
Using Double Well Function as a Benchmark Function 
for Optimization Algorithm

Peng Wang
School of Computer Science and Engineering

Southwest Minzu University
Chengdu, China

qhoalab@163.com 

Guosong Yang 
Chengdu Institute of computer application 

Chinese Academy of Sciences 
School of Computer Science and Engineering 

Southwest Minzu University 
Chengdu, China 

University of Chinese Academy of Sciences 
Beijing, China 

yangguosong19@mails.ucas.ac.cn 

IEEE Congress on Evolutionary Computation
28.06-1.07.2021 Kraków, Poland (VIRTUAL)



Contents
• I. INTRODUCTION 

• II. DOUBLE WELL AND ITS MATHEMATICAL ANALYSIS 
• A. One-dimensional Double Well Function 
• B. High-dimensional Double Well Function 

• III. EXPERIMENT AND ANALYSIS 
• A. Optimization under Different Values of Discriminant & Dimensions 
• B. Optimization under Different Values of  k1 
• C. Optimization under Different Values of  l 
• D. Optimization under Different Values of  k2 
• E. Unimodal Optimization when all  ∆i > 0 

• IV. CONCLUSION  



History of double well function
• The double well function (DWF) is an important model originating 

from quantum physics and has been used as a model for decades to 
analyze energy, wave function, and tunnel effect [1]. 

• Moreover, in structural chemistry, the interaction between molecules 
and atom clusters can often be described by the DWF ( NH3 and 
PH3).

The DWF f(x) used in quantum physics and it energy Ei and wave fuction Ψn(x) 



DWF and structural chemistry
• Generally, the lower the energy of the molecule system, the more stable 

the structure is. 

• If we view the formation process of the molecular structure as an 
optimization problem that aims to seek the architecture with the lowest 
potential energy, it would then be quite natural that the DWF can be 
used as a benchmark function to test the performance of the 
optimization algorithm.  

Global minimum of the DWF Position of the given particle 
with minimum potential 

Fitness of the objective function Potential energy to be minimized

corresponding to



Study background
• The Lennard-Jones potential and optimization algorithms are  widely 

used together to seek the structure of atom cluster with the lowest 
energy [5]. 

• Functions such as Ackley, Griewank, and Rosenbrock are all benchmark 
functions with many local minima[6].

• DWF has been applied to test quantum-inspired optimization 
algorithms [7, 8] and demonstrate the principle of quantum annealing 
[9] used for optimization problems without a thorough research. 

• Therefore, it would be interesting and necessary to study the possibility 
of using a high-dimensional DWF as a benchmark function for the 
optimization algorithm.



II. DOUBLE WELL AND ITS MATHEMATICAL ANALYSIS

• A typical DWP can be determined through by: 

     where h > 0, l > 0, and k ≥ 0. Evidently, the curve of f(x) passes   
     through the fixed point (0, h). 
• Linear transformation: let k1 = h/l4, k2 = l4k/h,  and: 

• thus, f(x) = k1h(x). 

A. One-dimensional double well function



Mathematical analysis of one-dimensional DWF
• Considering the first derivative of h(x), and letting h'(x) = 0:

• According to Shen-jin's Formula [10], the discriminant of (3): 

• where A = b2 − 3ac, B = bc − 9ad, C = c2 − 3bd, and a = 4, b = 0, c = 
−4l2, and d = k2 are the factors of (3). 

• Moreover, the roots of Equation (3) can be discussed in four cases 
according to the Shen-jin Formula: 

• (1) If A = B = 0, then equation (3) has a triple root. However, from A = 
B = 0, we obtain l = 0, and thus this case will not happen.  



• (2) If ∆ < 0, then equation (3) has three unequal real roots: 

• and θ = arccos(3√3k2/(8l3)), A > 0, 0 ≤ T < 1. 

• Monotonicity: because x1 < 0 ≤ x2 < x3 and the cubic factor of h(x) is 
positive, h(x) strictly and monotonically decreases in (−∞, x1) ∪ (x2, x3) 
and monotonically increases in (x1, x2) ∪ (x3, +∞). 

• If k2 = 0 then h(x) is symmetric about x = 0, and x3 = −x1 = l. 
• If k2 > 0, then h(x) becomes an asymmetric DWF: 



Mathematical analysis of one-dimensional DWF
• (3) If ∆ = 0, then 3√3k2 = 8l3, and (3) has three real roots, including a 

double root, namely x1 = −b/a + K, x2 = x3 =−K/2 where K = B/A and 
A ≠ 0. By combining the factors in (3), we obtain: 

• Monotonicity: h(x) strictly and monotonically decreases in (−∞, x1) 
and monotonically increases in (x1, +∞); thus, x1 is the only global 
minimum:

• and h(x) becomes a single well function with a special stagnation 
point at (x2, h(x2)). 



Mathematical analysis of one-dimensional DWF 
• (4) If ∆ > 0, then (3) has a real root and a pair of conjugate complex 

roots, and the real root is x1 = [−b−( 3√Y1+ 3√Y2) ]/(3a), where Y1,2 = 
Ab + 3a[−B ± √(B2 − 4AC)]/2. By replacing the aforementioned 
factors, we obtain: 

• Monotonicity: the complex roots do not affect the monotonicity of 
h(x) in R. As a result, h(x) monotonically decreases in (−∞, x1) and 
monotonically increases in (x1, +∞)

•  h(x) turns out to be a single well with the only minimum at (x1, h(x1)), 
as described in (9).  



Mathematical analysis of one-dimensional DWF 
• In conclusion, h(x) is not a real DWF if ∆ ≥ 0; however, in this case, h(x) 

is also useful for creating benchmark functions with different features 
in high-dimensional cases.   

• It is very interesting to note that the curve of h(x) in interval (−2l, x2) 
is quite similar to the potential curves of the Morse potential and the 
Lennard–Jones potential.  

The curves of Lennard-Jones potential 
Fig. 1. The curves of h(x), where k1 = 1.00 and l = 1.80, and k2 and ∆ are different. 



• Consider the second-order differentials of h(x):  

• Let h''(x) = 0, we obtain x = ±l/√3. In addition, at these two points, 
h'''(x) ≠ 0. Thus, h(x) always has two fixed inflection points at (±l/√3,  
4l4/9±k2l√3) despite the value of ∆. 

• Moreover, in (−∞, −2l), h(x) drops quickly, whereas in (2l, ∞), it 
increases dramatically. Thus, it is advisable to set an optimization 
interval containing (−2l, 2l) if the DWF is used as a benchmark function 
considering the change rate and the distribution of local minima.

• ∂2h(x)/(∂x∂l) =−8lx is the partial differential function of h(x) and has a 
stagnation point x = 0, and as l > 0, it is positive when x < 0 and 
negative when x > 0, and h'(x) changes more rapidly as l increases.

• ∂2h(x)/(∂x∂k2) = 1 shows that the effect of k2 on the changing rate is 
linear and constant, and k2 always drives h'(x) to increase in R, and the 
rate of change increases as k2 increases. 



• Corresponding to the one dimensional case, Hn(x) can be obtained 
through the transformation Hn(x) = Fn(x)/k1: 

• Definition: we use ∆i, xi1, xi2, xi3, hi, li, ki, ki1, and ki2 to denote the 
factors in the i-th dimension corresponding to their counterparts in 
one dimension; thus, x1 = (x11, ..., xn1) ∈ Rn, ∆, k1, l2, k2, etc. 

B. High-dimensional Double Well Function
• Extending the dimension of f(x): 

• where n∈N and n ≥ 2. 



Mathematical analysis of high-dimensional DWF

• (1)If ∆i < 0 for i = 1, ..., n, then Hn(x) has 2n local minima and the only 
global minimum is: 

• In addition, Hn(x) also has 3n − 2n unstable points.  

Similarly, we discuss Hn(x) instead of Fn(x) for simplicity as follows: 

• (2)If ∆i = 0 for i = 1, ..., n, then Hn(x) has only one local minimum with 
the same expression as in (14). Besides, Hn(x) also has 2n −1 special 
stagnation points. Thus, Hn(x) is a single well function with numerous 
unstable points. 



Mathematical analysis of high-dimensional DWF
• (3)If ∆i > 0 for i = 1, ..., n, then Hn(x) has a unique stagnation point and 

global minimum as expressed in (14); thus, it is a single well function. 

• (4)If the situation is a mixture of the above cases, then Hn(x) can be 
discussed according to the value of ∆i in each dimension.  

• By employing different parameters in case (4), we can create a more 
complicated benchmark function, and an even more irregular 
distribution of local minima can be realized by introducing negative ki2 
in some dimensions instead of non-negative ki2 in all dimensions. 
Furthermore, the rotation matrix and linear shift can be used to make 
it more general [6]. 



• In the two-dimensional case, F2(x) for different basic cases is shown in 
Fig. 2.

Fig. 2. The three-dimensional surface of F2(x), where hi = 5.00 and li = 2.00, and where ki and ∆i 
differ in each case (i = 1, 2).



III. EXPERIMENT AND ANALYSIS

• Experiment Environment: All of these experiments were conducted 
using MATLAB R2015a with a 3.4-GHz i7 CPU and 8 GB of memory, 
running on Windows 10. 

• Setting: the optimization interval was (−2l, 2l) for each dimension, the 
maximum function evaluations was  104*dimension. An optimization 
was considered successful if the error between the optimization output 
and the theoretical minimum was less than 10−6. ki1, li, and ki2 were set 
to the same values for each dimension  for convenience in experiment. 

• Indicators: the success rate (SR) was introduced to describe the overall 
effect of 100 independent runs. Similarly, the mean function evaluations 
(MeanFEs) , mean optimization time (MeanOT), mean error (MeanErr), 
and standard deviation of error (StdErr) were calculated for all of these 
repeats. 



Algorithms used in experiment
Five algorithms with different features were introduced: 
• The multi-scale quantum harmonic oscillator algorithm (MQHOA) 

[11] was employed for its balanced performance between unimodal 
optimization and multimodal optimization. 

• The δ-well model, a variety of MQHOA, was used for its improved 
efficiency in locating global minimum among massive local minima 
since the δ-well potential it used has higher resolution than the 
harmonic oscillator potential used in MQHOA. 

• Quantum behaved particle swarm optimization (QPSO) is chosed [12]  
because of its high accuracy. 

• The covariance matrix adaptation evolution strategy (CMAES) [13] is 
chosed for its good ability for unimodal optimization. 

• The bare bones fireworks algorithm (BBFWA) was introduced for its 
simple and limited operations in optimization process. 



A. Optimization under different values of 
discriminant and dimensions 

• In the first experiment, different values of ∆ and n are tested. As 
discussed in Section II, Hn(x) and Fn(x) are unimodal when ∆i ≥ 0 and 
turn out to be multimodal when ∆i < 0, so we set a series of ∆i values 
ranging from −0.3 to 0.1. Besides, different values of n were also 
tested.



TABLE I
SUCCESS RATE/MEAN ERROR/MEAN FUNCTION EVALUATIONS/MEAN OPTIMIZATION 

TIME(/s) FOR Hn(x) UNDER DIFFERENT VALUES OF DISCRIMINANT AND DIMENSION



conclusion
• When ∆i is positive, optimization is easy, and optimization difficulty 

is not very sensitive to the change in dimension. 
• When ∆i is negative, as ∆i decreases the optimization task becomes 

more difficult for a fixed n. 
• When ∆ i is negative, optimization difficulty increases as the 

dimension increases. 



B. Optimization under different values of k1

• In the second experiments, a series of ki1 values ranging from 10−3 to 
103 was tested in  multimodal optimization. 

• To obtain reasonable SRs for these algorithms, different parameters 
of Hn(x) were employed because their optimization performances are 
quite different. 

• Specifically, li was set to 2.00, 2.50, 2.00, 3.00, and 2.50; ki2 was set to 
0.150, 0.025, 0.050, 0.250, and 0.280; and n was set to 20, 20, 20, 12, 
and 10 for MQHOA, δ−well, QPSO, CMAES, and BBFWA, respectively. 



Fig. 3. The optimization result of k1Hn(x), where  ki1 range from 10−3 to 103.

ki1 has a limited influence on the 
optimization result, especially if 
the change in ki1 is not significant.



C. Optimization under different values of l
• In the third experiment, a change in li was employed to study its influence on 

multimodal optimization. 
• Setting: ki2 was set to 0.080, 0.030, 0.035, 0.250, and 0.280 for MQHOA, 

δ−well, QPSO, CMAES, and BBFWA, respectively, and n was set to 10 for all, 
and SR was chosen as the indicator of the optimization result.

Fig. 4. The influence of li on the optimization of Hn(x), where n = 10, and li range from 2 to 3

The optimization difficulty is 
reduced as li increases.



D. Optimization under different values of k2

• In the fourth experiment, different values of ki2 increasing from 0.1 to 
0.2 were tested to verify this conclusion. 

Fig. 5. The influence of ki2 on the optimization of Hn(x), where n = 10, and ki2 range from 
0.1 to 0.2

As ki2 increases, the optimization 
difficulty of the DWF will decrease.



E. Unimodal optimization when all ∆i > 0
• We also conducted an experiment on unimodal optimization. As the 

first experiment has revealed, the optimization is too simple when n < 
40 and ∆i are large, and therefore, we set n = 100 and ∆i =2.1E-05 here.

• Hn(x) failed to detect their differences in optimization ability despite 
the change in n in a considerable range, this experiment and the first 
experiment indicate that Hn(x) is not a perfect benchmark function for 
unimodal optimization when all ∆i > 0. 



IV. CONCLUSION
• The DWF has been assumed to be a candidate for testing the 

optimization algorithm because it has many local minima in high-
dimensional cases. 

• To prove this, we mathematically analyzed a typical form of the DWF 
and found that its properties were controlled by a few adjustable 
parameters, which can be used to design ideal benchmark functions 
for testing. 

• Furthermore, our analysis was also i l lustrated by numerical 
experiments, and the influences of the decisive factors that guide the 
design of an ideal DWF were also studied through a series of 
comparative experiments.
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Thank you for your time 
and attention! 


