib(f)" forlb(f)*
deno 4 5 180 180 Equation(2.2)
abz7 20 5 638 656 [117,157,161162]
l a24 5 0 872 935 [10,157]
swil5 50 0 2835 2885 Equation (2.2)
yn4 20 20 818 929 [157,161,162]

lower bound and optimal makespan: 180,

= IR
10
Time
T

T T T T
0 50 100 150

Figure 2.7: The globally optimal solution of the demo instance Figure 2.1, whose makespan happens
to be the same as the lower bound.

Figure 2.7illustrates the globally optimal solution for our small demo) SSP instancedefined in Figure 2.1
(we will get to how to find such asolution later). Here we were lucky: The objective value of this solution
happens to be the same as the lower bound for the makespan. Upon closer inspection, the limiting
machineisthe oneatindex 3.

We will find this by again looking at Figure 2.1 Regardless with which job we would start here, it would

need to initially wait at least a; = 30 time units. The reason is that no first sub-job of any job starts at
machine 3. ob 0 would get to machine 3the earliest af er 50 time units, job 1af er 30, job 2 af er 62,

Thomas Weise 37

2019-10-4 An Introduction to Optimization Algorithms

Listing 3.9 An excerpt of the 1swap operator for the) SSP, an implementation of the unary search
operation interface Listing 2.9. 1swap swaps two jobs in our encoding of Gantt diagrams. (src)

public class] SSPUnaryQOper at or 1Swap
i npl enents | UnarySearchOperator<int[]> {
public void apply(int[] x, int[] dest,
Random random) {
// copy the source point in search space to the dest
Systemarraycopy(x, 0, dest, 0, x.length);

// choose the index of the frst sub-job to swap
int i =randomnextlnt(dest.|ength);
int job_i =dest[i]; // remenber job id

for (;;) {// try tofnd a locationj with a different job
int j =randomnextlnt(dest.|ength);
int job_j =dest[j];
if (job_i job_j) { // we found two |ocations with two
dest[i] job_j; // different val ues
dest[j] =job_i; // then we swap the val ues
return; // and are done
}
}

(2,0,1,0,1,1,2,3,2,3, 1swap (2,0,1,0,1,1,2,3,2,3,
X 2,0,0@,2,3,1,0) 2,0,3,1,3,0,2,3,1,0)

__________________________ lvly
makespan: 180 makespan: 195
4 2 0] 41 2
3 34 | 1 3 Bl 0|
Y2{ m2m 2{ W2u I
14
o1 o{[@
0 50 100 150 200 0 50 100 150 200

Figure 3.5: An example for the application of 1swap to an existing point in the search space (top-lef)
forthedenw) SSP instance. It yields a slightly modified copy (top-right) with two jobs swapped. If we
map these to the solution space (bottom) using the representation mapping y, the changes marked
with violet frames occur (bottom+-right).

72 Thomas Weise

2019-10-14 An Introduction to Optimization Algorithms

widely used in statistics applies Equation (4.2) as default [17,95]. In an ideally-sized data sample, the
number of elements minus 1 i.e., n — 1, would be a multiple of g In this case, the k' cut point would
directly belocated at indexh = (n — 1)%. Both in Equation (4.2) and in the formula for the median
Equation (4.1), thisisincluded thefirst of the two alternative options. Otherwise, both Equation (4.1)
and Equation (4.2) interpolate linearly between the elements at the two closest indices, namely | h]
and|h] + 1.

h = (n—1k

I 42
quantilek(A) = [a ifhisinteger @2
any + (h=Lhl) * ajn 1, —apn otherwise

Quantiles are more robust against skewed distributions and outliers.

If we do not assume that the data sample is distributed symmetrically, it makes sense to describe the
spreads both lef and right from the median. Agood impression can be obtained by using quantile}
and quantile}, which are usually called thefirst and third quartile (while med = quantile).

4.4.3.2 Outliers

Let us look again at our previous example with the two data samples

*A=(1,34,4,4,5,6,6,6,6,7,7,9,9,9,10,11,12, 14)
*B =(1,3,4,4,4,5,6,6,6,6,7,7,9,9,9,10,11,12,10008)

Wefind that:

*var(A) = i P (@ —7)7 = =11and
« var(B) :p@:_‘: (b —533)% = 2763306 ~ 59646281, meaning
*sd(A) = var(A) = 3.317and

*sd(B) =" var(B) = 2294.5, while on the other hand

* quantile}(A) = quantile}(B) = 4.5 and

« quantile}(A) = quantile$(B) = 9.

4.4.3.3 Summary
There again two take-away messages from this section:

1 Anaverage measure without a measure of dispersion does not give us much information, as we
do not know whether we can rely on getting results similar to the average or not.

160 Thomas Weise

Bibliography

[1] Scott Aaronson. 2008. The limits of quantum computers. Scientific American 298, 3 (2008), 62-69.
DOl:https://doi.org/10.1038/scientificamerican0308-62

[2] Tamer F. Abdelmaguid. 2010. Representations in genetic algorithm for the job shop scheduling
problem: Acomputational study.] ournal of Sof ware Engineering and Applications () SEA) 3, 12 (2010),
1155-1162. DOI:https://doi.org/ 10.4236/jsea.2010.312135

[3]) oseph Adams, Egon Balas, and Daniel Zawack. 1988. The shif ing bottleneck procedurefor job shop
scheduling. Management Science 34, 3(1988), 391-401. DOI:https://doi.org/10.1287/mnsc.34.3.391

[4] Kashif Akram, Khurram Kamal, and Alam Zeb. 2016. Fast simulated annealing hybridized with
quenching for solving job shop scheduling problem. Applied Sof ComputingJ ournal (ASOC) 49, (2016),
510-523. DOI:https://doi.org/10.1016/j.as0c.2016.08.037

[S]Ali Allahverdi, C. T. Ng, T. C. Edwin Cheng, and Mikhail Y. Kovalyov. 2008. Asurvey of scheduling
problems with setup times or costs. European ournal of Operational Research (g OR) 187, 3(2008),
985-1032. DOI:https://doi.org/10.1016/j.ejor.2006.06.060

[6] Lee Altenberg. 1997. NK fitness landscapes. In Handbook of evolutionary computation, Thomas Back,
David B. Fogel and Zbigniew Michalewicz (eds.). Oxford University Press, New York, NY, USA. Retrieved
from http://dynamics.org/Altenberg/FILES/LeeNKFL.pdf

[7]1 Gene M. Amdahl. 1967. Validity of the single processor approach to achieving large-scale computing
capabilities. In American federation of information processing societies: Proceedings of the spring joint
computer conference (AFIPS), April 18-20, 167, Atlantic City, N, USA, 483-485. DOI:https://doi.org/10.114
5/1465482.1465560

[8] Mehrdad Amirghasemi and Reza Zamani. 2015. An effective asexual genetic algorithm for solving
thejob shop scheduling problem. Computers &Industrial Engineering 83, (2015), 123-138. DOI:https:
//doi.org/10.1016/j.cie.2015.02.011

[9] David Lee Applegate, Robert E. Bixby, Vasek Chvatal, and William) ohn Cook. 2007. Thetraveling
salesman problem: Acomputational study (2nd ed.). Princeton University Press, Princeton, NJ , USA.

[10] David Lee Applegate and William) ohn Cook. 1991 A computational study of the job-shop schedul-
ing problem. ORSAJ ournal on Computing 3, 2(1991), 149-156. DOI:https://doi.org/10.1287/ijoc.3.2.149

193

Ssummary

* Creating educational material is good

e Let us not waste time with overhead and instead
concentrate on work

* |terative work is better than creating “complete and
immutable” editions of books.

 The bookbuildeR tool chain is a first attempt to give
some support.

* |t is not professional, just a personal project.
e But it shows what can be possible.
 http://github.com/thomasWeise/bookbuildeR

Thanks. AR

Prof. Dr. Thomas WEISE Vi
Institute of Applied Optimization N R AHE R BT
Hefei University, Hefei, Anhui, China o =d

tweise@hfuu.edu.cn, tweise@ustc.edu.cn
http://iao.hfuu.edu.cn

