
Comparison with State-of-the-Art: Traps and

Pitfalls

Rafał Biedrzycki

Warsaw University of Technology

Institute of Computer Science

riedrzy@elka.pw.edu.pl

Rafał Biedrzycki Comparison with State-of-the-Art: Traps and Pitfalls

riedrzy@elka.pw.edu.pl


Popular road to publication

Create some algorithm

Compare to state-of-the-art

If the algorithm is better for some problems, then write an

article

Rafał Biedrzycki Comparison with State-of-the-Art: Traps and Pitfalls



Popular road to publication

Create some algorithm

Compare to state-of-the-art

If the algorithm is better for some problems, then write an

article

Rafał Biedrzycki Comparison with State-of-the-Art: Traps and Pitfalls



Popular road to publication

Create some algorithm

Compare to state-of-the-art

If the algorithm is better for some problems, then write an

article

Rafał Biedrzycki Comparison with State-of-the-Art: Traps and Pitfalls



Usual road to publication

What is state-of-the-art? – known algorithms with source

code available in researchers favorite programming language

Cite the first paper that introduced algorithm used in

comparison

Rafał Biedrzycki Comparison with State-of-the-Art: Traps and Pitfalls



Usual road to publication

What is state-of-the-art? – known algorithms with source

code available in researchers favorite programming language

Cite the first paper that introduced algorithm used in

comparison

Rafał Biedrzycki Comparison with State-of-the-Art: Traps and Pitfalls



Article-implementation gap

Usually articles skip some details that are needed by the

implementation

These details can be filled in different ways by the developers

Different implementations can give different results

Rafał Biedrzycki Comparison with State-of-the-Art: Traps and Pitfalls



Article-implementation gap

Usually articles skip some details that are needed by the

implementation

These details can be filled in different ways by the developers

Different implementations can give different results

Rafał Biedrzycki Comparison with State-of-the-Art: Traps and Pitfalls



Article-implementation gap

Usually articles skip some details that are needed by the

implementation

These details can be filled in different ways by the developers

Different implementations can give different results

Rafał Biedrzycki Comparison with State-of-the-Art: Traps and Pitfalls



Use trusted implementation

What will happen if we download and use implementations

created by one person, an author of a method

CMA-ES will serve as an example of a good method, with

high-quality implementations

Implementations in Python, Matlab, C, Java were downloaded

from the author’s homepage

Rafał Biedrzycki Comparison with State-of-the-Art: Traps and Pitfalls



Use trusted implementation

What will happen if we download and use implementations

created by one person, an author of a method

CMA-ES will serve as an example of a good method, with

high-quality implementations

Implementations in Python, Matlab, C, Java were downloaded

from the author’s homepage

Rafał Biedrzycki Comparison with State-of-the-Art: Traps and Pitfalls



Use trusted implementation

What will happen if we download and use implementations

created by one person, an author of a method

CMA-ES will serve as an example of a good method, with

high-quality implementations

Implementations in Python, Matlab, C, Java were downloaded

from the author’s homepage

Rafał Biedrzycki Comparison with State-of-the-Art: Traps and Pitfalls



Experimental setup

For all implementations, the same population size, initial σ,

and maximal number of objective function evaluations were

set

The comparison and analysis of the results were performed by

COCO using 24 noiseless single-objective functions formerly

used in 2009 in Workshop on Real-Parameter Black-Box

Optimization Benchmarking

Bounds of the area of interest were used as bounds for

constrained search, which better reflects a real-world

application

Python version comes with two constraint handling techniques

– transformation (default) and weighted quadratic penalty

A simple implementation in Python which was meant for

reading, was also included in the experiments as it is used in

direct translations into other languages

Rafał Biedrzycki Comparison with State-of-the-Art: Traps and Pitfalls



Experimental setup

For all implementations, the same population size, initial σ,

and maximal number of objective function evaluations were

set

The comparison and analysis of the results were performed by

COCO using 24 noiseless single-objective functions formerly

used in 2009 in Workshop on Real-Parameter Black-Box

Optimization Benchmarking

Bounds of the area of interest were used as bounds for

constrained search, which better reflects a real-world

application

Python version comes with two constraint handling techniques

– transformation (default) and weighted quadratic penalty

A simple implementation in Python which was meant for

reading, was also included in the experiments as it is used in

direct translations into other languages

Rafał Biedrzycki Comparison with State-of-the-Art: Traps and Pitfalls



Experimental setup

For all implementations, the same population size, initial σ,

and maximal number of objective function evaluations were

set

The comparison and analysis of the results were performed by

COCO using 24 noiseless single-objective functions formerly

used in 2009 in Workshop on Real-Parameter Black-Box

Optimization Benchmarking

Bounds of the area of interest were used as bounds for

constrained search, which better reflects a real-world

application

Python version comes with two constraint handling techniques

– transformation (default) and weighted quadratic penalty

A simple implementation in Python which was meant for

reading, was also included in the experiments as it is used in

direct translations into other languages

Rafał Biedrzycki Comparison with State-of-the-Art: Traps and Pitfalls



Experimental setup

For all implementations, the same population size, initial σ,

and maximal number of objective function evaluations were

set

The comparison and analysis of the results were performed by

COCO using 24 noiseless single-objective functions formerly

used in 2009 in Workshop on Real-Parameter Black-Box

Optimization Benchmarking

Bounds of the area of interest were used as bounds for

constrained search, which better reflects a real-world

application

Python version comes with two constraint handling techniques

– transformation (default) and weighted quadratic penalty

A simple implementation in Python which was meant for

reading, was also included in the experiments as it is used in

direct translations into other languages

Rafał Biedrzycki Comparison with State-of-the-Art: Traps and Pitfalls



Experimental setup

For all implementations, the same population size, initial σ,

and maximal number of objective function evaluations were

set

The comparison and analysis of the results were performed by

COCO using 24 noiseless single-objective functions formerly

used in 2009 in Workshop on Real-Parameter Black-Box

Optimization Benchmarking

Bounds of the area of interest were used as bounds for

constrained search, which better reflects a real-world

application

Python version comes with two constraint handling techniques

– transformation (default) and weighted quadratic penalty

A simple implementation in Python which was meant for

reading, was also included in the experiments as it is used in

direct translations into other languages

Rafał Biedrzycki Comparison with State-of-the-Art: Traps and Pitfalls



Results on selected functions in 5D

Rafał Biedrzycki Comparison with State-of-the-Art: Traps and Pitfalls



Results on selected functions in 5D

Rafał Biedrzycki Comparison with State-of-the-Art: Traps and Pitfalls



Results on selected functions in 5D

Rafał Biedrzycki Comparison with State-of-the-Art: Traps and Pitfalls



Results on selected functions in 5D

Rafał Biedrzycki Comparison with State-of-the-Art: Traps and Pitfalls



Results on selected functions in 5D

Rafał Biedrzycki Comparison with State-of-the-Art: Traps and Pitfalls



Results on selected functions in 5D

Rafał Biedrzycki Comparison with State-of-the-Art: Traps and Pitfalls



Meaning of values in table

The numbers in tables show average runtime divided by the

best value measured during BBOB-2009 competition

The target error level was set to 10
−5

The half difference between 10 and 90%- tile of bootstrapped

run lengths was put in braces as dispersion measure

Rafał Biedrzycki Comparison with State-of-the-Art: Traps and Pitfalls



Meaning of values in table

The numbers in tables show average runtime divided by the

best value measured during BBOB-2009 competition

The target error level was set to 10
−5

The half difference between 10 and 90%- tile of bootstrapped

run lengths was put in braces as dispersion measure

Rafał Biedrzycki Comparison with State-of-the-Art: Traps and Pitfalls



Meaning of values in table

The numbers in tables show average runtime divided by the

best value measured during BBOB-2009 competition

The target error level was set to 10
−5

The half difference between 10 and 90%- tile of bootstrapped

run lengths was put in braces as dispersion measure

Rafał Biedrzycki Comparison with State-of-the-Art: Traps and Pitfalls



Results in 5D

Fun. C Java Matlab Python Py. sim. Py. sq. pen. Py. sq.

f1 88 (8) 78 (13) 84 (6) 86 (10) 89 (7) 81 (8)

f2 46 (5) 44 (3) 41 (2) 27 (3) 43 (6) 28 (4)

f3 379 (249) 283 (246) 341 (395) 601 (254) 472 (702) 328 (315)

f4 7045 (1e4) 6783 (7417) 9937 (2e4) 6026 (6540) 5732 (2212) 3908 (2539)

f5 140 (24) 351 (42) 47 (15) 115 (13) 97 (73) 33 (9)

f6 2.6 (0.3) 2.4 (0.5) 2.4 (0.2) 2.5 (0.2) 2.3 (0.3) 2.4 (0.1)

f7 13 (12) 7.2 (10) 9.4 (13) 2.8 (2) 8.1 (4) 2.9 (5)

f8 12 (5) 10 (2) 12 (4) 12 (15) 10 (2) 9.1 (1)

f9 12 (2) 12 (4) 12 (6) 14 (9) 13 (4) 11 (4)

f10 8.4 (4) 5.2 (0.4) 4.8 (0.7) 4.3 (2) 4.7 (0.3) 3.1 (0.2)

f11 3.2 (1) 2.9 (0.2) 2.7 (0.2) 2.2 (1) 2.8 (0.3) 1.5 (0.2)

f12 6.8 (5) 5.7 (4) 4.2 (3) 6.4 (5) 6.2 (2) 3.4 (2)

f13 3.4 (0.8) 3.6 (0.9) 3.3 (0.6) 2.1 (0.7) 3.1 (0.4) 2.3 (1)

f14 11 (0.8) 12 (2) 11 (2) 7 (0.8) 11 (1) 6.4 (0.8)

f15 20 (29) 20 (22) 44 (24) 23 (36) 25 (26) 35 (48)

f16 24 (31) 5.7 (8) 11 (11) 12 (20) 2.5 (3) 8.2 (7)

f17 20 (13) 7.2 (5) 13 (6) 12 (12) 16 (11) 12 (13)

f18 140 (104) 133 (313) 245 (325) 53 (43) 109 (108) 40 (66)

f19 358 (448) 389 (306) 290 (144) 117 (34) 382 (272) 86 (67)

f20 106 (252) 61 (59) 102 (120) 49 (31) 49 (60) 35 (13)

f21 15 (20) 7.1 (5) 12 (12) 14 (4) 13 (15) 18 (18)

f22 39 (31) 47 (78) 56 (47) 59 (33) 35 (28) 43 (136)

f23 50 (91) 5 (3) 17 (36) 6.6 (8) 6 (4) 7.7 (12)

f24 ∞ ∞ 60 (60) 62 (44) ∞ ∞

Σ best 1 6 1 3 3 11Rafał Biedrzycki Comparison with State-of-the-Art: Traps and Pitfalls



Meaning of values in table

Algorithms that use the same bound constraint handling were

compared in pairs using the Wilcoxon rank-sum test along

with the Bonferroni correction by the number of functions

The star means that there is a statistically significant

difference with p-value 0.05. The number k after the star

shows the p-value was 10
−k

Rafał Biedrzycki Comparison with State-of-the-Art: Traps and Pitfalls



Meaning of values in table

Algorithms that use the same bound constraint handling were

compared in pairs using the Wilcoxon rank-sum test along

with the Bonferroni correction by the number of functions

The star means that there is a statistically significant

difference with p-value 0.05. The number k after the star

shows the p-value was 10
−k

Rafał Biedrzycki Comparison with State-of-the-Art: Traps and Pitfalls



Results in 5D

Fun. C Matlab Python Py. sq. pen. Py. sq. pen. vs Matlab Py. vs C

f1 88 (8) 84 (6) 86 (10) 81 (8)

f2 46 (5) 41 (2) 27 (3) 28 (4) ⋆4 ⋆4

f3 379 (249) 341 (395) 601 (254) 328 (315)

f4 7045 (1e4) 9937 (2e4) 6026 (6540) 3908 (2539)

f5 140 (24) 47 (15) 115 (13) 33 (9) ⋆

f6 2.6 (0.3) 2.4 (0.2) 2.5 (0.2) 2.4 (0.1)

f7 13 (12) 9.4 (13) 2.8 (2) 2.9 (5)

f8 12 (5) 12 (4) 12 (15) 9.1 (1) ⋆

f9 12 (2) 12 (6) 14 (9) 11 (4)

f10 8.4 (4) 4.8 (0.7) 4.3 (2) 3.1 (0.2) ⋆4 ⋆

f11 3.2 (1) 2.7 (0.2) 2.2 (1) 2.8 (0.3) ⋆4 ⋆

f12 6.8 (5) 4.2 (3) 6.4 (5) 3.4 (2)

f13 3.4 (0.8) 3.3 (0.6) 2.1 (0.7) 2.3 (1) ⋆2 ⋆3

f14 11 (0.8) 11 (2) 7 (0.8) 6.4 (0.8) ⋆4 ⋆3

f15 20 (29) 44 (24) 23 (36) 35 (48)

f16 24 (31) 11 (11) 12 (20) 8.2 (7)

f17 20 (13) 13 (6) 12 (12) 12 (13)

f18 140 (104) 245 (325) 53 (43) 40 (66) ⋆

f19 358 (448) 290 (144) 117 (34) 86 (67)

f20 106 (252) 102 (120) 49 (31) 35 (13)

f21 15 (20) 12 (12) 14 (4) 18 (18)

f22 39 (31) 56 (47) 59 (33) 43 (136)

f23 50 (91) 17 (36) 6.6 (8) 7.7 (12) ⋆

f24 ∞ 60 (60) 62 (44) ∞

Σ best 1 1 3 11Rafał Biedrzycki Comparison with State-of-the-Art: Traps and Pitfalls



Tracing the differences

Bound constraint handling

Internal stopping conditions (sanity checks) – 8 in C, 11 in

Python; stopTolFun, stopTolFunHist, stopTolX are different

After setting Python like C, Python was interrupted on

function 19

Implementing different versions of the method – Python

implements ActiveCMA version

Different heuristics used to detect and escape from flat areas

of the fitness

Different values used in initialization of internal recombination

weights

Rafał Biedrzycki Comparison with State-of-the-Art: Traps and Pitfalls



Tracing the differences

Bound constraint handling

Internal stopping conditions (sanity checks) – 8 in C, 11 in

Python; stopTolFun, stopTolFunHist, stopTolX are different

After setting Python like C, Python was interrupted on

function 19

Implementing different versions of the method – Python

implements ActiveCMA version

Different heuristics used to detect and escape from flat areas

of the fitness

Different values used in initialization of internal recombination

weights

Rafał Biedrzycki Comparison with State-of-the-Art: Traps and Pitfalls



Tracing the differences

Bound constraint handling

Internal stopping conditions (sanity checks) – 8 in C, 11 in

Python; stopTolFun, stopTolFunHist, stopTolX are different

After setting Python like C, Python was interrupted on

function 19

Implementing different versions of the method – Python

implements ActiveCMA version

Different heuristics used to detect and escape from flat areas

of the fitness

Different values used in initialization of internal recombination

weights

Rafał Biedrzycki Comparison with State-of-the-Art: Traps and Pitfalls



Tracing the differences

Bound constraint handling

Internal stopping conditions (sanity checks) – 8 in C, 11 in

Python; stopTolFun, stopTolFunHist, stopTolX are different

After setting Python like C, Python was interrupted on

function 19

Implementing different versions of the method – Python

implements ActiveCMA version

Different heuristics used to detect and escape from flat areas

of the fitness

Different values used in initialization of internal recombination

weights

Rafał Biedrzycki Comparison with State-of-the-Art: Traps and Pitfalls



Tracing the differences

Bound constraint handling

Internal stopping conditions (sanity checks) – 8 in C, 11 in

Python; stopTolFun, stopTolFunHist, stopTolX are different

After setting Python like C, Python was interrupted on

function 19

Implementing different versions of the method – Python

implements ActiveCMA version

Different heuristics used to detect and escape from flat areas

of the fitness

Different values used in initialization of internal recombination

weights

Rafał Biedrzycki Comparison with State-of-the-Art: Traps and Pitfalls



Tracing the differences

Bound constraint handling

Internal stopping conditions (sanity checks) – 8 in C, 11 in

Python; stopTolFun, stopTolFunHist, stopTolX are different

After setting Python like C, Python was interrupted on

function 19

Implementing different versions of the method – Python

implements ActiveCMA version

Different heuristics used to detect and escape from flat areas

of the fitness

Different values used in initialization of internal recombination

weights

Rafał Biedrzycki Comparison with State-of-the-Art: Traps and Pitfalls



Article-implementation relation

Which article describes the CMA-ES?

Authors of the CMA-ES cited sequence of four articles when

referring to CMA-ES

Article-implementation relation is not clear:

there are no references in the C code

there are two references connected with additional

improvements of the method in Python

there are five references in Matlab and five in Java, four of

them are common for both implementations

Rafał Biedrzycki Comparison with State-of-the-Art: Traps and Pitfalls



Article-implementation relation

Which article describes the CMA-ES?

Authors of the CMA-ES cited sequence of four articles when

referring to CMA-ES

Article-implementation relation is not clear:

there are no references in the C code

there are two references connected with additional

improvements of the method in Python

there are five references in Matlab and five in Java, four of

them are common for both implementations

Rafał Biedrzycki Comparison with State-of-the-Art: Traps and Pitfalls



Article-implementation relation

Which article describes the CMA-ES?

Authors of the CMA-ES cited sequence of four articles when

referring to CMA-ES

Article-implementation relation is not clear:

there are no references in the C code

there are two references connected with additional

improvements of the method in Python

there are five references in Matlab and five in Java, four of

them are common for both implementations

Rafał Biedrzycki Comparison with State-of-the-Art: Traps and Pitfalls



Article-implementation relation

Which article describes the CMA-ES?

Authors of the CMA-ES cited sequence of four articles when

referring to CMA-ES

Article-implementation relation is not clear:

there are no references in the C code

there are two references connected with additional

improvements of the method in Python

there are five references in Matlab and five in Java, four of

them are common for both implementations

Rafał Biedrzycki Comparison with State-of-the-Art: Traps and Pitfalls



Article-implementation relation

Which article describes the CMA-ES?

Authors of the CMA-ES cited sequence of four articles when

referring to CMA-ES

Article-implementation relation is not clear:

there are no references in the C code

there are two references connected with additional

improvements of the method in Python

there are five references in Matlab and five in Java, four of

them are common for both implementations

Rafał Biedrzycki Comparison with State-of-the-Art: Traps and Pitfalls



Best practice recommendations

Publishers should require the availability of the source code

for all new optimization methods

Authors should reveal how all parameters were set up, not

only in the proposed method but also in methods used for

comparison

The code used for running experiments should be available

Authors should use the most up-to-date trusted

implementation of the state-of-the-art and reveal its origin,

name, and version

Authors of implementations should define

article-implementation relation

Authors of articles and authors of implementations should

identify the method used for constraint handling

Rafał Biedrzycki Comparison with State-of-the-Art: Traps and Pitfalls



Best practice recommendations

Publishers should require the availability of the source code

for all new optimization methods

Authors should reveal how all parameters were set up, not

only in the proposed method but also in methods used for

comparison

The code used for running experiments should be available

Authors should use the most up-to-date trusted

implementation of the state-of-the-art and reveal its origin,

name, and version

Authors of implementations should define

article-implementation relation

Authors of articles and authors of implementations should

identify the method used for constraint handling

Rafał Biedrzycki Comparison with State-of-the-Art: Traps and Pitfalls



Best practice recommendations

Publishers should require the availability of the source code

for all new optimization methods

Authors should reveal how all parameters were set up, not

only in the proposed method but also in methods used for

comparison

The code used for running experiments should be available

Authors should use the most up-to-date trusted

implementation of the state-of-the-art and reveal its origin,

name, and version

Authors of implementations should define

article-implementation relation

Authors of articles and authors of implementations should

identify the method used for constraint handling

Rafał Biedrzycki Comparison with State-of-the-Art: Traps and Pitfalls



Best practice recommendations

Publishers should require the availability of the source code

for all new optimization methods

Authors should reveal how all parameters were set up, not

only in the proposed method but also in methods used for

comparison

The code used for running experiments should be available

Authors should use the most up-to-date trusted

implementation of the state-of-the-art and reveal its origin,

name, and version

Authors of implementations should define

article-implementation relation

Authors of articles and authors of implementations should

identify the method used for constraint handling

Rafał Biedrzycki Comparison with State-of-the-Art: Traps and Pitfalls



Best practice recommendations

Publishers should require the availability of the source code

for all new optimization methods

Authors should reveal how all parameters were set up, not

only in the proposed method but also in methods used for

comparison

The code used for running experiments should be available

Authors should use the most up-to-date trusted

implementation of the state-of-the-art and reveal its origin,

name, and version

Authors of implementations should define

article-implementation relation

Authors of articles and authors of implementations should

identify the method used for constraint handling

Rafał Biedrzycki Comparison with State-of-the-Art: Traps and Pitfalls



Best practice recommendations

Publishers should require the availability of the source code

for all new optimization methods

Authors should reveal how all parameters were set up, not

only in the proposed method but also in methods used for

comparison

The code used for running experiments should be available

Authors should use the most up-to-date trusted

implementation of the state-of-the-art and reveal its origin,

name, and version

Authors of implementations should define

article-implementation relation

Authors of articles and authors of implementations should

identify the method used for constraint handling

Rafał Biedrzycki Comparison with State-of-the-Art: Traps and Pitfalls



Conclusions

The choice of a particular implementation of even a popular

and standard algorithm may have a substantial impact on the

results obtained in research studies or applications

Many articles do not provide information about

implementations used in experiments, which puts in question

the utility of their findings

The sources of discrepancies are frequently hidden in the

auxiliary code

The difference in the outcome of implementations also stems

from implementing different versions of the algorithm

Rafał Biedrzycki Comparison with State-of-the-Art: Traps and Pitfalls



Conclusions

The choice of a particular implementation of even a popular

and standard algorithm may have a substantial impact on the

results obtained in research studies or applications

Many articles do not provide information about

implementations used in experiments, which puts in question

the utility of their findings

The sources of discrepancies are frequently hidden in the

auxiliary code

The difference in the outcome of implementations also stems

from implementing different versions of the algorithm

Rafał Biedrzycki Comparison with State-of-the-Art: Traps and Pitfalls



Conclusions

The choice of a particular implementation of even a popular

and standard algorithm may have a substantial impact on the

results obtained in research studies or applications

Many articles do not provide information about

implementations used in experiments, which puts in question

the utility of their findings

The sources of discrepancies are frequently hidden in the

auxiliary code

The difference in the outcome of implementations also stems

from implementing different versions of the algorithm

Rafał Biedrzycki Comparison with State-of-the-Art: Traps and Pitfalls



Conclusions

The choice of a particular implementation of even a popular

and standard algorithm may have a substantial impact on the

results obtained in research studies or applications

Many articles do not provide information about

implementations used in experiments, which puts in question

the utility of their findings

The sources of discrepancies are frequently hidden in the

auxiliary code

The difference in the outcome of implementations also stems

from implementing different versions of the algorithm

Rafał Biedrzycki Comparison with State-of-the-Art: Traps and Pitfalls



The end

Thank you for watching!

Rafał Biedrzycki Comparison with State-of-the-Art: Traps and Pitfalls


