
Blending Dynamic Programming with Monte Carlo Simulation for

Bounding the Running Time of Evolutionary Algorithms

Kirill Antonov (ITMO) Maxim Buzdalov (ITMO)
Arina Buzdalova (ITMO) Carola Doerr (Sorbonne)

IEEE Congress on Evolutionary Computation

28.06 – 01.07.2021



Introduction

◮ Dynamic parameter settings can greatly improve the efficiency of evolutionary
algorithms (EAs)

◮ Runtime lower bounds give a baseline, which is important for algorithm comparison
and development

◮ Proving precise lower bounds for algorithms with dynamic parameter choices is
challenging

◮ Previously, a dynamic programming approach was proposed to derive lower bounds
for simple problems [Buzdalov, Doerr, PPSN 2020]
◮ transition probabilities between different states can be expressed by mathematical

expressions
◮ applied to derive optimal mutation rates for OneMax problem

◮ We propose a method that combines dynamic programming with Monte Carlo
sampling, which is applicable for a broader problem class

1 / 9



Considered Evolutionary Aglorithms

Data: n: problem size; f : {0, 1}n → R: function to maximize; λ: population size;
D(p): a family of parameterized distributions over [0..n]

1 Sample parent x ∈ {0, 1}n uniformly at random;
2 for t ← 1, 2, . . . do

3 for i ∈ [1..λ] do

4 Choose a distribution parameter pti ;
5 Sample ki ∼ D(p

t
i ), the number of bits to flip;

6 Create yi by flipping ki different bits in x chosen uniformly at random ;

7 Select x ← argmaxz∈{x ,y1,...,yλ} f (z) breaking ties arbitrarily;

2 / 9



Considered Evolutionary Aglorithms

Data: n: problem size; f : {0, 1}n → R: function to maximize; λ: population size;
D(p): a family of parameterized distributions over [0..n]

1 Sample parent x ∈ {0, 1}n uniformly at random;
2 for t ← 1, 2, . . . do

3 for i ∈ [1..λ] do

4 Choose a distribution parameter pti ;
5 Sample ki ∼ D(p

t
i ), the number of bits to flip;

6 Create yi by flipping ki different bits in x chosen uniformly at random ;

7 Select x ← argmaxz∈{x ,y1,...,yλ} f (z) breaking ties arbitrarily;

Parameter control in (1 + λ) EA with mutation rate p:

◮ 2-rate: try p/2 and 2p on two halves of population

◮ Ab rule: multiply p by A or b based on success

◮ HQEA: multiply p by A or b according to Q-learning

2 / 9



Ruggedness Problem and Benchmarking

Optimum: f (z) = n.
Points at Hamming distance one from z have fitness n − 2,
those at distance two have fitness n − 1,
those at distance three have fitness n − 4,
those at distance four have fitness n − 3, and so on

Previous results for parameter control on Ruggedness:

21 25 29

102

103

104

105

106

λ

R
u
g
g
e
d
n
e
s
s
,
m
ed

ia
n
ru
n
ti
m
e

pmin = 1/n2

(1 + λ) EA 2-rate (A, b) QEA HQEA

21 25 29

102

103

104

105

106

λ

1/n

21 25 29

102

103

104

105

106

λ

1/n2, ≥ rule

21 25 29

102

103

104

105

106

λ

1/n, ≥ rule

3 / 9



Description of the Proposed Method

1 fmin, fmax ← minimum and maximum fitness values;
2 Initialize optimal times: T ∗

fmax
← 0;

4 / 9



Description of the Proposed Method

1 fmin, fmax ← minimum and maximum fitness values;
2 Initialize optimal times: T ∗

fmax
← 0;

3 for f ← fmax − 1, . . . , fmin do

4 / 9



Description of the Proposed Method

1 fmin, fmax ← minimum and maximum fitness values;
2 Initialize optimal times: T ∗

fmax
← 0;

3 for f ← fmax − 1, . . . , fmin do

4 for p ∈ {p
(f )
1 , p

(f )
2 , . . . , p

(f )
mf
} do

4 / 9



Description of the Proposed Method

1 fmin, fmax ← minimum and maximum fitness values;
2 Initialize optimal times: T ∗

fmax
← 0;

3 for f ← fmax − 1, . . . , fmin do

4 for p ∈ {p
(f )
1 , p

(f )
2 , . . . , p

(f )
mf
} do

5 Compute approximate probabilities (p̃i )i=0,1,... of increasing fitness by i with
mutation rate p using the Monte Carlo approach;

4 / 9



Description of the Proposed Method

1 fmin, fmax ← minimum and maximum fitness values;
2 Initialize optimal times: T ∗

fmax
← 0;

3 for f ← fmax − 1, . . . , fmin do

4 for p ∈ {p
(f )
1 , p

(f )
2 , . . . , p

(f )
mf
} do

5 Compute approximate probabilities (p̃i )i=0,1,... of increasing fitness by i with
mutation rate p using the Monte Carlo approach;

6 Tf ,p ←
1

1− p̃0

(

1 +
∑

i>0 p̃i · T
∗
f+i

)

;

4 / 9



Description of the Proposed Method

1 fmin, fmax ← minimum and maximum fitness values;
2 Initialize optimal times: T ∗

fmax
← 0;

3 for f ← fmax − 1, . . . , fmin do

4 for p ∈ {p
(f )
1 , p

(f )
2 , . . . , p

(f )
mf
} do

5 Compute approximate probabilities (p̃i )i=0,1,... of increasing fitness by i with
mutation rate p using the Monte Carlo approach;

6 Tf ,p ←
1

1− p̃0

(

1 +
∑

i>0 p̃i · T
∗
f+i

)

;

7 Store optimal time: T ∗
f ← minp(Tf ,p);

8 Store optimal rate: P
opt
f ← argminp(Tf ,p);

4 / 9



Description of the Proposed Method

1 fmin, fmax ← minimum and maximum fitness values;
2 Initialize optimal times: T ∗

fmax
← 0;

3 for f ← fmax − 1, . . . , fmin do

4 for p ∈ {p
(f )
1 , p

(f )
2 , . . . , p

(f )
mf
} do

5 Compute approximate probabilities (p̃i )i=0,1,... of increasing fitness by i with
mutation rate p using the Monte Carlo approach;

6 Tf ,p ←
1

1− p̃0

(

1 +
∑

i>0 p̃i · T
∗
f+i

)

;

7 Store optimal time: T ∗
f ← minp(Tf ,p);

8 Store optimal rate: P
opt
f ← argminp(Tf ,p);

9 return {Popt,T ∗,T}

4 / 9



Description of the Proposed Method

1 fmin, fmax ← minimum and maximum fitness values;
2 Initialize optimal times: T ∗

fmax
← 0;

3 for f ← fmax − 1, . . . , fmin do

4 for p ∈ {p
(f )
1 , p

(f )
2 , . . . , p

(f )
mf
} do

5 Compute approximate probabilities (p̃i )i=0,1,... of increasing fitness by i with
mutation rate p using the Monte Carlo approach;

6 Tf ,p ←
1

1− p̃0

(

1 +
∑

i>0 p̃i · T
∗
f+i

)

;

7 Store optimal time: T ∗
f ← minp(Tf ,p);

8 Store optimal rate: P
opt
f ← argminp(Tf ,p);

9 return {Popt,T ∗,T}

Requirement: the optimal choice of p depends on the fitness value exclusively

4 / 9



Lower Runtime Bounds for Parameter Control

Iterations until the optimum of OneMax (left) and Ruggedness (right)

2
1

2
3

2
5

2
7

2
9

10
2

10
3

λ

It
e
ra

ti
o
n
s

pmin = 1/n2

(1 + λ) 2-rate (A, b) HQEA Lower

2
1

2
3

2
5

2
7

2
9

10
2

10
3

λ
pmin = 1/n

2
1

2
3

2
5

2
7

2
9

10
2

10
3

10
4

10
5

10
6

10
7

10
8

λ

It
e
ra

ti
o
n
s

pmin = 1/n2

(1 + λ) 2-rate (A, b) HQEA Lower

2
1

2
3

2
5

2
7

2
9

10
2

10
3

10
4

10
5

10
6

10
7

10
8

λ
pmin = 1/n

◮ New insight: on Ruggedness, only a constant-factor improvement is possible

◮ Why does (A,b) rule performs so much worse than 2-rate when using pmin = 1/n2?

5 / 9



Optimal Mutation Rates

0 20 40 60 80 100

10
−1

10
0

10
1

10
2

Fitness

S
c
a
le

d
m

u
ta

ti
o
n

ra
te

:
p
·
n

ONEMAX

λ = 2 λ = 4 λ = 16 λ = 64 λ = 512

0 20 40 60 80 100

10
−1

10
0

10
1

10
2

Fitness

RUGGEDNESS

◮ Regular oscillations on Ruggedness with a period of 2

◮ It may be difficult to track precisely – is this a problem?

6 / 9



Parameter Efficiency Heatmaps

OneMax Ruggedness

0 20 40 60 80
10

−2

10
−1

10
0

10
1

10
2

Fitness

S
c
a
le

d
m

u
ta

ti
o
n

ra
te

:
p
·
n

0 20 40 60 80
10

−2

10
−1

10
0

10
1

10
2

Fitness

S
c
a
le

d
m

u
ta

ti
o
n

ra
te

:
p
·
n

0

0.2

0.4

0.6

0.8

1

◮ Relative efficiency of the corr. p among all mutation rates for the corr. f
◮ The range of nearly equally good rates is wide enough
◮ On Ruggedness, for odd fitness values the best rates are higher
◮ (A, b) rule (red) gets stuck with too small rates near the optimum

7 / 9



Regret Plots

Regret |Tf ,p − T ∗
f | for p chosen by 2-rate (left) and (A, b) rule (right)

0 20 40 60 80 100 120 140

10
−2

10
0

10
2

10
4

Iteration number

R
eg

re
t

in
ru

n
ti

m
e

(1 + λ) EAr/2,2r , λ = 512

0 20 40 60

10
−2

10
0

10
2

10
4

Iteration number

R
eg

re
t

in
ru

n
ti

m
e

53,144

(1 + λ) EA(A, b), λ = 512

◮ How much of the performance the method loses from acting suboptimally

◮ (A, b) rule spends most of its time with very large regrets

8 / 9



Conclusion and Generalisation

◮ We proposed a dynamic programming approach with Monte Carlo simulations
◮ Computes running times for different mutation rates at each stage of optimization
◮ Useful for deriving optimal rates and runtime lower bounds

9 / 9



Conclusion and Generalisation

◮ We proposed a dynamic programming approach with Monte Carlo simulations
◮ Computes running times for different mutation rates at each stage of optimization
◮ Useful for deriving optimal rates and runtime lower bounds

◮ Introduced regret plots: not only show deficiencies in parameter control methods,
but indicate their impact on the running time

9 / 9



Conclusion and Generalisation

◮ We proposed a dynamic programming approach with Monte Carlo simulations
◮ Computes running times for different mutation rates at each stage of optimization
◮ Useful for deriving optimal rates and runtime lower bounds

◮ Introduced regret plots: not only show deficiencies in parameter control methods,
but indicate their impact on the running time

◮ Example application
◮ Runtime estimations for the (1 + λ) EA on the Ruggedness problem, n = 100
◮ Analysis of (A, b) and 2-rate parameter control methods

9 / 9



Conclusion and Generalisation

◮ We proposed a dynamic programming approach with Monte Carlo simulations
◮ Computes running times for different mutation rates at each stage of optimization
◮ Useful for deriving optimal rates and runtime lower bounds

◮ Introduced regret plots: not only show deficiencies in parameter control methods,
but indicate their impact on the running time

◮ Example application
◮ Runtime estimations for the (1 + λ) EA on the Ruggedness problem, n = 100
◮ Analysis of (A, b) and 2-rate parameter control methods

◮ The method is restricted to settings in which states are not visited more than once
◮ Possible solution:

◮ construction of Markov chains on all states with equal fitness
◮ solving the resulting system of equations

9 / 9



Conclusion and Generalisation

◮ We proposed a dynamic programming approach with Monte Carlo simulations
◮ Computes running times for different mutation rates at each stage of optimization
◮ Useful for deriving optimal rates and runtime lower bounds

◮ Introduced regret plots: not only show deficiencies in parameter control methods,
but indicate their impact on the running time

◮ Example application
◮ Runtime estimations for the (1 + λ) EA on the Ruggedness problem, n = 100
◮ Analysis of (A, b) and 2-rate parameter control methods

◮ The method is restricted to settings in which states are not visited more than once
◮ Possible solution:

◮ construction of Markov chains on all states with equal fitness
◮ solving the resulting system of equations

◮ Not limited to (1 + λ) type algorithms

9 / 9



Conclusion and Generalisation

◮ We proposed a dynamic programming approach with Monte Carlo simulations
◮ Computes running times for different mutation rates at each stage of optimization
◮ Useful for deriving optimal rates and runtime lower bounds

◮ Introduced regret plots: not only show deficiencies in parameter control methods,
but indicate their impact on the running time

◮ Example application
◮ Runtime estimations for the (1 + λ) EA on the Ruggedness problem, n = 100
◮ Analysis of (A, b) and 2-rate parameter control methods

◮ The method is restricted to settings in which states are not visited more than once
◮ Possible solution:

◮ construction of Markov chains on all states with equal fitness
◮ solving the resulting system of equations

◮ Not limited to (1 + λ) type algorithms

Thank you!

9 / 9


