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Introduction

◮ Dynamic parameter settings can greatly improve the efficiency of evolutionary
algorithms (EAs)

◮ Runtime lower bounds give a baseline, which is important for algorithm comparison
and development

◮ Proving precise lower bounds for algorithms with dynamic parameter choices is
challenging

◮ Previously, a dynamic programming approach was proposed to derive lower bounds
for simple problems [Buzdalov, Doerr, PPSN 2020]
◮ transition probabilities between different states can be expressed by mathematical

expressions
◮ applied to derive optimal mutation rates for OneMax problem

◮ We propose a method that combines dynamic programming with Monte Carlo
sampling, which is applicable for a broader problem class
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Considered Evolutionary Aglorithms

Data: n: problem size; f : {0, 1}n → R: function to maximize; λ: population size;
D(p): a family of parameterized distributions over [0..n]

1 Sample parent x ∈ {0, 1}n uniformly at random;
2 for t ← 1, 2, . . . do

3 for i ∈ [1..λ] do

4 Choose a distribution parameter pti ;
5 Sample ki ∼ D(p

t
i ), the number of bits to flip;

6 Create yi by flipping ki different bits in x chosen uniformly at random ;

7 Select x ← argmaxz∈{x ,y1,...,yλ} f (z) breaking ties arbitrarily;
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t
i ), the number of bits to flip;

6 Create yi by flipping ki different bits in x chosen uniformly at random ;

7 Select x ← argmaxz∈{x ,y1,...,yλ} f (z) breaking ties arbitrarily;

Parameter control in (1 + λ) EA with mutation rate p:

◮ 2-rate: try p/2 and 2p on two halves of population

◮ Ab rule: multiply p by A or b based on success

◮ HQEA: multiply p by A or b according to Q-learning
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Ruggedness Problem and Benchmarking

Optimum: f (z) = n.
Points at Hamming distance one from z have fitness n − 2,
those at distance two have fitness n − 1,
those at distance three have fitness n − 4,
those at distance four have fitness n − 3, and so on

Previous results for parameter control on Ruggedness:
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Description of the Proposed Method

1 fmin, fmax ← minimum and maximum fitness values;
2 Initialize optimal times: T ∗

fmax
← 0;
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;

7 Store optimal time: T ∗
f ← minp(Tf ,p);

8 Store optimal rate: P
opt
f ← argminp(Tf ,p);

9 return {Popt,T ∗,T}

Requirement: the optimal choice of p depends on the fitness value exclusively
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Lower Runtime Bounds for Parameter Control

Iterations until the optimum of OneMax (left) and Ruggedness (right)
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◮ New insight: on Ruggedness, only a constant-factor improvement is possible

◮ Why does (A,b) rule performs so much worse than 2-rate when using pmin = 1/n2?
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Optimal Mutation Rates
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◮ Regular oscillations on Ruggedness with a period of 2

◮ It may be difficult to track precisely – is this a problem?
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Parameter Efficiency Heatmaps

OneMax Ruggedness
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◮ Relative efficiency of the corr. p among all mutation rates for the corr. f
◮ The range of nearly equally good rates is wide enough
◮ On Ruggedness, for odd fitness values the best rates are higher
◮ (A, b) rule (red) gets stuck with too small rates near the optimum
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Regret Plots

Regret |Tf ,p − T ∗
f | for p chosen by 2-rate (left) and (A, b) rule (right)
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◮ How much of the performance the method loses from acting suboptimally

◮ (A, b) rule spends most of its time with very large regrets
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Conclusion and Generalisation

◮ We proposed a dynamic programming approach with Monte Carlo simulations
◮ Computes running times for different mutation rates at each stage of optimization
◮ Useful for deriving optimal rates and runtime lower bounds
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Thank you!
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