
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 18, NO. 6, DECEMBER 20143 1

Abstract—The defect-tolerant logic mapping (DTLM), which

has been proven to be an NP-complete combinatorial search
problem, is a key step for logic implementation in emerging
crossbar-based nano-architectures. However, no practically
satisfactory solution has been suggested for the DTLM till now. In
this paper, the problem of DTLM is first modeled as a
combinatorial optimization problem through introducing
Maximum-Bipartite-Matching (MBM). Then, a new Memetic
Algorithm with Fitness Approximation (MA/FA) is proposed to
solve the optimization problem efficiently. In MA/FA, a new
Greedy Re-assignment Local Search operator, capable of utilizing
the domain knowledge and information from problem instances, is
designed to help the algorithm find optimal logic mapping with
consumption of relatively lower computational resources; A
Fitness Approximation method is adopted to reduce the time
consumption of fitness evaluation dramatically. In addition, a
hybrid fitness evaluation strategy that combines the exact and
approximated fitness evaluation methods is presented to balance
the accuracy and time efficiency of fitness evaluation. The
effectiveness and efficiency of proposed methods are testified and
evaluated on a large set of benchmark instances of various scales,
and the advantage of MA/FA on keeping good balance between
effectiveness and efficiency is also observed.

Index Terms—Memetic algorithms, fitness approximation, local
search, crossbar-based nanoelectronics, defect-tolerant logic
mapping (DTLM), maximum-bipartite-matching (MBM).

I. INTRODUCTION

ONVENTIONAL CMOS techniques are rapidly approaching
their realistic limits. Emerging nano-scale devices [1] and

the corresponding nano-architecture technologies [2], which
can achieve much higher device density (1012/cm2) and

Bo Yuan is with the School of Information Science and Technology,

University of Science and Technology of China (USTC), Hefei 230026, China
(e-mail: yuanbo@mail.ustc.edu.cn).

Xin Yao is with Centre of Excellence for Research in Computational
Intelligence and Applications (CERCIA), School of Computer Science,
University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K. (e-mail:
X.Yao@cs.bham.ac.uk).

Bin Li is with the School of Information Science and Technology, USTC,
Hefei 230026, China (e-mail: binli@ustc.edu.cn).

Thomas Weise is with the Nature Inspired Computation and Applications
Laboratory (NICAL), School of Computer Science and Technology, USTC;
Hefei 230027, China (e-mail: tweise@ustc.edu.cn).

Copyright (c) 2012 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

operation frequency (over 100 gigahertz), are expected to
extend the Moore law beyond CMOS. In 2011, the world's first
programmable nanoprocessor consisting of programmable,
non-volatile nanowire transistor arrays (PNNTAs) has been
published [3], which demonstrates that the bottom-up paradigm
[4] can yield nanoprocessors and other integrated systems of the
future.

Although with many attractive features and encouraging
potential in future industrial applications, the nano-chips
produced from both the bottom-up process and nano-imprint
techniques [5] are prone to suffer high defect density due to the
extremely small size of nanoelectronic devices and the difficult
of controlling the fabricating process precisely. The exact level
of defect density is still unknown by now, but it is assumed to be
reasonable that 1% to 15% of the resources (wires, switches,
etc.) on a nano-chip will be defective [6]. The researchers in
Harvard and MITRE [3] characterized the threshold voltage
values of nodes from the fabricated PNNTA structure in both
active and inactive states. It is notable that they found that only
86% nodes in active state and 87% nodes in inactive state met
the voltage requirements. The Quantum Science Research
group at Hewlett-Packard fabricated an 8×8 crossbar
architecture using molecular switches at the crosspoints by
nano-imprint lithography [5], where 15% of the switches were
defective.

Faced with such a high defect density, the future nano-chip
designing industry definitely needs crafted defect-tolerant
design techniques to guarantee the usability of manufactured
nano-chips. One promising design paradigm for logic function
implementation on a nano-chip is the defect-aware design flow
[7]–[11]. The key step in defect-aware design is the
defect-tolerant logic mapping (DTLM), which is defined as:
given a defective crossbar and a logic function to be
implemented on it, find a mapping of the logic function to the
crossbar with consideration of defects. Since the defect-aware
design flow is to adjust the function implementation for each
particular defective nano-chip, it can utilize more defect-free
resources on the crossbar architectures compared to the
defect-unaware design flow whose key step is to extract
defect-free sub-crossbars from original defective crossbars [12],
[13].

The DTLM by its nature is equivalent to the Subgraph

A New Memetic Algorithm with Fitness
Approximation for the Defect-Tolerant Logic

Mapping in Crossbar-based Nano-architectures
Bo Yuan, Bin Li , Member, IEEE, and Thomas Weise, Member, IEEE, Xin Yao, Fellow, IEEE

C

This is a preview version of paper [41]. You can read the whole piece in the journal.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 18, NO. 6, DECEMBER 20143 2

Isomorphism Problem (SIP), a well-known NP-complete
combinatorial search problem [14], which can be defined as:
return an occurrence of bipartite graph G2 as a subgraph of
bipartite graph G1. A number of methods have been proposed to
tackle such problem, e. g. a recursive algorithm [11] based on
backtracking and pruning [15], [16], as well as various versions
of popular heuristic algorithms specialized for the DTLM [7],
[10], [17], [18]. But all of the above methods can only satisfy
the requirement of solving SIP of small scale in nano-chip
design so far.

In this paper, the problem of DTLM is first modeled as a
combinatorial optimization problem through introducing
Maximum-Bipartite-Matching (MBM) and the corresponding
search space is reduced significantly. Then a new Memetic
Algorithm with Fitness Approximation (MA/FA) is proposed to
find a valid mapping between logic function and nano-crossbar
architecture in reasonable runtime, which bypasses all the defect
resources in the nano-architecture. For real-world optimization
problems, it is often effective to incorporate problem-specific
knowledge into local search strategies, which are referred to
“memes” in the case of Memetic Algorithms [19]–[21]. This
paper presents one such local search operator, called Greedy
Re-assignment, which reassigns the values of parts of the
individual by taking advantage of the greedy information
extracted from the problem instance. Besides, an approximated
MBM algorithm [7] is used together with the exact MBM
algorithm [22] to evaluate the fitness of candidate solutions.
Experimental investigation shows that such hybrid fitness
evaluation strategy is able to reduce the runtime of the whole
algorithm dramatically. The proposed algorithm is
experimentally investigated on a large set of benchmark
instances with various scales, and compared with the
state-of-the-art recursive and heuristic algorithms. Experiment
results show a good balance between efficiency and
effectiveness can be obtained by the proposed MA/FA and the
performance of MA/FA attributes to the introduction of the
Greedy Re-assignment and Fitness Approximation strategies.

The rest of this paper is organized as follows. Section II
introduces the background and definition of the DTLM problem,
and briefly reviews the literatures on DTLM. In Section III, the
DTLM is transferred into a combinatorial optimization problem
via introducing MBM. The algorithm, MA/FA with Greedy
Re-assignment and Fitness Approximation strategies, is
presented in Section IV. Experimental studies and comparisons
are given in Section V. Section VI concludes the paper.

II. PRELIMINARIES

A. Nano-crossbar Architecture

A nanoelectronic crossbar consists of two layers of
orthogonal nanowires. The region where two wires cross is
called junction or crosspoint, which may be configured to
implement a logic device. The assembly process has a stochastic
nature that the probability of aligning three-terminal devices
will be very low, while a two-terminal connection can be
established merely by overlapping two wires perpendicularly.

Therefore, two-terminal devices such as nanowire FETs (Field
Effect Transistors), diodes, and molecular switches are
preferred [6].

In this paper, for the sake of simplicity, only “stuck-at-open”
defect is considered, which is representative and the most
common in nano-crossbar architectures [23]. A “stuck-at-open”
defect means that there is either a non-programmable switch or
missing a switch at the crosspoint, thus the two cross wires at
this crosspoint are always disconnected. Note that defect
modeling for emerging nanoelectronics is still an ongoing
research problem. Without loss of generality, we may assume
that the defects are independent and uniformly distributed as
previous work did [7]–[9], [11]. This is a commonly employed
assumption for theoretical research [24], which allows us to
focus upon the essence of the proposed method instead of the
physical details of the defects. It is notable that the approach
presented in this paper can be easily extended to other defect
types (“stuck-at-closed” defect, “nanowire open” defect and
“nanowire bridging” defect [25]) and other defect distributions
(such as clustered distribution [10]) by modifying the following
bipartite graph model slightly.

B. Problem Definition

An example of a defective 3×3 nanoelectronic crossbar is
shown in Fig. 1(a). The crossbar consists of two sets of
orthogonal nanowires. The vertical nanowires are the inputs,
whereas the horizontal nanowires are the outputs. There is a
programmable switch at each crosspoint. The
non-programmable defective switches at the crosspoints are
each represented by an “X”.

A given 2D crossbar with defects can be represented by a
bipartite graph, as shown in Fig. 1(b). A bipartite graph of an
n×n crossbar is an undirected bipartite graph G1(Uvert, Vhor, E1)
with partitions Uvert and Vhor, having |Uvert| = n and |Vhor| = n. Uvert

A B C

D
E
F

(a)

A

B

C

D

E

F
(b)

a

b

c

ab

bc

(c)
Fig. 1. (a) 3×3 nano-crossbar with two defects. (b) Bipartite graph of
crossbar in (a). (c) Bipartite graph of logic function: F = ab+bc.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 18, NO. 6, DECEMBER 20143 3

represents the set of input nanowires, and Vhor represents the set
of output nanowires. E1 consists of representative edges for all
the programmable non-defective crosspoints in the crossbar.

A two-level logic function in a sum-of-products form can also
be represented by a bipartite graph G2(Uvar, Vterm, E2), as shown
in Fig. 1(c). In this scenario, Uvar represents the set of logic
variables, and Vterm represents the set of product terms. E2
consists of representative edges for the corresponding product
terms contain the variables.

When using a crossbar structure to implement a two-level
logic function, the logical relationships between the variables
and the product terms in the logic function can be represented
by the connections between vertical and horizontal nanowires in
the crossbar. Such logic-function-to-crossbar mapping problem
can be formulated as a Subgraph Isomorphism Problem (SIP)
[14]: returning an occurrence of logic function bipartite graph
G2 as a subgraph of crossbar bipartite graph G1, which is a
well-known NP-complete combinatorial search problem [14].

The DTLM problem can be formally defined as the following
[11]: Given a defective m×m crossbar bipartite graph G1(Uvert,
Vhor, E1) having |Uvert| = |Vhor| = m, and an n×n logic function
bipartite graph G2(Uvar, Vterm, E2) having |Uvar| = |Vterm| = n, find a
node mapping (M: Uvar→Uvert, Vterm→Vhor) such that (n1,
n2)E2, n1Uvar, n2Vterm, (M(n1), M(n2))E1 holds.

C. Literatures Review

In the domain of subgraph isomorphism research, low
complexity algorithms have been a subject of research during
the last three decades. A certain number of algorithms were
proposed to reduce the overall computational complexity of the
search process by imposing restrictions on the graphs [26]. An
alternative approach is that using an adequate representation of
the search process and pruning unprofitable paths in the search
space. A successful example that significantly reduces the size
of the search space is the recursive algorithm proposed by
Ullmann [15]. This algorithm is still one of the most commonly
used approaches for SIP. Cordella et al. [16] suggested another
recursive algorithm which grows a set of partial subgraphs until
the isomorphic subgraph is found. It was testified that the
growing process reduces considerably the search space by
providing pruning rules and a dynamic ordering method.

Rao et al. [11] proposed a recursive algorithm based on the
search tree with backtracking, in which, three enhanced
heuristic pruning techniques were presented to improve the
efficiency by significantly cutting down unnecessary
backtracking processes. While, even with the assistance of
heuristic pruning techniques, the runtime of the recursive
algorithm [11] is still prohibitive for larger scale graphs duo to
the recursive nature of the algorithm. It can obtain good
performance only on small scale problem instances (less than or
equal to 16 inputs for logic functions).

Heuristic algorithms are gaining more and more interest in
recent years. Dehon and Naeimi [7] transformed the DTLM into
a Maximum-Bipartite-Matching (MBM) problem. They first
assumed the logic variables had been assigned to the input
nanowires, then, they constructed a bipartite graph to model

which product terms can be assigned to which output nanowires.
Next, they abstracted the problem as to find a complete
assignment from the product terms to the output nanowires,
which is equivalent to the MBM problem. Although an exact
MBM algorithm [21] could find the matching or an evolutionary
algorithm [27] could produce a matching with near maximum
cardinality, a linear-time greedy algorithm [7] was proposed to
provide approximated results while running in substantially less
runtime.

Yellambalase and Choi [10] evaluated three different
heuristic logic mapping algorithms for DTLM with clustered
defects: the row-wise matching algorithm, the
column-matching-first algorithm and the redundant
column-matching-first algorithm. To choose a pin assignment
from the variables to the input nanowires, one heuristic [10] was
proposed to greedily assign the most frequently used variables
in the product terms to the input nanowires with the smallest
number of defects.

Simsir et al. [17] introduced a hybrid nanowire-CMOS
architecture which contained a compiler with a defect-tolerant
logic mapping heuristic. The heuristic mapping algorithm
employed the same greedy pin assignment method as [10].
While, instead of constructing the complete bipartite graph as
[7], which is time-consuming, they constructed the bipartite
matching between product terms and output nanowires step by
step assisted by an exact MBM algorithm to check if a valid
matching exists.

Inspired by the canonization technique which is normally
used in solving the Graph Isomorphism Problem (GIP), Gogen
et al. [18] proposed a novel heuristic mapping technique based
on the canonization instead of the search tree with backtracking,
called KNS-2DS. KNS stood for K-Neighbor-Sort which was
used for initializing their main mapping heuristic,
2-Dimensional-Sort (2DS). 2DS operated on the adjacency
matrixes corresponding to the crossbar and logic function
bipartite graph respectively. Experiment results showed that
KNS-2DS could reduce runtime significantly as opposed to the
SAT-based technique [28].

By now, all the state-of-the-arts heuristic algorithms rely on
the fixed heuristics which show strong bias in favor of only
small set of problem instances, and it is hard for these heuristic
algorithms to find valid mappings for large scale logic functions
with many variables and product terms.

III. MODELING AND EVALUATION

A. Search Space of the DTLM

Base on the definition of the DTLM, two decision vectors can
be employed to represent the mapping trial M: input mapping
vector (IMV) and output mapping vector (OMV) [29], where,
IMV [v] = i if variable v is assigned to input nanowire i, 1≤v≤n,
1≤i≤m; OMV [p] = o if product term p is mapped to output
nanowire o, 1≤p≤n, 1≤o≤m. It seems that we can search the
whole solution space spanned by IMV and OMV as previous
works [29] and [30] did, but the extremely huge size of search
space, P(m, n)×P(m, n), will make the problem very hard to be

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 18, NO. 6, DECEMBER 20143 4

solved with limited computational resource, where P(m, n) is
the number of n-permutations of m.

Fortunately, as suggested in [7] and [17], when logic
variables are previously assigned to input nanowires (IMV), the
solution space of another mapping vector (OMV) will be
restricted severely. For example as shown in Fig.1, if IMV is set
as [1, 2, 3] which means a is assigned to A, b is assigned to B, c
is assigned to C, thus ab cannot be assigned to D, because there
is no edge between B and D in crossbar bipartite graph.
Therefore, we can construct a bipartite graph to model which
product terms can be assigned to which output nanowires as
shown in Fig. 2. While creating the bipartite graph, we add one
node on the “left side” for each product term p, and one node on
the “right side” for each output nanowire o. An edge between p
and o indicates that the product term p is compatible with the
defect pattern of the crossbar, and can be realized by o. Then,
the problem is transformed to find a complete assignment from
the product terms to the output nanowires which is equivalent to
the MBM problem [22]:

Given an undirected bipartite graph G = (U, V, E), where U
and V are disjoint and all edges in E go between U and V. A
matching is a subset of edges ME such that for all vertices
vUV, at most one edge of M is incident on v. We say that a
vertex vUV is matched by matching M if some edge in M is
incident on v; otherwise, v is unmatched. A maximum matching
is a matching of maximum cardinality, that is, a matching M
such that for any matching M', we have |M|≥|M'|. The set of
dashed lines in Fig. 2 is a MBM in the graph.

B. Ford-Fulkerson Method for MBM

Given an undirected bipartite graph G = (U, V, E), one can
use the Ford-Fulkerson method [22] to find a MBM in
polynomial time in |UV| and |E|. The trick is to construct a flow
network where flows correspond to matchings. The
corresponding flow network G' = (V', E') for G is defined as
follows: We let the source s and sink t be new vertices, and V' =
UV{ s, t}. The directed edges of G' are the edges of E,
directed from U to V, along with |UV| new edges: E' = {(s, u):
uU}{(u, v): uU, vV, and (u, v)E}{(v, t): vV}. To
complete the construction, unit capacity is assigned to each edge
in E'. Thus, given an undirected bipartite graph G, one can find a

MBM by creating the flow network G', running the
Ford-Fulkerson method, and directly obtaining a maximum
matching M from the integer-valued maximum flow f found.

The Ford-Fulkerson method is iterative as shown in
Algorithm 1 [22]. The algorithm starts with f(u, v) = 0 for all u,
v V’, giving an initial flow of value 0. At each iteration, the
flow value is increased by finding an "augmenting path" that can
be thought of simply as a path from the source s to the sink t
along which more flow can be sent and augmented. This process
is repeated until no augmenting path can be found. The
max-flow min-cut theorem proves that upon termination, this
process yields a maximum flow. The details of the basic
Ford-Fulkerson algorithm and its improved versions can be
referenced in [22].

C. Optimization Model

Given the IMV, the search space of OMV can be significantly
reduced via creating the corresponding bipartite graph modeling
which product terms can be assigned to which output nanowires.
Furthermore, it is possible to employ the Ford-Fulkerson
method to find a MBM exactly between product terms and
output nanowires. If each product term has a corresponding
output nanowire in the matching, the given IMV is judged global
optimum and a valid mapping is found. For example, given IMV
= [1, 2, 3] for Fig. 1, its corresponding bipartite graph can be
created as shown in Fig. 2, in which a MBM OMV = [3, 2]
(dashed lines in Fig. 2) would be obtained, which means both ab
and bc have corresponding output nanowires in the matching, so
the given IMV = [1, 2, 3] is a global optimum and the
combination of IMV = [1, 2, 3] and OMV = [3, 2] is a valid
mapping trial M.

The MBM problem is exactly a matching problem, which can
be relaxed to be an optimization problem via allowing the
existence of unmatched product terms in the solution. The
following objective function can be defined for the given IMV:

1 1

/
n n

p p p

p p

Objective m w w

 (1)

Where, mp {0, 1} represents if product term p has a
corresponding output nanowire o in the matching under the
given IMV, while, weight wp represents the impact of product
term p on the fitness value. Objective = 1 means each product
term has a corresponding output nanowire in the matching, so a
valid mapping is found.

ab

bc
E

F

D

Fig. 2. Maximum-bipartite-matching (dashed lines).

Algorithm 1: Ford-Fulkerson Method [22]

//Ford-Fulkerson method for maximum flow (MBM)
Input : Flow network G' = (V', E')
Output : Maximum flow f
1: f = 0
2: while there exists an augmenting path p do
3: augment flow f along p
4: end while
5: return f

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 18, NO. 6, DECEMBER 20143 5

So far, the problem of DTLM is modeled as a combinatorial
optimization problem, or rather as an assignment problem (AP)
[31]–[35]: optimizing the pin assignment from logic variables to
input nanowires (IMV), while evaluating the IMV according to
(1) through the exact MBM evaluation (Ford-Fulkerson
method).

D. Problem Characteristics

Although the DTLM has been modeled as an AP, it is
difficult to apply the widely used effective algorithms for APs
directly due to the characteristics of the DTLM itself. For
example, the encoding of the solution (IMV) in the DTLM is
essentially an incomplete permutation, while a complete
permutation is necessary in algorithms for QAP (Quadratic
Assignment Problem) [31] or a combination of integers for TAP
(Terminal Assignment Problem) [32]. Such difference in
encoding requires problem-specific operators for the DTLM,
such as the mutation operator in MA/FA to be introduced in
section IV. In addition, the high time-complexity of quality
evaluation of candidate solutions in the DTLM is also a
challenge compared with other APs. This issue has to be
considered from the point of view of algorithmic efficiency to
design operators for the DTLM, such as the local search
operator in MA/FA to be introduced in section IV.

IV. MA/FA FOR THE DTLM

In this section, the Memetic Algorithm (MA) specialized for
the DTLM is presented. Besides incorporating successful
elements of previous effective heuristic mapping algorithm [10],
[17], the proposed MA gains pretty good balance between
quality of solution and running time in two approaches: 1)
incorporating evolutionary computation framework to enhance
the global optimization; 2) introducing approximated MBM
evaluation method [7] to reduce the running time of the whole
algorithm. The idea of introducing local search and fitness
approximation into EAs is a proven technique [36], which can
help to solve complex problems more effectively and
efficiently.

A. Framework of MA/FA

The procedure of proposed MA/FA is depicted in Algorithm
2. The Genetic Algorithm (GA) is adopted to work as the
evolutionary computation framework of the Memetic Algorithm
due to its success history on many assignment problems
[31]–[35]. The detailed design of the elementary steps of the
algorithm is introduced below.
1) Encoding

The encoding of IMV solutions used in our implementation is
straightforward. We encode the permutation (denotes a
permutation of the set M = {1, 2,…, m}) as a vector of input
nanowires, such that the value j of the i th component in the
vector indicates that input nanowire j is assigned to logic
variable i ((i) = j).

It is notable that the logic function size n is smaller than the
crossbar architecture size m in some cases, so IMV is an
incomplete permutation. In order to take advantage of the

previous crossover operators proposed previously, CX
recombination, the complete permutation is used instead of
incomplete permutation. However, only the first n components
will be decoded as IMV for the MBM-based fitness evaluation.
2) Crossover

The CX recombination operator [31] has been testified to be
an effective operator for assignment problems. It preserves the
information contained in both parents in the sense that all alleles
of the offspring are taken either from the first or from the second
parent. The operator does not perform any implicit mutation,
since an input nanowire j that is assigned to variable i in the
child is also assigned to variable i in one or both parents.

In the first phase, all input nanowires found at the same
variable in the two parents are assigned to the corresponding
variables in the offspring. Then, starting with a randomly
chosen variable with no assignment, a nanowire is randomly

G1(Uvert, Vhor, E1) Bipartite graph of crossbar architecture
G2(Uvar, Vterm, E2) Bipartite graph of logic function
N Population size
P Parents
B Offspring
t Iteration counter
f Fitness value
 Greedy strength factor
 Exact evaluation gap
Pcross Probability of crossover
Pmut Probability of mutation
Pls Probability of local search

Algorithm 2: MA/FA

//The pseudo-code of MA/FA for the DTLM
1: Pi = random permutation , i=1, 2,…, N
2: f(Pi) = Exact_MBM_Evaluation(Pi), i=1, 2,…, N
3: t = 0;
4: Repeat
5: t = t+1
6: for i = 1 to N do
7: select two parents Pj, Pk,from P randomly
8: Bi = Crossover(Pj, Pk, Pcross)
9: end for
10: for i = 1 to N do
11: Bi = Mutation (Bi, Pmut)
12: Bi = Greedy_Reassignment(Bi, Pls,)
13: end for
14: for i = 1 to N do
15: if t% == 0 then
16: f (Bi) = Exact_MBM_Evaluation(Bi)
17: else
18: f (Bi) = Approximated_MBM_Evaluation (Bi)
19: end if
20: end for
21: P = Selection_for_Survival (P, B)
22: until runtime reached or a valid mapping founded

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 18, NO. 6, DECEMBER 20143 6

chosen from the two parents. After that, additional assignments
are made to ensure that no implicit mutation occurs. Then, the
next unassigned variable to the right (in case we are at the end of
the genome, we proceed at its beginning) is processed in the
same way until all variables have been considered.
3) Mutation

Since the logic function sizes n may be smaller than or equal
to the crossbar architecture sizes m, we consider applying a
mutation operator in two cases: 1) If n<m, we will randomly
select a gene to be mutated and exchange its value with another
gene from the last n-m gens. 2) If n=m, we will randomly select
two genes and then exchange their values.
4) Selection

Selection occurs two times in the main loop of MA/FA.
Selection for reproduction is performed before a crossover
operator can be applied, which is based on a purely random
basis without bias to filter individuals, and selection for survival
is performed to reduce the population to its original size, which
is achieved by choosing the best individuals from the pool of
parents and children [31].

B. Greedy Re-assignment Local Search

It was thought that some universal local search methods, such
as the 2-opt [37] and the fast-2-opt [31] heuristics, could be
applied to the problem of DTLM. These universal local search
methods employ no problem-specific knowledge, and require
very frequent quality evaluation of the generated solutions to
gain information for guiding search, which means a large
number of runs of Ford-Fulkerson algorithm for MBM are
needed during the execution of the whole algorithm. While in
practice, the execution of Ford-Fulkerson is very
time-consuming for a moderate scale of MBM problem.

A variant of the 2-opt heuristic was tested on the DTLM
problem. In order to speed up the local search process, the
variant is based on performing the first swapping found that
increases the fitness. The experimental results were negative as
expected. The MA with the variant of the 2-opt heuristic cannot
find a valid mapping in the given runtime on most benchmark
instances.

There is a good knowledge that has been testified to be
effective on most instances of DTLM, that is, a more frequently
used variable needs more functional crosspoints. By assigning
the most frequently used variables in the product terms to the
input nanowires with the smallest number of defects, the greedy
assignment heuristic might find the feasible solution with a high
probability [10] [17]. However, there is no flexibility in such
strong greediness, resulting in poor performance even on small
scale problems as shown in Section V. C. In addition, direct
application of such strategy will make all individuals identical
solution (all individuals are the same).

Inspired by the knowledge, a new problem-specific local
search operator is designed in MA/FA, which reassigns the
input nanowires of parts of the variables via taking advantage of
the greedy information extracted from the problem instances. In
more detail, given a pin assignment (IMV), n× variables and
their corresponding n× input nanowires are randomly selected

and remarked as unvisited, where n is the number of variables
and 01 is named greedy strength factor here. Then, the
greedy assignment heuristic is applied on these selected
variables and nanowires to get a new solution (IMV). The new
local search process, which incorporates problem-specific
knowledge with stochastic evolutionary search, is named
Greedy Re-assignment Local Search (Algorithm 3).

The greedy strength factor provides a flexible control on
the randomness or greediness of the local search operator. The
randomness/greediness of the operator will decrease/increase
along with the increasing of . When =1, the whole IMV will
be re-assigned according to the greedy assignment heuristic [10],
[17], which will result in identical solution for the current
DTLM instance, therefore the operator will reach its minimum
randomness and maximum greediness.

Besides randomly selecting n× variables, a greedy selection
strategy that selects the n× most frequently used variables was
also studied. The experimental analysis showed that, with such
greedy selection strategy, the diversity of the population
degraded quickly, and the runtime of the algorithm for getting a
valid mapping was extended dramatically in most cases,
furthermore, the algorithm could not even find a valid mapping
in the given runtime on some benchmark instances.

C. MBM-oriented Fitness Evaluation

The fitness function can be defined directly from the
objective function (1):

1 1

/
n n

p p p

p p

Fitness m w w

 (2)

Where, mp and wp have been defined in Section III. C. Fitness
= 1 means each product term has a corresponding output
nanowire in the matching, so a valid mapping is found.

An appropriate weight setting can guide the optimization
algorithms to converge to the global optima (“1” for our fitness
function) faster. As suggested in [30], the value of weight wp is
related to the number of variables vp in product term p, that is, it
is harder to map a produce term p whose vp is larger. Therefore,

Algorithm 3: Greedy-Re-assignment-Local-Search

//Greedy re-assignment from logic variables to input
nanowires IMV
Input : Pin assignment IMV
Output : New pin assignment IMV
1: randomly select n× variables and their corresponding
n× input nanowires, mark them unvisited
2: while there are unvisited logic variables do
3: find the unvisited variable v with maximum degree
4: find the unvisited input nanowire i with maximum
degree
5: IMV[v] = i
6: mark v and i as visited
7: end while
8: return IMV

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 18, NO. 6, DECEMBER 20143 7

wp are expressed as vp
k and k is set experimentally. Fig. 3(a) to

(f) show the influence of the value of k on the performance of
MA/FA on two randomly selected benchmark instances with n =
48 and m = 60. They are statistic mean values from 30
independent runs for each instance. Fig. 3(a) and (d) show the
evolutionary curves of fitness value with runtime (limited to
90s). In order to see the differences clearly, they are enlarged for
the last 10s as shown in Fig. 3(b) and (e). Fig. 3(c) and (f) show
the evolutionary curves of success rate (the probability of a
valid mapping is found) with runtime. Although the figures
show that larger k can accelerate MA/FA converge to a higher
fitness value, what we really care about is the success rate rather
than the fitness value, so k is set as 4 for MA/FA as shown in
Fig. 3(c) and (f). Similar experiments results are obtained for
other EAs and other benchmark instances in this paper, and k =
4 is among the best values that can be chosen, so k is fixed at 4
for all the EAs in the following experiments.

D. MBM-oriented Fitness Approximation

The problem of DTLM is an emerging application that we are
facing highly integrated nanoelectronic architectures. It is
possible that more than millions of crossbar-based arrays in a
nano-chip need to be configured in the future. Therefore, the
runtime is one of the critical factors for this application from a
practical perspective. In this section, an approximated fitness
evaluation strategy is introduced to reduce the runtime caused
by the high time-complexity of the exact MBM evaluation. This
is a common technique in surrogate-assisted evolutionary
algorithms.

Surrogate models [38] (e. g. polynomial models, neural
networks, support vector machines) are often used for
computationally expensive optimization or high-dimensional
optimization, and the models need to be pre-trained offline or

learned/updated online resulting in extra time consumption.
Therefore, these conventional models cannot be applied to this
application. Instead of approximation models, we introduce an
existing linear-time greedy algorithm [7] (Algorithm 4) to
provide approximated MBM evaluation within substantially
less runtime. The approximation method does not need to be
pre-trained or learned online, thus it is well suited for the DTLM
from a practical point of view.
 Given an undirected bipartite graph G = (U, V, E) to represent
the relationships between the product terms and the output
nanowires. Let U be the set of product terms, and V the set of

(a) (b) (c)

(d) (e) (f)
Fig. 3. The influence of value of k on the performance of the MA/FA on two randomly selected benchmark instances (No. 7 and 12) with n=48 and m=60.

Algorithm 4: Approximated-Matching [7]

//Approximated algorithm for matching product terms to
output nanowires OMV
Input : Bipartite graph G = (U, V, E)
Output : Pin assignment OMV
1: do {
2: p = unmapped product term in U with largest fan-in in
G
3: do {
4: o = nanowire randomly selected from unused output
nanowires in V
5: if p can be mapped to nanowire o then
6: OMV[p] = o
7: mark p as mapped
8: mark o as used
9: end if
10: } while (p unmapped)
11: } while (there are unmapped p in U)
12: return OMV

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 18, NO. 6, DECEMBER 20143 8

output nanowires. Let p represent a product term in U, and o an
output nanowire in V. The approximated MBM algorithm
(Algorithm 4) picks the p terms in decreasing order of their
fan-in size in G (because larger fan-in product terms are harder
to map), and chooses the o terms randomly. When the number of
functional junctions per nanowire is bound to a constant, the
number of wires tested in line 5 for each product term p is a
constant. Consequently, this algorithm runs in linear time,
O(|U|).

In MA/FA, both the exact and approximated algorithms for
MBM are used to evaluate the fitness of candidate solutions in
order to balance the accuracy and speed. Specifically, we use
single exact MBM evaluation for the population in every
iterations, where is called exact evaluation gap here. The
influence of the value of will be tested in Section V as
suggested in [39].

E. Accuracy of the Approximated-Matching

A reasonable evaluation method is proposed for the accuracy
of Approximated-Matching. Give a bipartite graph G(U, V, E),
the measure Accur1 can be defined as follows:

|M1M2|/|M1|×100% (3)
While the measure Accur2 is can be defined as:

|M1M2|/|M2|×100% (4)
Where M1 (the real MBM) and M2 are the matchings found by

the Ford-Fulkerson Method and Approximated-Matching
respectively. Accur1 and Accur2 represent how the intersection
M1M2 overlaps with M1 and M2 respectively. Since a strict
theoretical analysis of the accuracy is very hard and out of the
scope of the paper, we test the accuracy of
Approximated-Matching on n = 48 benchmark instances, where

IMVs are randomly generated one hundred times to obtain
statistic mean values. Fig. 4(a) and (b) show the results of
Accur1 and Accur2. High Accur1 (above 80%) means that the
most of matching M1 can be obtained by
Approximated-Matching, while high Accur2 (above 85%)
means that the most of matching M2 are existed in the real MBM
or M2 is a approximated subset of M1. Therefore,
Approximated-Matching can prove good approximations to the
real MBMs.

MA/FA can avoid the false optima in the following three
aspects: 1) The good accuracy of Approximated-Matching can
relax the problem of false optima, 2) MA/FA uses the idea from
generation-based evolution control [39] which can guarantee
the correct convergence when the approximate fitness model
has false optima, 3) The problem of DTLM is a combinatorial
search problem in nature, thus what we are really concerned
with are the global optima (when fitness = 1) which are always
true. If the approximated evaluation gets a maximum fitness
value ‘1’, a valid mapping is searched.

V. EXPERIMENTAL STUDIES

A. Benchmark Instances

As far as we know, no benchmark instances have been
specialized for the DTLM, so we randomly generate a large set
of benchmark graphs for logic functions and crossbar
architectures as previous work did [10], [29], [30]. All the
benchmark graphs used in the simulation in this paper and
MA/FA source codes with supporting documents are available
at: http://home.ustc.edu.cn/~yuanbo/ MAFAforDTLM.rar.

For benchmark graphs of crossbar architectures, we set
different sizes: m = 16, 24, 60, 64 and defect density (1-|E1|/m2):
p = 15% (the worst case value [6]) and uniform defect
distribution (which is the most common assumption in
nanoelectronics [7]–[9], [11]). For ease of recording and
comparison, we give such a name rule, C_nA1_pB1_C1, where
A1 is the size of the graph, B1 is the defect density and C1 is the
sequence order in the benchmark set with the same attributes
(both m and p). For example, graph C_m60_p15%_5 means that
the graph is of size 60, defect density 15% and it is the 15th
graph in the benchmark set with the same attributes m = 60 and p
= 15%.

For benchmark graphs of logic functions, we set different
sizes: n = 16, 24, 48 and average logic density (|E2|/n2): p = 40%
(a typical value [29]) and uniform edge distribution. For ease of
recording and comparison, we give such a naming rule,
F_nA2_pB2_C2, where A2 is the size of the graph, B2 is the logic
density and C2 is the sequence order in the benchmark set with
the same attributes (both n and p). For example, graph
F_n48_p40%_3 means that the graph is of size 48, logic density
40% and it is the third graph in the benchmark set with the same
attributes n = 48 and p = 40%.

B. Parameters Setting

The population size N is set N = 40 according to the problem
scale, since the computational complexity of the fitness does not

Fig. 4. Accuracy of Approximated-Matching on benchmark instances a)
n=48 and m=60 and b) n=48 and m=64.

http://home.ustc.edu.cn/~yuanbo/%20MAFAforDTLM.rar

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 18, NO. 6, DECEMBER 20143 9

allow evolving much larger populations in reasonable time. A
large greedy strength factor will weaken the stochastic nature
of evolutionary algorithm, thus we set = 0.1 empirically. We
set optimal parameters Pcross = 0.8, Pmut = 0.2 and Pls = 0.8
experimentally by cross validation.

In addition, MA/FA uses the idea from generation-based
evolution control [39]. In order to test the influence of exact
evaluation gap on the performance of MA/FA, we record the
average runtime (in seconds) of the algorithms if they find a
valid mapping on n = 48 benchmark instances. Thirty
independent runs are executed to obtain statistic mean values. A
few different values of exact evaluation gap are tested as
shown in Fig. 5(a) and (b). The experimental results show that
MA/FA have better performance on = 5 and 10, and the
sensitivity is low between = 5 and 10. Although 100%
mapping success rate can be obtained in most cases, higher
success rates can be obtained by setting = 10 on some hard
problems (such as No. 7, 12 and 18 in Fig. 5(a)), thus is fixed
at 10 in the paper.

All the experiments in this paper are performed on 2.66GHz
Intel Core 2 Quad processors Q6700 platform with 6G memory.
However, all tested algorithms are implemented as monolithic
processes and no CPU core parallelism is exploited.

C. Comparisons with the State-of-the-art Algorithms

The heuristic mapping algorithm (HMA) [17] and recursive
mapping algorithm (RMA) [11] are two representative
algorithms for the DTLM whose performances have been
testified successfully. Therefore, they are used for comparison
in this paper. As stated above, they can only deal with small

scale problems, so we set two experiments in the comparisons, n
= m = 16 and n = m = 24.

The runtime of the three algorithms (HMA, RMA, and
MA/FA) is limited to 60s and 90s for n = m = 16 and n = m = 24
respectively. All the algorithms are run independently for thirty
times on each benchmark instance. For different problem scales,
we randomly select twenty benchmark instances (mapping logic
graphs to crossbar graphs) for comprehensive comparison. It is
notable that the heuristic mapping algorithm is a deterministic
algorithm, so the same result will be obtained after being run
multiple times. Therefore, the success rate will be either 0% or

TABLE I
EXPERIMENTAL RESULTS OF HMA [17], RMA [11] AND MA/FA ON

n=16, m=16 BENCHMARK INSTANCES

No.
HMA [17] RMA [11] MA/FA

Psucc Avg Psucc Avg Psucc Avg
1 0% NA 10% 7.328 100% 0.013
2 100% 0.001 70% 8.36 100% 0.002
3 100% 0.002 60% 13.608 100% 0.002
4 100% 0.015 37% 6.344 100% 0.004
5 100% 0.001 33% 11.222 100% 0.01
6 100% 0.004 27% 12.348 100% 0.003
7 100% 0.001 20% 15.732 100% 0.003
8 100% 0.006 13% 31.433 100% 0.031
9 0% NA 17% 21.54 100% 0.046
10 0% NA 53% 12.73 100% 0.003
11 100% 0.003 10% 3.944 100% 0.025
12 0% 0.001 37% 17.298 100% 0.007
13 100% NA 37% 25.357 100% 0.004
14 100% 0.024 17% 21.445 100% 0.007
15 100% 0.009 47% 11.287 100% 0.002
16 100% 0.001 53% 8.586 100% 0.003
17 0% NA 20% 17.638 100% 0.01
18 0% NA 73% 13.089 100% 0.003
19 100% 0.001 73% 4.504 100% 0.002
20 100% 0.001 73% 10.462 100% 0.002

TABLE II

EXPERIMENTAL RESULTS OF HMA [17], RMA [11] AND MA/FA ON

n=24, m=24 BENCHMARK INSTANCES

No.
HMA [17] RMA [11] MA/FA

Psucc Avg Psucc Avg Psucc Avg
1 0% NA 0% NA 100% 1.487
2 100% 0.034 3% 10.574 100% 0.018
3 0% NA 0% NA 100% 0.266
4 0% NA 0% NA 100% 0.238
5 0% NA 0% NA 100% 0.904
6 100% 0.033 0% NA 100% 0.217
7 0% NA 0% NA 100% 2.357
8 0% NA 0% NA 100% 1.277
9 0% NA 0% NA 100% 2.268
10 0% NA 0% NA 100% 0.588
11 0% NA 0% NA 100% 0.74
12 0% NA 0% NA 100% 0.179
13 0% NA 0% NA 100% 0.914
14 0% NA 0% NA 100% 0.211
15 0% NA 3% 38.213 100% 0.087
16 0% NA 0% NA 100% 0.268
17 0% NA 0% NA 100% 0.173
18 0% NA 0% NA 100% 0.611
19 0% NA 0% NA 100% 4.199
20 0% NA 0% NA 100% 5.776

Fig. 5. The influence of exact evaluation gap in MA/FA on benchmark
instances a) n=48 and m=60 and b) n=48 and m=64.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 18, NO. 6, DECEMBER 20143 10

100%. Table I and II record the experimental results of different
algorithms including:
 Psucc: the success rate of the algorithms, i.e., the fraction

of the thirty runs that found a valid mapping.
 Avg: the average runtime (in seconds) of the algorithms if

they find a valid mapping in thirty runs.
Table I shows the experimental results of HMA, RMA and

MA/FA on the benchmark instances of n = 16, m = 16. It can
been seen that: 1) HMA has success rate of 100% on more than
half of the test instances (14 out of 20), while has success rate of
0% on other 6 test instances. The runtime of HMA is very short,
this is due to that HMA uses the greedy pin assignment heuristic

and the incomplete bipartite graph construction strategy. 2)
RMA can find valid mappings on all instances, but it is very
time-consuming compared with the other algorithms, this is due
to the nature of recursion it adopts. Besides, RMA has low
success rate (<50%) on most test instances (13 out of 20),
although it was granted a long preset runtime (60s). 3) MA/FA
can achieve success rate of 100% on all test instances with very
short runtime, even on the instances that are hard for HMA and
RMA (such as No. 1, 9, and 17).

TABLE III
EXPERIMENTAL RESULTS OF HMA [17], GA, MA AND MA/FA ON n=48, m=60 BENCHMARK INSTANCES

No.
HMA GA MA MA/FA

Psucc Avg Psucc Avg Std Psucc Avg Std Psucc Avg Std
1 0% NA 100% 15.36 4.25 100% 6.06 1.55 100% 2.95 0.89
2 100% 0.12 100% 5.65 2.19 100% 1.94 0.69 100% 1.89 0.25
3 0% NA 100% 6.37 2.66 100% 2.36 0.4 100% 1.98 0.08
4 0% NA 100% 19.97 5.32 100% 8.79 2.33 100% 4.6 1.98
5 0% NA 100% 22.96 6.07 100% 10.51 2.66 100% 5.54 1.29
6 0% NA 100% 27.66 9.97 100% 10.19 2.31 100% 4.97 1.63
7 0% NA 67% 58.33 16.55 93% 50.09 14.16 90% 30.04 16.51
8 0% NA 100% 8.39 2.08 100% 3.22 1.15 100% 2.2 0.48
9 0% NA 100% 13.42 4.02 100% 4.04 1.1 100% 2.27 0.5
10 0% NA 100% 18.72 4.58 100% 8.11 2.6 100% 4.45 1.53
11 0% NA 77% 57.61 13.06 100% 33.69 11.95 100% 22.7 12.38
12 0% NA 30% 64.98 9.39 57% 61.55 13.24 70% 46.09 18.48
13 0% NA 100% 11.32 2.61 100% 4.65 1.55 100% 2.55 0.75
14 0% NA 100% 27.18 7.38 100% 9.7 3.49 100% 4.46 1.03
15 0% NA 97% 43.22 15.03 100% 19.76 6.59 100% 13.3 6.71
16 0% NA 97% 40.29 11.63 100% 24.13 13.19 100% 11.62 5.47
17 0% NA 100% 28.05 8.43 100% 10.02 1.81 100% 5.66 2.19
18 0% NA 93% 54.72 15.56 100% 42.46 11.67 100% 24.5 13.41
19 100% 0.16 100% 8.2 2.29 100% 2.44 0.91 100% 1.96 0.05
20 0% NA 90% 48.3 16.46 100% 22.61 5.56 100% 10.63 4.44

 TABLE IV

EXPERIMENTAL RESULTS OF HMA [17], GA, MA AND MA/FA ON n=48, m=64 BENCHMARK INSTANCES

No.
HMA GA MA MA/FA

Psucc Avg Psucc Avg Std Psucc Avg Std Psucc Avg Std
1 0% NA 100% 22.88 5.17 100% 8.61 2.41 100% 5.52 1.64
2 0% NA 100% 13.3 3.96 100% 6.02 2.69 100% 3.29 1.15
3 0% NA 100% 12.51 3.21 100% 4.73 1.33 100% 2.64 0.82
4 0% NA 100% 14.27 3.61 100% 4.9 1.39 100% 2.73 0.81
5 0% NA 100% 12.5 3.91 100% 5.23 1.81 100% 2.64 0.76
6 100% 0.05 100% 5.45 1.9 100% 2.37 0.73 100% 2.03 0.24
7 0% NA 100% 10.13 2.55 100% 3.18 0.76 100% 2.1 0.06
8 100% 0.15 100% 10.65 2.91 100% 3.4 1.12 100% 2.14 0.13
9 0% NA 100% 11.17 3.03 100% 4.1 0.85 100% 2.25 0.38
10 100% 0.16 100% 15.84 4.18 100% 6.54 1.6 100% 3.3 1.14
11 0% NA 100% 11.61 3.87 100% 3.65 1.14 100% 2.21 0.19
12 0% NA 100% 34.22 8.51 100% 15.25 2.95 100% 7.12 1.88
13 0% NA 100% 16.42 3.62 100% 6.15 1.89 100% 2.97 0.97
14 0% NA 100% 33.17 11.84 100% 14.78 3.29 100% 8.47 2.26
15 0% NA 100% 17.08 5.63 100% 8.38 2.28 100% 4.46 1.48
16 0% NA 100% 5.88 2.54 100% 2.45 0.79 100% 2.12 0.09
17 0% NA 100% 18.96 5.41 100% 6.03 1.87 100% 3.16 0.93
18 0% NA 100% 4.48 2.13 100% 1.69 0.8 100% 1.92 0.49
19 0% NA 100% 26.98 6.21 100% 10.35 3.36 100% 4.25 1.29
20 0% NA 100% 11.8 3.9 100% 4.03 1.51 100% 2.38 0.41

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 18, NO. 6, DECEMBER 20143 11

Table II shows the experimental results of HMA, RMA, and
MA/FA on the benchmark instances of n = 24, m = 24. It can be
seen that: 1) HMA works on only two test instances (No. 2 and
6) and the runtime is short (0.05s). 2) Granted a long runtime
(90s), RMA can solve only two test instances (No. 2 and 15)
with quite low success rate (3% in both cases) and long runtime
(10.574s and 38.213s). 3) MA/FA can achieve success rate of
100% on all test instances with very short runtime
(0.018s5.776s).

The above experiment results reveal that the recursive
mapping algorithm [11] is very time-consuming with low
success rates even on n = m = 16 problems, while the heuristic

mapping algorithm [17] has a fairly poor performance on
benchmark instances of n=m=24 although it is very fast. MA/FA
can solve all benchmark instances efficiently and effectively.

D. Effectiveness of the Greedy Assignment Local Search and
Fitness Approximation

Because the runtime of the recursive algorithm is
prohibitively long, we only test the heuristic mapping algorithm
for large scale problems. In addition, two other EAs are added
to the comparisons. One is a MA following the flow of MA/FA
without the Fitness Approximation operation, that is, =1 in
MA/FA. Another EA is the GA following the flow of the MA

Fig. 6. The evolutionary curves of mapping success rate with runtime for the GA, the MA and MA/FA on n=48, m=60 benchmark instances

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 18, NO. 6, DECEMBER 20143 12

without the Greedy Re-assignment Local Search. With the

comparison with these two algorithms, the effectiveness of
Greedy Re-assignment Local Search and Fitness
Approximation can be investigated.

The parameters of MA/FA are set as in the previous
experiments. The parameters of the MA are set as the same as
MA/FA, except for value of = 1. The parameters N and Pcross
of the GA are set as the same as other EAs, and we set Pmut = 0.8
for the GA experimentally by cross validation.

Because MA/FA uses a hybrid fitness evaluation strategy, so
we give a pre-determined maximum runtime for the algorithms.
The runtime of the three EAs is limited to 90s and all the

algorithms are run independently for thirty times on each

benchmark instances. For different problem sizes, we randomly
select twenty benchmark instances (mapping logic graphs to
crossbar graphs) for comprehensive comparison. Table III and
IV show the experimental results of different algorithms (HMA,
the GA, the MA and MA/FA) including:
 Psucc: the success rate of the algorithms, i.e., the fraction

of the thirty runs where they find a valid mapping.
 Avg: the average runtime (in seconds) of the algorithms if

they find a valid mapping in thirty runs.
 Std: the standard deviation of the runtime (in seconds) of

the algorithms if they find a valid mapping in thirty runs.

Fig. 7. The evolutionary curves of mapping success rate with runtime for the GA, the MA and MA/FA on n=48, m=64 benchmark instances

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 18, NO. 6, DECEMBER 20143 13

We perform statistical tests for the runtimes of paired EAs,
GA vs. MA, GA vs. MA/FA and MA vs. MA/FA, on each single
benchmark instance. In particular, a two-tailed t-test is
conducted with a null hypothesis stating that there is no
difference between two algorithms in comparison. The null
hypothesis is rejected if the p-value is smaller than the
significance level = 0.05. The runtime of the algorithm which
is statistically shorter than both other EAs will be highlighted in
bold.

Table III shows the experimental results of HMA, the GA, the
MA and MA/FA on the benchmark instances of n = 48, m = 60.
It can be seen that: 1) HMA only works on two test instances
(No. 2 and 19) with short runtime (0.12s and 0.16s). 2) The GA
has success rate of 100% on 13 test instances, and low success
rate (<50%) on No. 12. 3) Compared to the GA, the MA
improves the success rate significantly on test instances No. 7,
11, and 12. Besides, the runtime is reduced to approximately 1/2
to 1/3 on most instances (No. 16, 810, 1317, 19, 20). The
comparison (the GA vs. the MA) demonstrates the advantages
of introducing the Greedy Re-assignment Local Search. 4)
Compared to the MA, the runtime of MA/FA is reduced further
on most test instances (18 out of 20) as highlighted in bold.
Also, MA/FA maintains as higher success rate as the MA,
except on test instances No. 7, where the success rate is reduced
slightly (3%). The comparison (the MA vs. MA/FA)
demonstrates the advantages of introducing the Fitness
Approximation for MBM evaluation.

Table IV shows the experimental results of HMA, the GA,
the MA and MA/FA on the benchmark instances of n = 48, m =
60. It can be seen that: 1) HMA works only on three test
instances (No. 6, 8, and 10) with short runtime (0.05s, 0.15s,
and 0.16s), while the EAs have success rate of 100% on all test
instances. 2) Compared to the GA, the runtime of the MA is
reduced to approximately 1/2 to 1/3 on all test instances. 3)
Compared to the MA, the runtime of MA/FA is reduced further
on almost all test instances (19 out of 20) as highlighted in bold.
The comparisons (the GA vs. the MA, the MA vs. MA/FA)
demonstrate the advantages of introducing the Greedy
Re-assignment Local Search and the Fitness Approximation
Strategy.

Given fixed n and p, the density of valid solution increases
with the crossbar size m as suggested in [40], therefore the
success rate of mapping is improved and the runtime is reduced
as shown in Table III and IV. In addition, the accuracy of the
approximated MBM evaluation also increases along with the
crossbar size m as shown in Fig. 4, because a matching of
approximated maximum cardinality is easier to find in a denser
graph, therefore the performance of MA/FA can be further
improved.

Fig. 6 and 7 show the evolutionary curves of mapping success
rate with runtime for the GA, the MA and MA/FA on the
benchmark instances of n = 48, m = 60 and 64. Good
performance of the MAs, especially MA/FA, can be observed
obviously.

VI. CONCLUSION

In this paper, a new framework to solve the DTLM via
modeling the problem as a combinatorial optimization problem
is presented. A new Memetic Algorithm is proposed to
implement the framework, in which a Greedy Re-assignment
Local Search operator is designed to make good use of the
domain knowledge and the information extracted from the
problem instances, a Fitness Approximation method is adopted
to reduce the time consumption in fitness evaluation operation.
In particular, a hybrid fitness evaluation strategy is presented,
which incorporates approximated fitness evaluation with the
exact fitness evaluation to get a proper balance between
accuracy and time efficiency of fitness evaluation. The
performance of proposed methods are testified and evaluated on
a large set of benchmark instances of various scales. Experiment
results show that the Greedy Re-assignment Local Search can
help algorithm to find optimal solution with consumption of
lower computational resources, while the hybrid fitness
evaluation strategy with Fitness Approximation can reduce the
time consumption for fitness evaluation dramatically. It is also
obviously observed that the proposed MA/FA algorithm has the
advantage on getting good balance between effectiveness and
efficiency on various DLTM problem instances.

ACKNOWLEDGMENT

This work was supported by the National Natural Science
Foundation of China (No. 61071024, 61175065, 61110312, and
61329302), the European Union 7th Framework Program (No
247619), the National Natural Science Foundation of Anhui
Province (No. 1108085J16), the Chinese Academy of Sciences
(CAS) Fellowship for Young International Scientists (No.
2011Y1GB01) and the Special Financial Grant (No.
201104329) from the China Postdoctoral Science Foundation.
The work of Xin Yao was also supported by the Royal Society
Wolfson Research Merit Award.

REFERENCES

[1] G. Bourianoff, J. E. Brewer, R. Cavin, J. A. Hutchby, and V. Zhirnov,
“Boolean logic and alternative information-processing devices,”
Computer, vol. 41, no. 5, pp. 38-46, May 2008.

[2] R. Cavin, J. A. Hutchby, V. Zhirnov, J. E. Brewer, and G. Bourianoff,
“Emerging research architectures”, Computer, vol. 41, no. 5, pp. 33-37,
May 2008.

[3] H. Yan, H. S. Choe, SW. Nam, Y. Hu, S. Das, J. F. Klemic, J. C.
Ellenbogen, and C. M. Lieber, “Programmable nanowire circuits for
nanoprocessors,” Nature, vol. 470, pp. 240-244, Feb. 2011.

[4] W. Lu and C. M. Lieber, “Nanoelectronics from the bottom up,” Nat.
Mater., vol. 6, pp. 841-850, 2007.

[5] Y. Chen, G. -Y. Jung, D. A. A. Ohlberg, X. M. Li, D. R. Stewart, J. O.
Jeppesen, K. A. Nielsen, J. F. Stoddart, and R. S. Williams, “Nanoscale
molecular-switch crossbar circuits,” Nanotechnology, vol. 14, no. 4, pp.
462-468, 2003.

[6] M. Haselman and S. Hauck, “The future of integrated circuits: a survey of
nanoelectronics,” Proc. IEEE, vol. 98, no. 1, pp. 11-38, Jan. 2010.

[7] A. DeHon and H. Naeimi, “Seven strategies for tolerating highly
defective fabrication,” IEEE Des. Test Comput., vol.22, no.4, pp.
306-315, 2005.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 18, NO. 6, DECEMBER 20143 14

[8] T. Hogg and G. Snider, “Defect-tolerant adder circuits with nanoscale
crossbars,” IEEE Trans. Nanotechnol., vol. 5, no. 2, pp. 97-100, Mar.
2006.

[9] T. Hogg and G. Snider, “Defect-tolerant logic with nanoscale crossbar
circuits,” J. Electr. Testing: Theor. Appls, vol. 23, no. 2-3, pp. 117-129,
2007.

[10] Y. Yellambalase and M. Choi, “Cost-driven repair optimization of
reconfigurable nanowire crossbar systems with clustered defects,” J. Syst.
Archit., vol. 54, no. 8, pp. 729-741, Aug. 2008.

[11] W. Rao, A. Orailoglu, and R. Karri, “Logic mapping in crossbar-based
nanoarchitectures,” IEEE Des. Test Comput., vol. 26, no. 1, pp. 68-76,
Jan. 2009.

[12] M. B. Tahoori, “Application-Independent Defect Tolerance of
Reconfigurable Nanoarchitectures,” ACM J. Emerging Technol. Comput.
Syst., vol. 2, no. 3, pp. 197-218, Jul. 2005.

[13] A. Al-Yamani, S. Ramsundar, and D. K. Pradham, “A Defect Tolerance
Scheme for Nanotechnology Circuits,” IEEE Trans. Circ. Syst. I, Regul.
Pap., vol. 54, no. 11, pp. 2402-2409, Nov. 2007.

[14] M. S. Garey and D. S. Johnson, Computers and Intractibility: A Guide to
NP-Completeness, Freeman, New York, 1979.

[15] J.R. Ullmann, “An Algorithm for Subgraph Isomorphism,” J. Assoc.
Comput. Mach., vol. 23, no. 1, pp. 31-42, Jan. 1976.

[16] L. P. Cordella, P. Foggia, C. Sansone and M. Vento, “A (sub)graph
isomorphism algorithm for matching large graphs,” IEEE Trans. Pattern.
Anal. Mach. Intell., vol. 26, no. 10, pp. 1367-1372, Oct. 2004.

[17] M. O. Simsir, S. Cadamibi, F. Ivancic, M. Roetteler, and N. K. Jha, “A
hybrid nano-CMOS architecture for defect and fault tolerance,” ACM J.
Emerging Technol. Comput. Syst., vol. 5, no. 3, Article 14, Aug. 2009.

[18] S. Goren, H. F. Ugurdag, and O. Palaz, “Defect-aware nanocrossbar logic
mapping through matrix canonization using two-dimensional radix sort,”
ACM J. Emerging Technol. Comput. Syst., vol. 7, no. 3, Article 12, Aug.
2011.

[19] N. Krasnogor and J. Smith, “A tutorial for competent memetic
algorithms: Model, taxonomy, and design issues,” IEEE Trans. Evol.
Comput., vol. 9, no. 5, pp. 474-488, Oct. 2005.

[20] X. S. Chen, Y. S. Ong, M. H. Lim, and K. C. Tan, “A Multi-Facet Survey
on Memetic Computation,” IEEE Trans. Evol. Comput.,, vol. 15, no. 5,
pp. 591-607, Oct. 2011.

[21] M. Tang and X. Yao, “A memetic algorithm for VLSI floorplanning”,
IEEE Trans. Syst., Man, Cybern. Part B: Cybern., vol. 37, no. 1, pp.
62-69, Feb. 2007.

[22] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to
algorithms. MIT press, 2001.

[23] DeHon, “Nanowire-based programmable architectures,” ACM J.
Emerging Technol. Comput. Syst., vol. 1, no. 2, pp. 109-162, Jul. 2005.

[24] J. Dai, L. Wang, and F. Jain, “Analysis of defect tolerance in molecular
crossbar electronics,” IEEE Trans. VLSI Syst., vol. 17, no. 4, pp. 529-540,
Apr. 2009.

[25] M. Crocker, X. S. Hu, and M. Niemier, “Defects and faults in QCA-based
PLAs,” ACM J. Emerging Technol. Comput. Syst., vol. 5, no. 2, Article 8,
Jul. 2009.

[26] E. M. Luks, “Isomorphism of Graphs of Bounded Valence can be Tested
in Polynomial Time,” J. Computer System Science, pp. 42-65, 1982.

[27] J. He and X. Yao, “Maximum Cardinality Matching by Evolutionary
Algorithms,” In Proceedings of the 2002 UK Workshop on
Computational Intelligence, pp.53-60, Sep. 2002.

[28] Y. Zheng and C. Huang, “Defect-aware logic mapping for
nanowire-based programmable logic arrays via satisfiability,” In
Proceedings of the Conference on Design Automation and Test in
Europe. pp. 1279-1283, Apr. 2009.

[29] C. Tune and M. B. Tahoori, “Variation Tolerant Logic Mapping for
Crossbar Array Nano Architectures,” In Proc. 15th Asia and South
Pacific Design Automation Conference, pp. 858-860, Jan. 2010.

[30] B. Yuan and B. Li, “Coverage optimization for defect-tolerant logic
mapping on nanoelectronic crossbar architectures,” J. Comput. Sci.
Technol., vol. 27, no. 5, pp. 979-988, Sept. 2012.

[31] P. Merz and F. Bernd, “Fitness landscape analysis and memetic
algorithms for the quadratic assignment problem,” IEEE Trans. Evol.
Comput., vol.4, no.4, pp. 337-352, Nov. 2000.

[32] S. Salcedo-Sanz and X. Yao, “A hybrid hopfield network-genetic
algorithm approach for the terminal assignment problem,” IEEE Trans.

Syst., Man, Cybern. Part B: Cybern., vol. 34, no. 6, pp. 2343-2353, Dec.
2004.

[33] S. Salcedo-Sanz, Y. Xu and X. Yao, “Hybrid meta-heuristics algorithms
for task assignment in heterogeneous computing systems,” Comput.
Oper. Res., vol. 33, no. 3, pp. 820-835, 2006.

[34] H. Lau, T. M. Chan and W. T. Tsui, “Item-location assignment using
fuzzy logic guided genetic algorithms,” IEEE Trans. Evol. Comput., vol.
12, no. 6, pp. 765-780, Dec. 2008.

[35] C. F. T. Soares, A. C. de Mesquita Filho, and A. Petraglia, “Optimizing
capacitance ratio assignment for low-sensitivity SC filter
implementation,” IEEE Trans. Evol. Comput., vol. 14, no. 3, pp.
375-380, Jun. 2010.

[36] K.-H. Liang, X. Yao, and C. Newton, “Evolutionary search of
approximated N-dimensional landscapes,” Int. J. Knowledge-Based
Intell. Eng. Syst., vol. 4, no. 3, pp. 172-183, Jul. 2000.

[37] E. S. Buffa, G. C. Armour, and T. E. Vollmann, “Allocating facilities with
CRAFT,” Harvard Business Review, vol. 42, pp. 136-158, Mar. 1964.

[38] Y. Jin, “A comprehensive survey of fitness approximation in evolutionary
computation,” Soft Computing, vol. 9, no.1, pp. 3-12, 2005.

[39] Y. Jin, M. Olhofer, and B. Sendhoff, “A framework for evolutionary
optimization with approximate fitness functions,” IEEE Trans. Evol.
Comput., vol. 6, no. 5, pp. 481-494, Oct. 2002.

[40] Y. Su and W. Rao, “Runtime analysis for defect-tolerant logic mapping
on nanoscale crossbar architectures,” In Proceedings of the IEEE/ACM
International Symposium on Nanoscale Architectures, pp. 75-78, Jul.
2009

[41] Bo Yuan, Bin Li, Thomas Weise, and Xin Yao, “A New Memetic
Algorithm with Fitness Approximation for the Defect-Tolerant Logic
Mapping in Crossbar-based Nano-architectures,” IEEE Transactions on
Evolutionary Computation (IEEE-EC), vol. 18, no. 6, pp. 846-849,

Decenber 2014, doi: 10.1109/TEVC.2013.2288779

Bo Yuan received the B.S. degree in electronic
information science and technology from University of
Science and Technology of China (USTC), China, in
2009. He is currently pursuing the Ph.D. degree in
electronic science and technology from USTC.
Between 2012- 2013, he was an exchange Ph. D. student
with the Centre of Excellence for Research in
Computational Intelligence and Applications
(CERCIA), School of Computer Science, University of
Birmingham, UK. His current research interests include

computational intelligence, electronic design automation, graph theory and
machine learning.

Xin Yao (M’91—SM’96—F’03) is a Chair (Professor)
of Computer Science and the Director of CERCIA (the
Centre of Excellence for Research in Computational
Intelligence and Applications), University of
Birmingham, UK. He is an IEEE Fellow and a
Distinguished Lecturer of IEEE Computational
Intelligence Society (CIS). His work won the 2001 IEEE
Donald G. Fink Prize Paper Award, 2010 IEEE
Transactions on Evolutionary Computation
Outstanding Paper Award, 2010 BT Gordon Radley

Award for Best Author of Innovation (Finalist), 2011 IEEE Transactions on
Neural Networks Outstanding Paper Award, and many other best paper awards
at conferences. He won the prestigious Royal Society Wolfson Research Merit
Award in 2012 and was selected to receive the 2013 IEEE CIS Evolutionary
Computation Pioneer Award. He was the Editor-in-Chief (2003- 08) of IEEE
Transactions on Evolutionary Computation. His major research interests
include evolutionary computation and ensemble learning. He has more than
400 refereed publications in international journals and conferences.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 18, NO. 6, DECEMBER 20143 15

Bin Li (M’07) received the B.S. degree from Hefei
University of Technology, Hefei, China, in 1992, the
M.Sc. degree from Institute of Plasma Physics, China
Academy of Science, Hefei, China, in 1995, and the
Ph.D. degree from University of Science and
Technology of China (USTC), China in 2001. He is
currently a professor with the School of Information
Science and Technology, USTC, Hefei, China. He has
authored and co-authored more than 40 refereed
publications. His major research interests include

evolutionary computation, memetic algorithms, pattern recognition, and
real-world applications. Dr. Li is the Founding Chair of IEEE CIS Hefei
Chapter, Counselor of IEEE USTC Student Branch, senior member of Chinese
Institute of Electronics (CIE), member of the Technical Committee of
Electronic Circuits and Systems Section of CIE.

Thomas Weise (M'10) received the Diplom
Informatiker (equivalent to M.Sc.) degree from the
Department of Computer Science, Chemnitz University
of Technology, Chemnitz, Germany, in 2005, and the
Ph.D. degree at the Distributed Systems Group of the
Fachbereich Elektrotechnik and Informatik, University
of Kassel, Kassel, Germany in 2009. He then took a
position post-doctoral researcher at the School of
Computer Science and Technology, University of
Science and Technology of China (USTC), Hefei,

China. He now is Associate Professor at the USTC-Birmingham Joint Research
Institute in Intelligent Computation and Its Applications (UBRI) which is part
of the same school. His major research interests include the Traveling Salesman
Problem, planning for logistics applications, Evolutionary Computation,
Genetic Programming, and real-world applications of optimization algorithms.
His experience ranges from applying GP to distributed systems and multi-agent
systems, efficient web service composition for Service Oriented Architectures,
to solving large-scale real-world vehicle routing problems for multimodal
logistics and transportation. Besides being the author/co-author of over 60
refereed publications, Dr. Weise also authors the electronic book Global
Optimization Algorithms -- Theory and Application which is freely available at
his website (http://www.it-weise.de/).

This is a preview version of paper [41]. You can read the whole piece in the journal.
Copyright © IEEE.

This paper can be cited as indicated under reference [41] or based on the BibTeX record below:

@article{YLWY2014ANMAWFAFTDTLMICBN,
 author = {Bo Yuan and Bin Li and Thomas Weise and Xin Yao},
 title = {A New Memetic Algorithm with Fitness Approximation for the
 Defect-Tolerant Logic Mapping in Crossbar-based Nano-architectures},
 publisher = {Washington, DC, USA: IEEE Computer Society},
 journal = {IEEE Transactions on Evolutionary Computation (IEEE-EC)},
 year = {2014},
 volume = {18},
 number = {6},
 pages = {846--849},
 month = {12},
 doi = {10.1109/TEVC.2013.2288779},
}

