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Goal | Motivation®

Algorithm Design' is an iterative process in a loop of
» Implement ~~ Experiment ~» Modify ~~ Experiment ...

» Recurring experimentation can be a burden for whom with
limited computational resources
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1
Skiena, S.S. (2008). Algorithm Design Manual. Springer
image source: https://www.coursera.org/courses?query=datastructuresandalgorithms
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Goal

Reducing a given benchmark set so that the experimental evaluation
cost for the algorithmic studies can be significantly degraded

» specifically for large benchmark sets

3
image source:
https://www.univention.com/blog-en/2018/11/systematic-approach-to-evaluate-software-for-your-business/
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Method | Inspiration — ALORS”

An Algorithm Selection / Recommender system, operates through
mapping instances’ features to instances’ latent (hidden) features

» Use matrix factorization to extract latent features — Singular
Value Decomposition (SVD)* is used
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4
Strang, G., 1980. Linear Algebra and its Applications. Academic Press, New York

5
Misir, M. and Sebag, M., 2017. ALORS: An algorithm recommender system. Artificial Intelligence, 244, pp.291-314

6
image source: https://staging.njtrainingacademy.con/2019/01/11/singular-value-decomposition-svd/
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Method

M xm is a rank matrix of n instances and m algorithms

Input

Performance matrix M,,xm

Matrix rank for dimensionality reduction r

Latent feature extraction

Apply SVD to M to extract U, and V,

Instance clustering

Find best k for k-means(U,) w.r.t. Silhouette score
Compute clusters C

Instance subset selection

Return Iy = U {select(C}, [sz’ze(Cj)/_g}ink(size((],-))—‘ Y} forj=1...k
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Method | Feature Extraction (Step 1)

SVD is used to decompose M:

M=UxV!

» U is a matrix representing the rows of M, i.e. instances
» V is a matrix representing the columns of M, i.e. algorithms

> 3 is a diagonal matrix of sorted singular values, denotes
importance

The dimensions of the resulting matrices can be reduced to r by
using the first r dimensions

M=UX, V!
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Method | Instance Clustering (Step 2)

Explore different instance types through clustering
P> k-means is used to cluster the instances based on the
extracted latent instance features
» Silhouette score, i.e. mean Silhouette coefficient, is employed
to evaluate cluster quality, for k = {2,...,100}

» Next, binary search is performed between k& = 101 and n/2

] -

7
figure source: https://scikit-learn.org/stable/auto_examples/cluster/plot_kmeans_silhouette_analysis.html
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https://scikit-learn.org/stable/auto_examples/cluster/plot_kmeans_silhouette_analysis.html

Method | Instance Subset Selection (Step 3)

The closest instances to the centroid of each cluster are selected,
taking the cluster sizes into account

[sz‘ze(cj)/mi (Size(ci))“

i=1...k

where size(C);) is the number of instances in the cluster C;

10/22



Outline

» Goal

» Method

» Traveling Thief Problem
» Computational Results

» Conclusion and Future Research

11/22



Traveling Thief Problem (TTP)"

An NP-hard problem concerned with two other, well-known opti-
mization problems, namely’

» Traveling Salesman Problem (TSP)’
» Knapsack Problem (KP)®
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8
image source: https://en.wikipedia.org/wiki/Knapsack_problem - /Travelling_salesman_problem
9
M. M. Flood, “The traveling-salesman problem,” Operations research, vol. 4, no. 1, pp. 6175, 1956
10
H. M. Salkin and C. A. De Kluyver, “The knapsack problem: a survey,” Naval Research Logistics Quarterly, vol. 22, no. 1, pp. 127-144, 1975

1
S. Polyakovskiy, M. R. Bonyadi, M. Wagner, Z. Michalewicz, and F. Neumann, “A comprehensive benchmark set and heuristics for the traveling thief problem,” in
Proceedings of the Annual Conference on Genetic and Evolutionary Computation (GECCO), 2014, pp. 477484

12/22


https://en.wikipedia.org/wiki/Knapsack_problem
/Travelling_salesman_problem

TTP

> A set of cities: N ={1,...n}

» A set of items: M = {1,...m}

» The distance between the city ¢ and city j: d;;

» The city 7 (except the starting city) has a set of items:
M;={1,...,m;}, M = z‘éJNMi

» The item k from the city 7 has profit p;z and weight w;

> W is the knapsack capacity

» R is the renting rate (cost) for the knapsack, per time unit

» Umnae and vy, denote max and min speed of the thief,

affected by the total weight of the collected items

Wagner, M., Lindauer, M., Misir, M., Nallaperuma, S. and Hutter, F., 2018. A case study of algorithm selection for the traveling thief problem. Journal of
Heuristics, 24(3), pp.295-320
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TTP

The goal is to specify a tour maximizing the total profit

» The tour consists of all the cities exactly once, starting from
the first city and returning back there

The objective function® for a tour IT = (z1,...,2,), z; € N and
a packing plan P = (Y21, -, Ynm;):
n m; n—1
d iTi dg,,
Z Z PikYik—R Tt Intl
i=1 k=1

< Umaz — vWy, Umaz — VWe

i= n

where
» v € {0, 1} shows whether the item k is picked from the city ¢
> W, is the total item weight when the thief leaves the city ¢

>y — W is a constant

13
Within the knapsack’s rent term, the first part is the traveling cost between cities while the second part refers to the cost of going back to the starting city
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TTP | Instances

9720 TTP instances, from the literature

» Based on TSPLIB*

» Considering 3 KP variations, i.e. uncorrelated, uncorrelated
with similar weights and bounded strongly correlated

» Different number of per city items

» Distinct renting rates, R

14
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
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http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/

TTP | Algorithms

21 candidate TTP algorithms, from the literature

» Simple Heuristic, Random Local Search (RLS),
(141)-Evolutionary Algorithm (EA)

» Density-based Heuristic (DH)

» Memetic Algorithm with the Two-stage Local Search
(MATLS)

» S1, S2, S3, S4, S5, C1, C2, C3, C4, C5, C6
» CoSolver with 2-OPT and Simulated Annealing (CS2SA)

» Variants of MAX-MIN Ant System (MMAS): MMASIs3 (M3),
MMASIs4 (M4), MMASIs3boost (M3B), MMASIs4boost
(M4B)
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Computational Results | Performance

Spearman’s rank coefficient test evaluates
the marginal algorithm contribution to any
algorithm (portfolio) subset, for Oracle
P ranking is preserved in most cases, i.e.
p-values of > 0.9

» Subset-k5-1 achieves with its 62
instances p = 0.974, which is the best
score among the smallest subsets

» Overall, Subset-k5-20 achieves with its
1240 instances p = 0.991

Scenario p
Subset-k5-1 0.974
Subset-k5-5 0.986
Subset-k5-10  0.988
Subset-k5-20  0.991
Subset-k5-30  0.988
Subset-k6-1 0.805
Subset-k6-5 0.813
Subset-k6-10  0.788
Subset-k6-20  0.804
Subset-k6-30  0.808
Subset-k7-1 0.957
Subset-k7-5 0.970
Subset-k7-10  0.979
Subset-k7-20  0.986
Subset-k7-30  0.986
Subset-k8-1 0.971
Subset-k8-5 0.981
Subset-k8-10  0.981
Subset-k8-20  0.983
Subset-k8-30  0.979
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Computational Results | Instance Set Reduction

62 selected TTP instances as a representative benchmark set for the
complete 9720 instances
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Computational Results | Feature Importance

For 55 TTP features, from the literature
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Conclusion and Future Research

The proposed method is able to come up with representative in-
stance sets, with less than %1 of the complete instance set

Follow-up research:
P repeating the analysis on other problems
> offering a new clustering approach for determining the number
of clusters cheaper
» benefiting from Matrix Completion (MC)** to expand the
applicability of the method

» recommending instance subsets not as a representative set of
the large one but small yet a fair benchmark set

15
M. Misir. Data sampling through collaborative filtering for algorithm selection, in the 16th IEEE CEC, 2017, pp. 24942501

16
M. Misir. Active matrix completion for algorithm selection, in LOD. LNCS, Springer, 2019, pp. 321-334
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