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Abstract—The defect-tolerant logic mapping (DTLM), which  operation frequency (over 100 gigahertz), are expected to
has been proven to be an NP-complete combinatorial search extend the Moore law beyond CMQS 2011, the world's first
problem, is a key step for logic implementation in emerging ,.oarammable nanoprocessor consisting of programmable
crossbar-based nano-architectures. However, no practically non-volatile nanowire transistor arrays (PNNTAs) has been7
satisfactory solution has been suggested for the DTLM till nown ) : Y i
this paper, the problem of DTLM is first modeled as a published [3], which demonstrates that the bottom-up paradigm
combinatorial  optimization problem through introducing  [4] can yield nanoprocessors and other integrated systems of the
Maximum-Bipartite-Matching (MBM). Then, a new Memetic  future.

Algorithm with Fitness Approximation (MA/FA) is proposed to Although with many attractive features and encouraging
solve the optimization problem efficiently. In MA/FA, a new ,qioniial in future industrial applications, the nano-chips

Greedy Re-assignment Local Search operator, capable of utilizing . :
the domain knowledge and information from problem instances, is produced from both the bottom-up process and nano-imprint

designed to help the algorithm find optimal logic mapping with t€chniques [5] are prone to suffer high defect density due to the
consumption of relatively lower computational resources;A  extremely small size of nanoelectronic devices and the difficult
Fitness Approximation method is adopted to reduce the time of controlling the fabricating process precisely. The exact level
consumption of fitness evaluation dramatically. In addition, a of defect density is still unknown by now, but it is assumed to be
hybrid fitness evaluation strategy that combines the exact and o qqnaple that 1% to 15% of the resources (wires, switches,
approximated fitness evaluation methods is presented to balance . . . .
the accuracy and time efficiency of fithess evaluation. The etc.) on a nano-chip will be defectllve [6]. The researchers in
effectiveness and efficiency of proposed methods are testified andHarvard and MITRE [3] characterized the threshold voltage
evaluated on a large set of benchmark instances of various scales values of nodes from the fabricated PNNTA structure in both
and the advantage of MA/FA on keeping good balance between active and inactive states. It is notable that they found that only
effectiveness and efficiency is also observed. 86% nodes in active state and 87% nodes in inactive state met
the voltage requirements. The Quantum Science Research
group at Hewlett-Packard fabricated an 8x8 crossbar
architecture using molecular switches at the crosspoints by
nano-imprint lithography [5], where 15% of the switches were

I. INTRODUCTION defective. _ . _ _
ONVENTIONAL CMOS techniques are rapidly approachin Faced with such a high defect density, the future nano-chip

heir realistic limits Emerging nano-scale devices [1] an(?jesigning industry definitely needs crafted defect-tolerant

the corresponding nano-architecture technologies [2], whig$5ign tgchniques to gqaranteg the usa_bility of mqnufactl_Jred
can achieve much higher device density 1¥t@?) and nano-chips. One promising design paradigm for logic function

implementation on a nano-chip is the defect-aware design flow
[7]1-[11]. The key step in defect-aware design is the
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Isomorphism Problem (SIP)a well-known NP-complete
combinatorial search problem [14], which can be defined a: A B
return an occurrence of bipartite grafh as a subgraph of >k
bipartite graptGi. A number of methods have been proposed t
tackle such problene. g. a recursive algorithm [11] based on
backtracking and pruning [15], [16], as well as various version
of popular heuristic algorithms specialized for the DTLM [7], x
[10], [17], [18]. But all of the above methodsamonly satisfy
the requirement of solving SIP of small scale in nano-chi| \ 2 2B /
design so far. @)
In this paper, the problem of DTLM is first modeled as ¢
combinatorial optimization problem through introducing
Maximum-Bipartite-Matching (MBM) and the corresporglin '
search space is reduced significanfijhen a new Memetic
Algorithm with Fitness Approximation (MA/FA) is proposed to
find a valid mapping between logic function and nano-crossb:
architecture in reasonable runtime, which bypasses all the deft
resources in the nano-architecture. For real-world optimizatic
problems, it is often effective to incorporate problem-specific ®) ©
knowledge into local search strategies, which are referred Fig. 1. (a) 3x3 nano-crossbar with two defects. (paBite graph of
“memes” in the case of Memetic Algorithms [19}{21]. This crossbar in (a). (c) Bipartite graph of logic functi& = ab+bc.
paper presents one such local search operator, called Grec.., ) . . .
Re-assignment, which reassigns the values of parts of t‘ﬁgerefore, twp-termmgl devices such as nanowwe. FETs (Field
individual by taking advantage of the greedy informatioﬁ:'ﬁeCt Transistcs), diodes, and molecular switches are
extracted from the problem instance. Besides, an approximaf%ra’ferr,ed [6]. N .
MBM algorithm [7] is used together with the exact MBM " this paperfor the sake of simplicity, onfistuck-atopen
algorithm [22] to evaluate the fitness of candidate solutiongfafect IS consided, which "S representative and the TOSt
Experimental investigation shows that such hybrid fitnes®MMON in nan@rossbar architectures [23]. A “stuck-atopen”™
evaluation strategy is able to reduce the runtime of the thﬂgfe(_:t means that there is e|ther. a non-programmable SV‘,"tCh or
algorithm  dramaticall. The proposed algorithm ignissing a svv_ltch at the crosspt_)mt, thus the two cross wires at
experimenttly investigated on a large set of benchmarfth's crosspomt are _always dlsconngcteq. Npte that de_fect
instances with various scales, and compared with tlr]wéodellng for emerging nanoelectronics is still an ongoing
stateef-the-art recursive and heuristic algorithms. ExperimefS€arch problem. Without loss of generality, we may assume
results show a good balance between efficiency aljigat _the defects_ are mdependen_t gnd uniformly distributed as
effectiveness can be obtained by the proposed MA/FA and t%ewous.work did [7‘}[9]_' [11]. Thisis a commqnly employed
performance of MA/FA attributes to the introduction of theASsumption for theoretical research [24], which "’_‘HOWS us to
Greedy Re-assignment and Fithess Approximation strategiesf.ocus, upon the essence of the prgposed method instead of the
The rest of this paper is organized as follows. Section mhysmal details of the defects. It is notable that the approach

introduces the background and definition of the DTLM problefirésented in this paper can be easily extend:ad to other defect
and briefly reviews the literatures on DTLM. In Section III, thdYPes (“stuck-atclosed” defect, “nanowire open™ defect and
DTLM is transferred into a combinatorial optimization problem "noWire bridging” defect [25]) and other defect distributions

via introducing MBM. The algorithmMA/FA with Greedy (s_uch_as clustered dlstrlputlon [10]) by modifying the following
Re-assignment and Fitness Approximation strategies PIPartite graph model slightly.

presented in Section V. Experimental studies and comparisa®s Problem Definition

are given in Section V. Section VI concludes the paper. An example ofa defective 3x3 nanoelectronic crossbar is
shown in Fig. 1(a). The crossbar consists of two sets of
orthogonal nanowires. The vertical nanowires are the inputs,
A. Nano-crossbar Architecture whereas the horizont_al nanowires are the outputs. There is a
) ) programmable  switch at each  crosspoint. The
A nanoelectron.|c crossbar _ConS'StS of tWO_ layers (?Ion—programmable defective switches at the crosspoints are
orthogonal nanowires. The region where two wires cross ésclchrepresente d by an “X”.
called junction or crosspoint, which may be configured to A given 2D crossbar with defects can be represented by a
implement a logic device. The assembly process has astocha&tg)%rtite graphas shown in Fig. 1(b). A bipartite graph of an
nature that the probability of aligning three-terminal devic n crossbar is an undirected bipartite gr&kUser, Vior E1)

will b(_a very low, while a two-_termmal connection can beith partitionsUver: andVhor, having Uverd =N and Vhod =n. Uver
established merely by overlapping two wires perpendicularly
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represents the set of input nanowires, ¥ndrepresents the set which product terms can be assigned to which output nanowires.
of output nanowiresk; consists of representative edges for alNext, they abstraetl the problem as to find a complete
the programmable non-defective crosspaimtie crossbar. assignment from the product terms to the output nanowires,

A two-level logic function in a surof-products form can also which is equivalent to the MBM problem. Although an exact
be represented by a bipartite grapfiUvar, Vierm, E2), as shown MBM algorithm [21] could find the matching or an evolutionary
in Fig. 1(c). In this scenarid)var represents the set of logic algorithm [27] could produce a matching with near maximum
variables, andVierm represents the set of product terris. cardinality, a linear-time greedy algorithm [7] was proposed to
consists of representative edges for the corresponding prodpitvide approximated results while running in substantially less
terms contain the variatse runtime.

Whenusng a crossbar structure to implement a two-level Yellambalase and Choi [10] evaluated three different
logic function, the logical relationships between the variabldgeuristic logic mapping algorithms for DTLM with clustered
and the product terms in the logic function can be represenwefects: the  row-wise  matching algorithm, the
by the connections between vertical and horizontal nanowiresdolumn-matching-first ~ algorithm and the redundant
the crossbar. Such logic-functido-crossbar mapping problem column-matching-first algorithm. To choose a pin assignment
can be formulated as Subgraph Isomorphism Problem (SIP)from the variables to the input nanowires, one heuristic [10] was
[14]: returning an occurrence of logic function bipartite grapproposed to greedily assign the most frequently used variables
G, as a subgraph of crossbar bipartite gr&ahwhich is a in the product terms to the input nanowires with the smallest
well-known NP-complete combinatorial search problem [14]. number of defects.

The DTLM problem can be formally defined as the following Simsir et al. [17] introduced a hybrid nanowire-CMOS
[11]: Given a defectivenxm crossbar bipartite grapBi(Uver,  architecture which contained a compiler with a defect-tolerant
Vhor, Ex) having Uverd = Mhol = m, and annxn logic function logic mapping heuristic. The heuristic mapping algorithm
bipartite graptGz(Uvar, Vierm, E2) having Uval = Meerm| =0, find a  employed the same greedy pin assignment method as [10].
node mapping NI: Uvar—Uver, Viem—Vhor) Such thatv(n;,  While, instead of constructing the complete bipartite graph as
n) € E2, 1€ Uvar, N2€ Vierm, (M(N1), M(n2)) €E; holds. [7], which is time-consuming, they constructed the bipartite
i , matching between product terms and output nanowires step by
C. Literatures Review step assisted by an exact MBM algorithm to check if a valid

In the domain of subgraph isomorphism research, |0H4atching exists.
complexity algorithms have been a subject of research duringmspired by the canonization technique which is normally
the last three decades. A certain number of algorithms wegfged in solving the Graph Isomorphism Problem (GIP), Gogen
proposedo reduce the overall computational complexity of they a). [18] proposed a novel heuristic mapping technique based
search process by imposing restrictions on the graphs [26]. §R the canonization instead of the search tree with backtracking,
alternative approach is that using an adequate representatioggifed KNS-2DS. KNS stood for K-Neighbor-Sort which was
the search process and pruning unprofitable paths in the segjgBq for initializing their main mapping heuristic,
space. A successful example that significantly reduces the siz@)imensional-Sort (2DS). 2DS operated on the adjacency
of the search space is the recursive algorithm proposed Btrixes corresponding to the crossbar and logic function
Ullmann [15]. This algorithm is still one of the most commonlybipartite graph respectively. Experiment results showed that
used approaches for SIP. Cordella et al. [16] suggested anofRRiS-2DS could reduce runtime significantly as opposed to the
recursive algorithm which grows a set of partial subgraphs unglzT-pased technique [28].
the isomorphic subgraph is found. It was testified that the gy now, all the statef-the-arts heuristic algorithms rely on
growing process reduces considerably the search spacethy fixed heuristics which show strong bias in favor of only
providing pruning rules and a dynamic ordering method. small set of problem instances, and it is hard for these heuristic

Rao et al. [11] proposed a recursive algorithm based on thgyorithms to find valid mappings for large scale logic functions
search tree with backtracking, in which, three enhancgglth many variables and product terms.

heuristic pruning techniques were presented to improve the

efficiency by significantly cutting down unnecessary III. MODELING AND EVALUATION

backtracking processes. While, even with the assistance of

heuristic pruning techniques, the runtime of the recursivd. Search Space of the DTLM

algorithm [11] is still prohibitive for larger scale graphs duo to Base on the definition of the DTLM, two decision vectors can

the recursive nature of the algorithm. It can obtain googe employed to represent the mapping tMalinput mapping

performance only on small scale problem instances (less thanggtor (MV) and output mapping vecto®{V) [29], where,

equal to 16 inputs for logic functions). IMV [V] = i if variablev is assigned to input nanowirel <v<n,
Heuristic algorithms are gaining more and more interest ifki<m; OMV [p] = o if product termp is mapped to output

recent years. Dehon and Naeimi [7] transformed the DTLM infganowireo, 1<p<n, 1<o<m. It seems that we can search the

a Maximum-Bipartite-Matching (MBM) problem. They first whole solution space spanned BV and OMV as previous

assumed the logic variables had been assigned to the inggtks [29] and [30] did, but the extremely huge size of search

nanowires, then, they constructed a bipartite graph to modglace P(m, n)xP(m, n), will make the problem very hard to be
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Algorithm 1: Ford-Fulkerson Method [22]

//Ford-Fulkerson method for maximum flow (MBM)
Input: Flow networkG' = (V', E")
Output: Maximum flowf
\ 1.f =0
) 2: while there exists an augmenting pattio
\/\ 3: augment flowf alongp

4: end while
\ 5:return f

MBM by creating the flow networkG', running the
Fig. 2. Maximum-bipartite-matching (dashed lipes Ford-Fulkerson method, and directly obtaining a maximum
o ) ] matchingM from the integer-valued maximum flaWound.

sdved with limited computational resource, whé¥gn, n) is The Ford-Fulkerson method is iterative as shown in
the number oh-permutations ofn. Algorithm 1 [22]. The algorithm starts witlfu, v) = 0 for allu,

Fortunately, as suggested in [7] and [17], when logiG_"; giving an initial flow of value 0. At each iteration, the
varla_bles are previously assigned t9 input ”a”OW'WX' the flow value is increased by finding an "augmenting path” that can
solution space of another mapping vect@My) will be be thought of simply as a path from the sowsde the sinkt

restricted severely. For example as shown in FigiMVFis set 504 \vhich more flow can be sent and augeerithis process
as [1, 2, 3] which mearssis assigned t, bis assigned 8, ¢ 5 eneated until no augmenting path can be found. The

is assigned 1@, thusab cannot be assigned i because there max-flow min-cut theorem proves that upon termination, this

s no edge betweel and D in crossbar bipartite graph. process yields a maximum flow. The details of the basic

Therefore, we can construct a bipartite graph to model Whi?"—t?)rd-Fulkerson algorithm and its improved versions can be
product terms can be assigned to which output nanowires Bfarenced in [22]

shown in Fig. 2. While creating the bipartite graph, we add one
node on the “left side” for each product term p, and one nodero  C. Optimization Model
the “right side” for each output nanowire 0. An edge betweep Given thelMV, the search space @MV can be significantly
ando indicates that the product teqmis compatible with the reduced via creating the corresponding bipartite graph modeling
defect pattern of the crossbar, and can be realizedd Blgen  which product terms can be assigned to which output nanowires
the problem is transformed to find a complete assignment frararthermore, it is possible to employ the Ford-Fulkerson
the product terms to the output nanowires which is equivalentiteethod to find a MBM exactly between product terms and
the MBM problem [22 output nanowires. If each product term has a corresponding

Given an undirected bipartite gragh= (U, V, E), whereU  output nanowire in the matching, the giydtV is judged global
andV are disjoint and all edges B go betweer) andV. A optimumand a valid mapping is found. For example, gikd%
matching is a subset of edgek=E such that for all vertices = [1, 2, 3] for Fig. 1, its corresponding bipartite graph can be
veUuV, at most one edge ®f is incident orv. We say that a created as shown in Fig. 2, in which a MBOMV = [3, 2]
vertexve UuV is matched by matching if some edge itM is  (dashed lingin Fig. 2) would be obtained, which means beaith
incident orv; otherwisey is unmatched. A maximum matchingandbchave corresponding output nanowires in the matching, so
is a matching of maximum cardinality, that is, a matcHihg the givenIMV = [1, 2, 3] is a global optiom and the
such that for any matchinil’, we have NI>|M'|. The set of combination oflMV = [1, 2, 3] andOMV = [3, 2]is a valid
dashed lines in Fig. 2 is a MBM in the graph. mapping trialM.

The MBM problem is exactly a matching problem, which can

B. Ford-Fulkerson Method for MBM be relaxed to be an optimization problem via allowing the
Given an undirected bipartite gragh= (U, V, E), one can exijstence of unmatched product terms in the solution. The

use the Ford-Fulkerson method [22] to find a MBM ig|iowing objective function can be defined for the givkhV:
polynomialtime in YuV| and . The trick is to construct a flow

network where flows correspond to matchings. The Objectivezz m- vy/Z w (1)
corresponding flow networks' = (V', E') for G is defined as p-1 p=t
follows: We let the sourceand sink be new vertices, and = Where, m, € {0, 1} represents if product terrp has a

UuVU s, t}. The directed edges dob' are the edges df, corresponding output nanowir in the matching under the
directed fromU to V, along with JUV| new edgesE' = {(s,u):  givenIMV, while, weightw, represents the impact of product
ueU}{(u, v): ueU, veV, and (1, v)eE}U{(v, t): veV}. To termpon the fitness valu€bjective= 1 means each product
complete the construction, unit capaditgssigedto each edge term has a corresponding output nanowire in the matching, so a
in E'. Thus, given an undirected bipartite gréptone can find a Valid mapping is found.
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So far, the problemfdTLM is modeled as a combinatorial
optimization problem, or rather as an assignment problem (AF
[31]-[35]: optimizing the pin assignment from logic variables to
input nanowiresIMV), while evaluating théMV according to
(1) through the exact MBM evaluation (Ford-Fulkerson
method).

D. Problem Characteristics

Although the DTLM has been modeled as AR, it is
difficult to apply the widely used effective algorithms for APs
directly due to the characteristics of the DTLM itself. For
example the encoding of the solutiodMV) in the DTLM is
essentially an incomplete permutation, while a complete
permutation is necessary in algorithms for QAP (Quadratic
Assignment Problejij31] or a combination of integers for TAP
(Terminal Assignment Problem) [32]. Such difference in
encoding requires problem-specific operators for the DTLM,
such as the mutation operator in MA/FA to be introduced ir
section IV. In addition, the high time-complexity of quality
evaluation of candidate solutions in the DTLM is ako
challenge compared with other APs. This issus to be
consideed from the point of view of algorithmic efficiency to
design operators for the DTLM, such as the local searc
operator in MA/FA to be introduced in section. IV

IV. MA/FA FOR THEDTLM

In this section, the Memetic Algorithm (MA) specialized for
the DTLM is presented. Besides incorporating successft
elements of previous effective heuristic mapping algorithm [10
[17], the proposed MA gains pretty good balance betwee
quality of solution and running time in two approaches: 1)
incorporating evolutionary computation framework to enhance
the global optimization; 2) introducing approximated MBM
evaluation method [7] to reduce the running time of the whole
algorithm. The idea of introducing local search and fitnes:
approximation into EAs is a proven technique [36], which car
help to solve complex problems more effectively and
efficiently.

A. Framework of MA/FA

The procedure of proposed MA/FA is depictedlgorithm
2. The Genetic Algorithm (GA) is adopted to work a® t

G1(Uvers Vo, E1)  Bipartite graph of crossbar architectu
Go(Uvar, Vierm, E2)  Bipartite graph of logic function

N Population size

P Parents

B Offspring

t Iteration counter

f Fitness value

A Greedy strength factor

A Exact evaluation gap
Peross Probability of crossover
Prmut Probability of mutation
Pis Probability of local seah

Algorithm 2: MA/FA

/[The pseudo-code of MA/FA for the DTLM
1: P = random permutation, i=1, 2,..., N
2:f(P;) = Exact_MBM_Evaluation(P)), i=1, 2,..., N
3:t=0;

4: Repeat

5t=t+1

6: fori=1toNdo

7: select two parents;, Py,from P randomly
8: B =CrossovelP;, Pk, Pcrosd

9: end for

10:for i=1to Ndo

11: B =Mutation (Bi, Pmu)

12: Bi =Greedy_Reassignmer{B;, Pis, 1)
13:end for

14:for i=1to Ndo

15: if t%4==0then

16: f (Bi) = Exact_ MBM_Evaluation(B;)

17: else

18: f (Bi) = Approximated_MBM_Evaluation (B;)
19: endif

20:end for

21:P = Selection_for_Survival (P, B)
22:until runtime reached or a valid mapping founded

previous crossover
h recombination, the complete permutatiens used instead of

operators proposed previpusDX

evolutionary computation framework of the Memetic AIgorithrﬁm:or'”ple"[e permutation. However, only the finstomponents

due to its success history on many assignment probleiy

gl be decoded aBVV for the MBM-based fitness evaluation.

[31]-[35]. The detailed design of the elementary steps of t1fd Crossover

algorithmis introduced below.
1) Encoding

The encoding ofMV solutions used in our implementation is
straightforward. We encode the permutatian(denotes a
permutation of the se¥l = {1, 2,..
nanowires, such that the valjieof the i component in the
vector indicates that input nanowijeis assigned to logic
variablei (z(i) = j).

It is notable that the logic function siras smaller than the
crossbar architecture siza in some cases, stMV is an

incomplete permutation. In order to take advantage of tl%]

The CX recombination operator [31] has been testified to be
an effective operator for assignment problems. It preserves the
information contained in both parents in the sense that all alleles
of the offspring are taken either from the first or from the second
. m}) as a vector of input pfirent. The operator .dloes npt perform any implicit. mutation,

since an input nanowirgthat is assigned to variabilen the
child is also assigned to variablan one or both parents.

In the first phase, all input nanowires found at the same
variable in the two parents are assigned to the corresponding
variables in the offspring. Then, starting with a randomly
osen variable with no assignment, a nanowire is randomly
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chosen from the two parents. After that, additional assignment
are made to ensure that no implicit mutation occurs. Then, th
next unassigned variable to the right (in case we are at the end //Greedy re-assignment from logic variables to inpi
the genome, we proceed at its beginning) is processed in tt nanowiredMV
same way until all variables have been considered. Input: Pin assignmeriMV
3) Mutation Output: New pin assignmenMV

Since the logic function sizesmay be smaller than or equal  1:randomly selechxA variables and their correspondir
to the crossbar architecture sizas we consider applying a nx A input nanowiresmark them unvisited
mutation operator in two cases: 1)rEm, we will randomly 2: while there are unvisited logic variablds
select a gene to be mutated and exchange its value with anott 3: find the unvisited variable with maximum degree
gene from the last-mgens. 2) lin=m, we will randomly select  4: find the unvisited input nanowiré with maximum
two genes and then exchange their values. degree
4)Selection 5: IMV[V] =i

Sdection occurs two times in the main loop of MA/FA. 6: markv andi as visited
Selection for reproductions performed before a crossover 7:end while
operator can be applied, which is based on a purely rando 8:return IMV
basis without bias to filter individuals, asdlection for survival
is performed to reduce the population to its original size, whict
is achieved by choosing the best individuals from the pool @hd remarked as unvisited, wherés the number of variables
parents and children [31]. and &A<1 is named greedy strength factor here. Then, the
B. Greedy Re-assignment Local Search gregdy assignment 'heuristic is applied on these selected

] variables and nanowires to get a new solutiV. The new

It was thought that some universal local se.ar.ch methods, syshy| search process, which incorposateroblem-specific
as the2-opt [37] and thefast-2opt [31] heuristics, could be nopledge with stochastic evolutionary search, is named
applied to the problem of DTLMTIhese universal local search Greedy Reassignment Local Searctlgorithm 3).
methods employ no problem-specific knowledge, and require to greedy strength factdr provides a flexible control on

very frequent quality evaluation of the generated solutions {e randomness or greediness of the local search operator. The
gain information for guiding search, which means a largenjomness/greediness of the operator will decreasefincrease
number of runs of Ford-Fulkerson algorithm for MBM arealong with the increasing ot When =1, the wholdMV/ will
need_ed during the exec_ution of the whole algorithm._ While iﬂe re-assigned according to the greedy assignment hefirgitic
practme, th_e fexecutlcc)jn of l:Iord]:IIZ\/llJék,\jrsonbl 1S VerYl?], which will result in identical solution for the current
tlme—coqsumlng oramo era_te_scae 0 problem. DTLM instance, therefore the operator will reach its minimum

A variant of the2-opt heuristic was tested on the DTLM randomness and maximum greediness

pro_blem_. In order to speed up the I_ocal searqh process, the‘Be5|de$ randoy selectinghx A variablesa greedy selection
variant is based on performing the first swapping found tha .

: . . . Strategy that selects the A most frequently used variables was
increases the fitness. The experimental results were negativé

S . : ) )
expected. The MA with the variant of tRBeopt heuristic cannot afeslo studiedThe experimental analysis shegithat, with such

find a valid mapping in the given runtime on most benchmalgt’(reedy sele_ct|on strategy, the diversity Of. the populgtlon
instances degraded quickly, and the runtime of the algorithm for getting a

There is a good knowledge that has been testifiedeto valid mapping was extended dramatically in most cases,

effective on most instances of DTLM, that is, a more frequent[ﬁrthermore’ the.algonthm could not even.fmd a valid mapping
In the given runtime on some benchmark instances.

used variable needs more functional crosspoints. By assigning

the most frequently used variables in the product terms to tBe MBM-oriented Fitness Evaluation

input nanowires with the smallest number of defects, the greedyrhe fitness function can be defined directly from the
assignment heuristic might find the feasible solution with a highbjective function ()

probability [10] [17]. However, there is no flexibility in such

Algorithm 3: GreedyRe-assignment-Local-Search

strong greediness, resulting in poor performance even on §mal| Fitness= Z m- vylz w (2)

scale problems as shown in Section V. C. In addition, direct p=1 p=1

application of such strategy will make all individuals identical Where,m, andw, have been defined in Section IlI. ©tness
solution (all individuals are the same). = 1 means each product term has a corresponding output

Inspired by the knowledge, a new problem-specific locdlanowire in the matching, so a valid mapping is found.
search operator is designed in MA/FA, which reassigns theAn appropriate weight setting can guide the optimization
input nanowiresf parts of the variables via taking advantage cllgorithms to converge to the global optirfi&”(for our fitness
the greedy information extracted from the problem instances.function) faster. As suggested in [30], the value of weiglis
more detail, givera pin assignmentl§1V), nx1 variables and related to the number of variablgsn product ternp, that is, it
their correspondingxA input nanowires are randomly selecteds harder to map a produce tepmhosev, is larger. Therefore,
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Fig. 3. The influence of value of k on the perfornmntthe MA/FA on two randomly selected benchmark ingsifdlo. 7 and 12) witn=48 andm=60.

W, are expressed ag andk is setexperimentally. Fig. 3(a) to
(f) show the influence of the value kfon the performance of
MA/FA on two randomly selected benchmark instancesnvith
48 andm = 60. They are statistic mean values from 3
independent runs for each instance. Fig. 3(a) and (d) show
evolutionary curves of fithess value with runtime (limited ti
90s). In order to see the differences clearly, they are enlarged
the last 10s as shown in Fig. 3(b) and (e). Fig. 3(c) and (f) sh
the evolutionary curves of success rate (the probability of
valid mapping is found) with runtime. Although the figure:
show that largek can accelerate MA/FA converge to a highe
fitness value, what we really care about is the success rate ra
than the fitness value, $ois set as 4 for MA/FA as shown in
Fig. 3(c) and (f). Similar experiments results are obtained f
other EAs and other benchmark instances in this papek and
4 is among the best values that can be chosdnissiixed at4
for all the EAs in the following experiments.

D. MBM-oriented Fitness Approximation

The problem of DTLM is an emerging application that we al
facing highly integrated nanoeleotic architectures. It is
possible that more than millions of crossbar-based arrays i

Algorithm 4: Approximated-Matching [7]

/IApproximated algorithm for matching product terms
output nanowire©®MV

Input: Bipartite graptG = (U, V, E)

Output: Pin assignmer®MV

1:do{

2: p =unmapped product term W with largest fan-in in
G

3: do{

4: 0 = nanowire randomly selected from unused out|
nanowires iV

5: if p can be mapped to nanowirgéhen
6: OMV[p]= o

7. markp as mapped

8: marko as used

9: endif

10: } while (p unmapped)

11: } while (there are unmappgxin U)
12: return OMV

nano-chip need to be configured in the future. Therefore, th@arned/updated online resulting in extra time consumption
runtime is one of the critical factors for this application from gherefore, these conventional models cannot be applied to this
practical perspective. In this sectiom @pproximated fitness application. Instead of approximation models, we introduce an
evaluation strategy is introduced to reduce the runtime causggsting linear-time greedy algorithm [7Algorithm 4) to
by the high time-complexity of the exact MBM evaluation. Thigrovide approximated MBM evaluation within substantially
is a common technique in surrogatsisted evolutionary |ess runtime. The approximation method does not need to be
algorithms pre-trained or learned online, thus it is well suited for the DTLM
Surrogate model$38] (e. g. polynomial models, neural from apractical point of view.
networks, support vector machines) are often used foGjven an undirected bipartite gra@= (U, V, E) to represent
computationally expensive optimization or high-dimensionahe relationships between the product terms and the output
optimization, and the models need to be pre-trained offline ganowires. Let) be the set of product terms, avidhe set of
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IMVs are randomly generated one hundred times to obtain
n=48 m=60

o statistic mean values. Fig. 4(a) and (b) show the results of
o | |=Accur1 Accur, and Accup. High Accur (above 80%) means that the
e | [ Accur2 most of matching M; can be obtained by
£ e | Approximated-Matching, while highAccur (above 85%)
§ Bs‘ | means that the most of matchidg are existed in the real MBM
= | or Mz is a approximated subset oRM;. Therefore,
< 8 ] Approximated-Matching can prove good approximations to the
. ! real MBMs.
o MA/FA can avoid the false optimia the following three
LR hlem N EeTEnes aspects: 1) The good accuracy of Approximated-Matching can
relax the problem of false optima, 2) MA/FA uses the idea from
n=48 m=64 . . .
% generation-based evolution contrf89] which can guarantee
04 ] iﬁggzg the correct convergence when the approximate fitnesdel
a2 , has false optima, 3) The problem of DTLM is a combinatorial
2 o ] search problem in nature, thus what we are really concerned
§ 881 ] with are the global optima (whdithess= 1) which are always
3 e ] true. If the approximated evaluation gets a maximum fitness
<o value‘1’, avalid mapping is searched.
82y
80 V. EXPERIMENTAL STUDIES

1 é 5 L‘l é é % é é'I‘OWIW1‘2{31‘41‘51‘61‘71‘81‘920
Problem No.

Fig. 4. Accuracy of Approximated-Matching on benchmastances a) A. Benchmark Instances

n=48 andm=60 and b=48 andm=64. As far as we know, no benchmark instances have been

) _ specialized for the DTLM, so we randomly generate a large set

output nanowires. Lgirepresent a product termih andoan ot penchmark graphs for logic functions and crossbar

output nanowire inV. The approximated MBM algorithm 5 chitectures as previous work did [10], [29], [30]. All the
(Algorithm 4) picks thep terms in decreasing order of theirpanchmark graphs used in the simulation in this paper and

fan-in size inG (because larger fan-in product terms are hardgfa/Fa source codes with supporting documents are available
to map), and chooses théerms randomly. When the number ofy¢. 1. /home.ustc.edu.cn/~yuanbo/ MAFAforDTLM.rar.
functional junctions per nanowire is bound to a constant, the c. henchmark graphs of crossbar architectures, we set

number of wires tested in Iine 5 for_ each prod_uct _tpr'm @ different sizesm= 16, 24, 60, 64 and defect density Elr?):
constant. Consequently, this algorithm runs in linear tlm%, = 15% (the worst case value [6]) and uniform defect

o(u)). _ ) distribution (which is the most common assumptian i
In MA/FA, both the exact and approximated algorithms fof5noelectronics [719], [11]). For ease of recording and

MBM are used to evaluate the fitness of candida?e_ S°|Uti°”5(§8mparison, we give such a name rulen&,_pB;_Ci, where
order to balance the accuracy and speed. Specifically, we YS8s the size of the graph, B the defect density and & the
single exact MBM evaluation for the population in every gequence order in the benchmark set with the same attributes
iterations, whered is called exact evaluation gap here. Thepothmandp). For example, graph @60 _p15%_5 means that
influence of the value off will be tested in Section V as the graph is of size 60, defect density 15% and it is the 15th
suggested ind9]. graph in the benchmark set with the same attribute$0 ami p

E. Accuracy of the Approximated-Matching = 15%.

. . For benchmark graphs of logic functions, we set different

A reasqnable evaluat_lon mgthlsd)rc_)pos_el for the accuracy sizesn=16, 24, 48 and average logic densig|(h?): p= 40%
?g:f:}ig;:?;;ig;1'\12?;2%6?2/: daaglfof?{éﬂv\?sgfaﬁwy VB, (a typical value [29]) and uniform edge distribution. For ease of
MamMol/IVL [x1.00% 3 ' recording and comparison, we give such a naming rule,

_ IMiAMal/[M4| 6 9 F_nA, pB,_C,, where A s the size of the graph, B the logic
While the measur&ccur, is can be defineds density and gis the sequence order in the benchmark set with

IMAM:|/M2[x100%  (4) _ the same attributes (both and p). For example, graph

WhereM, (the real MBM) andu; are the matchings found by F n48 p40%_3 means that the graph is of size 48, logic density

the qud-Fquerson Method and Approxima’ged-Matchinng% and it is the third graph in the benchmark set with the same
respectively Accur andAccur, represent how the intersection attributesn = 48 andp = 40%

MinMz overlaps withM; and M. respectively. Since a strict

theoretical analysis of the accuracy is very hard and out of tRe Parameters Setting

scope of the paper, we test the accuracy of The population sizdlis setN = 40 according to the problem
Approximated-Matching on = 48 benchmark instances, wherescale, since the computational complexity offttreessdoes not
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TABLE |
o n=48 m=60 EXPERIMENTAL RESULTSOF HMA [17], RMA [11] AND MA/FA ON
= Gap=2 n=16,=16 BENCHMARK INSTANCES
80 1|~ Gap=5 No HMA [17] RMA [11] MA/FA
50 1 Gap=10 ) Psucc Avg Psucc Avg Psucc Avg
2 | |- Gap=20 1 0% NA 10% 7.328 | 100% | 0.013
£ — Gap=50 2 100% | 0.001 | 70% 8.36 100% | 0.002
£ % 1 3 100% | 0.002 | 60% | 13.608 | 100% | 0.002
X 5 4 100% | 0.015 | 37% 6.344 | 100% | 0.004
0 ‘ 1 5 100% | 0.001 | 33% | 11.222 | 100% | 0.01
[T~ 2 6 100% | 0.004 | 27% | 12.348 | 100% | 0.003
0'\ 23 ;1 é é % 8 E‘Bﬂ‘l)'\‘11‘21‘151‘4-1‘£u‘\‘61‘71‘815‘320 7 100% 0.001 20% 15.732 100% 0.003
Problem No. () 8 100% | 0.006 | 13% | 31.433 | 100% | 0.031
_48 m=64 9 0% NA 17% 2154 | 100% | 0.046
n=as m= 10 0% NA 53% | 12.73 | 100% | 0.003
—-e-Gap=2 11 100% | 0.003 | 10% 3.944 | 100% | 0.025
1|—=Gap=5 12 0% 0.001 | 37% | 17.298 | 100% | 0.007
= | Gap=10 13 100% NA 37% | 25.357 | 100% | 0.004
ey —+—Gap=20 14 100% | 0.024 | 17% | 21.445 | 100% | 0.007
£ —Gap=50 15 100% | 0.009 | 47% | 11.287 | 100% | 0.002
S 16 100% | 0.001 | 53% 8.586 | 100% | 0.003
o 17 0% NA 20% | 17.638 | 100% | 0.01
18 0% NA 73% | 13.089 | 100% | 0.003
19 100% | 0.001 | 73% 4504 | 100% | 0.002
%23 45676 91011121314151617181920 20 100% 0.001 73% 10.462 | 100% 0.002
Problem No.
Fig. 5. The influence of exact evaluation gamm MA/FA on benchmark TABLE Il
instances aj=48 andm=60 and bn=48 andm=64. EXPERIMENTAL RESULTSOF HMA [17], RMA [11] AND MA/FA ON
n=24, =24 BENCHMARK INSTANCES
allow evolving much larger populations in reasonable time. | no HMA [17] RMA [11] MA/FA
. . ) Psucc Avg Psucc Avg Psucc Avg
large grgedy strength factémwill weaken the stochgstlc nature I 0% A 0% NA 100% | 1487
of EVO|L.|t|0nary algorlthm, thus we sét= 0.1 emplrlcally. We 2 100% 0.034 3% 10.574 100% 0.018
set optimal parameteB¢oss= 0.8, Pmui= 0.2 andPs = 0.8 3 0% NA 0% NA 100% | 0.266
experimentally by cross validation. 4 0% NA 0% NA 100% | 0.238
In addition, MA/FA uses the idea fromeneration-based 2 18?)/ oNogs ng’ m 1883 8-32‘7‘
. . 0 . 0 0 .
evoluthn control[39]. In order to test the influence of exact = 0% NA 0% NA 100% | 2357
evaluation gapt on the performance of MA/FA, we record the g 0% NA 0% NA 100% | 1.277
average runtime (in seconds) of the algorithms if they find i{ ¢ 0% NA 0% NA 100% | 2.268
valid mapping onn = 48 benchmark instances. Thirty | 10 0% NA 0% NA 100% | 0.588
independent runs are executed to obtain statistic mean values| 11 | 0% NA 0% NA__| 100% | 0.74
) . 12 % NA % NA 100% 17
few different values of exact evaluation gdpare tested as 13 80/‘; A 8%‘; A 188%(: 8 912
shown in Fig. 5(a) and (b). The experimental results show thi——, 0% NA 0% NA 100% 0:211
MA/FA have betterpeformance ond = 5 and 10, and the 15 0% NA 3% 38.213 | 100% | 0.087
sensitivity is low betweem = 5 and 10. Although 100% 16 0% NA 0% NA 100% | 0.268
mapping success rate can be obtained in most cases, higl—17 | 0% NA 0% NA 100% | 0.173
. ; 18 0% NA 0% NA 100% | 0.611
success rates can be obtained by setfingl0 on some hard 19 0% NA 0% NA 100% | 2.199
problems (such as No. 7, 12 and 18 in F{@))5thus4 is fixed 20 0% NA 0% NA 100% | 5.776

at 10 in the paper.
All the experiments in this paper are performed on 2.66GH. | bl it . tsin th .
Intel Core 2 Quad processors Q6700 platform with 6G memo&c.a € problems, So we SeLiwo experiments in the compamsons,

However, all tested algorithms are implemented as monolitthT_; 16 art1.ch - mf:tﬁ‘l‘ th laorith HMA. RMA q
processes and no CPU core parallelism is exploited. e runtime of the three algorithms ( : , an

MA/FA) is limited to 60s and 90s fer=m= 16 anch=m=24
C. Comparisons with the Staté-the-art Algorithms respectively. All the algorithms are run independently for thirty

The heuristic mapping algorithm (HMA) [17] and recursivdimes on each benchmark instance. For different problem scales,
mapping algorithm (RMA) [11] are two representativeve randomly select twenty benchmark instances (mapping logic
algorithms for the DTLM whose performances have beedfaphs to crossbar graphs) for comprehensive comparison. It is
testified successfully. Therefore, they are used for comparisB@table that the heuristic mapping algorithm is a deterministic

in this paper. As stated above, they can only deal with smalporithm, so the same result will be obtained after being run
multiple times. Therefore, the success rate will be either 0% or
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TABLE Il
EXPERIMENTAL RESULTSOF HMA [17], GA, MA AND MA/FA ON n=48,m=60 BENCHMARK INSTANCES
No HMA GA MA MA/FA
) Psucc Avg Psucc Avg Std Psucc Avg Std Psucc Avg Std
1 0% NA 100% 15.36 4.25 100% 6.06 1.55 100% 2.95 0.89
2 100% 0.12 100% 5.65 2.19 100% 1.94 0.69 100% 1.89 0.25
3 0% NA 100% 6.37 2.66 100% 2.36 0.4 100% 1.98 0.08
4 0% NA 100% 19.97 5.32 100% 8.79 2.33 100% 4.6 1.98
5 0% NA 100% 22.96 6.07 100% 10.51 2.66 100% 5.54 1.29
6 0% NA 100% 27.66 9.97 100% 10.19 231 100% 4.97 1.63
7 0% NA 67% 58.33 16.55 93% 50.09 14.16 90% 30.04 16.51
8 0% NA 100% 8.39 2.08 100% 3.22 1.15 100% 2.2 0.48
9 0% NA 100% 13.42 4.02 100% 4.04 1.1 100% 2.27 0.5
10 0% NA 100% 18.72 4.58 100% 8.11 2.6 100% 4.45 1.53
11 0% NA 77% 57.61 13.06 100% 33.69 11.95 100% 22.7 12.38
12 0% NA 30% 64.98 9.39 57% 61.55 13.24 70% 46.09 18.48
13 0% NA 100% 11.32 2.61 100% 4.65 1.55 100% 2.55 0.75
14 0% NA 100% 27.18 7.38 100% 9.7 3.49 100% 4.46 1.03
15 0% NA 97% 43.22 15.03 100% 19.76 6.59 100% 13.3 6.71
16 0% NA 97% 40.29 11.63 100% 24.13 13.19 100% 11.62 5.47
17 0% NA 100% 28.05 8.43 100% 10.02 1.81 100% 5.66 2.19
18 0% NA 93% 54.72 15.56 100% 42.46 11.67 100% 24.5 13.41
19 100% 0.16 100% 8.2 2.29 100% 2.44 0.91 100% 1.96 0.05
20 0% NA 90% 48.3 16.46 100% 22.61 5.56 100% 10.63 4.44
TABLE IV
EXPERIMENTAL RESULTS OFHMA [17], GA, MA AND MA/FA ON n=48, =64 BENCHMARK INSTANCES
No HMA GA MA MA/FA
) Psucc Avg Psucc Avg Std Psucc Avg Std Psucc Avg Std
1 0% NA 100% 22.88 5.17 100% 8.61 2.41 100% 5.52 1.64
2 0% NA 100% 13.3 3.96 100% 6.02 2.69 100% 3.29 1.15
3 0% NA 100% 12.51 3.21 100% 4.73 1.33 100% 2.64 0.82
4 0% NA 100% 14.27 3.61 100% 4.9 1.39 100% 2.73 0.81
5 0% NA 100% 12.5 3.91 100% 5.23 1.81 100% 2.64 0.76
6 100% 0.05 100% 5.45 1.9 100% 2.37 0.73 100% 2.03 0.24
7 0% NA 100% 10.13 2.55 100% 3.18 0.76 100% 2.1 0.06
8 100% 0.15 100% 10.65 291 100% 3.4 1.12 100% 2.14 0.13
9 0% NA 100% 11.17 3.03 100% 4.1 0.85 100% 2.25 0.38
10 100% 0.16 100% 15.84 4.18 100% 6.54 1.6 100% 3.3 1.14
11 0% NA 100% 11.61 3.87 100% 3.65 1.14 100% 2.21 0.19
12 0% NA 100% 34.22 8.51 100% 15.25 2.95 100% 7.12 1.88
13 0% NA 100% 16.42 3.62 100% 6.15 1.89 100% 2.97 0.97
14 0% NA 100% 33.17 11.84 100% 14.78 3.29 100% 8.47 2.26
15 0% NA 100% 17.08 5.63 100% 8.38 2.28 100% 4.46 1.48
16 0% NA 100% 5.88 2.54 100% 2.45 0.79 100% 2.12 0.09
17 0% NA 100% 18.96 5.41 100% 6.03 1.87 100% 3.16 0.93
18 0% NA 100% 4.48 2.13 100% 1.69 0.8 100% 1.92 0.49
19 0% NA 100% 26.98 6.21 100% 10.35 3.36 100% 4.25 1.29
20 0% NA 100% 11.8 3.9 100% 4.03 1.51 100% 2.38 0.41

100%. Table | and Il record the experimental results of differeand the incomplete bipartite graph construction strategy. 2)

algorithms including: RMA can find valid mappings on all instances, but it is very
e Psucc the success rate of the algorithms, i.e., the fractidgime-consuming compared with the other algorithms, this is due

of the thirty runs that found a valid mapping. to the nature of recursion it adopts. Besides, RMA has low
e Avg the average runtime (in seconds) of the algorithms $uccess rate (<50%) on most test instances (13 out of 20),

they find a valid mapping in thirty runs. although it was granted a long preset runtime (60s). 3) MA/FA

Table | shows the experimental results of HMA, RMA anéan achieve success rate of 100% on all test instances with very
MA/FA on the benchmark instancesmf 16, m= 16. It can short runtime, even on the instances that are hard for HMA and
been seen that: 1) HMA has success rate of 100% on more tRaA (such as No. 1, 9, and 17).
half of the test instances (14 out of 20), while has success rate of
0% on other 6 test instances. The runtime of HMA is very short,
this is due to that HMA uses the greedy pin assignment heuristic
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Fig. 6. The evolutionary curves of mapping success raterwitime for the GA, the MA and MA/FA on=48, m=60 benchmark instances

Table Il shows the experimental results of HMA, RMA, andnapping algorithm [17] has a fairly poor performance on
MA/FA on the benchmark instancesrof 24,m=24. It can be benchmark instances ofm=24 although it is very fast. MA/FA
seen that: 1) HMA works on only two test instances (No. 2 arunhn solve all benchmark instances efficiently and effectively.
6) and the runtime is short (0.05s). 2) Granted a long runti . .

Effectiveness of the Greedy Assignment Local Seardh
(90s), RMAcansolve only two test instances (No. 2 and 15
itness Approximation
with quite low success rate (3% in both cases) and long runtime

(10.574s and 38.213s). 3) MA/FA can achieve success rate opccause the runtime of the recursive algorithm s
100% on all test instances with very short run,["mQrohlbmvely long, we only test the heuristic mapping algorithm
(0.0185-5.7765) for large scale problems. In addition, two other EAs are added

The above experiment results reveal that the recursi%the comparisons. One ISa MA foIIowmg_the flow of M’_A‘/FA
without the Fitness Approximation operation, that4ss1 in

mapping algorithm [11] is very time-consuming with low , '
success rates even o m= 16 problems, while the heuristic MA/FA. Another EA is the GA following the flow of the MA
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without the Greedy Re-assignment Local Search. With tlegorithms are run independently for thirty times on each
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Fig. 7. The evolutionary curves of mapping success raterwitime for the GA, the MA and MA/FA on=48, m=64 benchmark instances

comparison with these two algorithms, the effectiveness bé&nchmark instances. For different problem sizes, we randomly
Greedy Re-assignment Local Search and Fitnesslect twenty benchmark instances (mapping logic graphs to
Approximation can be investigated. crossbar graphs) for comprehensive comparison. Table 11l and

The parameters of MA/FA are set as in the previod¥ show the experimental results of different algorithms (HMA,
experiments. The parameters of the MA are set as the samé¢hasGA, the MA and MA/FA) including:

MA/FA, except for value oft = 1. The parameters andPcross e Psucc the success rate of the algorithms, i.e., the fraction
of the GA are set as the same as other EAs, and Weget0.8  of the thirty runs where they find a valid mapping.
for the GA experimentally by cross validation. e Aw: the average runtime (in seconds) of the algorithms if

Because MA/FA uses a hybrid fitness evaluation strategy, #tey find a valid mapping in thirty runs.
we give a pre-determined maximum runtime for the algorithms. ¢ Std the standard deviation of the runtime (in seconds) of
The runtime of the three EAs is limited to 90s and all thghe algorithms if they find a valid mapping in thirty runs.
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We perform statistical tests for the runtimes of paired EAs, VI. CONCLUSION
GAvs. MA, GAvs. MA/FA and MA vs. MA/FA, on each single | this paper, a new framework to solve the DTLM via

benchmark instance. In particular, a two-tailedest is mogeling the problem as a combinatorial optimization problem
conducted with a null hypothesis stating that there is ng presented. A new Memetic Algorithm is proposed to
difference between two algorithms in comparison. The nullplement the framework, in which a Greedy Re-assignment
hypothesis is rejected if th@-value is smaller than the | 5ca) Search operator is designed to make good use of the
significance levek:= 0.05. The runtime of the algorithm which gomain knowledge and the information extracted from the
is statistically shorter than both other EAs will be highlighted iBrobIem instances, a Fitness Approximation method is adopted
bold. to reduce the time consumption in fithess evaluation operation.
Table Il shows the experimental results of HMA, the GA, the, particular, a hybrid fitness evaluation strategy is presented
MA and MA/FA on the benchmark instanasfan = 48,m=60.  \which incorporates approximated fitness evaluation with the
It can be seen that: 1) HMA only works on two test instancexact fitness evaluation to get a proper balance between
(No. 2 and 19) with short runtime (0.12s and 0.16s). 2) The Gfxcuracy and time efficiency of fitness evaluation. The
has success rate of 100% on 13 test instances, and low sucg@ggrmance of proposed methods are testified and evaluated on
rate (<50%) on No. 12. 3) Comparéd the GA, the MA 3 |arge set of benchmark instances of various scales. Experiment
improves the success rate significantly on test instances Noydgyts show that the Greedy Re-assignment Local Search can
11, and 12. Besides, the runtime is reduced to approximately g algorithm to find optimal solution with consumption of
to 1/3 on most instances (No-@, 8-10, 13-17, 19, 20). The |ower computational resources, while the hybrid fitness
comparison (the GA vs. the MA) demonstrates the advantag®sluation strategy with Fitness Approximation can reduce the
of introducing the Greedy Re-assignment Local Search. #he consumption for fitness evaluation dramatically. It is also
Comparedo the MA, the runtime of MA/FA is reduced further opviously observed that the proposed MA/FA algorithm has the

on most test instances (18 out of 20) as highlighted in bolgldvantage on getting good balance between effectiveness and
Also, MA/FA maintains as hlgher success rate as the M%fﬁciency on various DLTM prob|em instances.

except on test instances No. 7, where the success rate is reduced
slightly (3%). The comparison (the MA vs. MA/FA) ACKNOWLEDGMENT
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