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 
Abstract—The defect-tolerant logic mapping (DTLM), which 

has been proven to be an NP-complete combinatorial search 
problem, is a key step for logic implementation in emerging 
crossbar-based nano-architectures. However, no practically 
satisfactory solution has been suggested for the DTLM till now. In 
this paper, the problem of DTLM is first modeled as a 
combinatorial optimization problem through introducing 
Maximum-Bipartite-Matching (MBM). Then, a new Memetic 
Algorithm with Fitness Approximation (MA/FA) is proposed to 
solve the optimization problem efficiently. In MA/FA, a new 
Greedy Re-assignment Local Search operator, capable of utilizing 
the domain knowledge and information from problem instances, is 
designed to help the algorithm find optimal logic mapping with 
consumption of relatively lower computational resources; A 
Fitness Approximation method is adopted to reduce the time 
consumption of fitness evaluation dramatically. In addition, a 
hybrid fitness evaluation strategy that combines the exact and 
approximated fitness evaluation methods is presented to balance 
the accuracy and time efficiency of fitness evaluation. The 
effectiveness and efficiency of proposed methods are testified and 
evaluated on a large set of benchmark instances of various scales, 
and the advantage of MA/FA on keeping good balance between 
effectiveness and efficiency is also observed. 
 

Index Terms—Memetic algorithms, fitness approximation, local 
search, crossbar-based nanoelectronics, defect-tolerant logic 
mapping (DTLM), maximum-bipartite-matching (MBM). 

I. INTRODUCTION 

ONVENTIONAL  CMOS techniques are rapidly approaching 
their realistic limits. Emerging nano-scale devices [1] and 

the corresponding nano-architecture technologies [2], which 
can achieve much higher device density (1012/cm2) and  
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operation frequency (over 100 gigahertz), are expected to 
extend the Moore law beyond CMOS. In 2011, the world's first 
programmable nanoprocessor consisting of programmable, 
non-volatile nanowire transistor arrays (PNNTAs) has been 
published [3], which demonstrates that the bottom-up paradigm 
[4] can yield nanoprocessors and other integrated systems of the 
future. 

Although with many attractive features and encouraging 
potential in future industrial applications, the nano-chips 
produced from both the bottom-up process and nano-imprint 
techniques [5] are prone to suffer high defect density due to the 
extremely small size of nanoelectronic devices and the difficult 
of controlling the fabricating process precisely. The exact level 
of defect density is still unknown by now, but it is assumed to be 
reasonable that 1% to 15% of the resources (wires, switches, 
etc.) on a nano-chip will be defective [6]. The researchers in 
Harvard and MITRE [3] characterized the threshold voltage 
values of nodes from the fabricated PNNTA structure in both 
active and inactive states. It is notable that they found that only 
86% nodes in active state and 87% nodes in inactive state met 
the voltage requirements. The Quantum Science Research 
group at Hewlett-Packard fabricated an 8×8 crossbar 
architecture using molecular switches at the crosspoints by 
nano-imprint lithography [5], where 15% of the switches were 
defective.  

Faced with such a high defect density, the future nano-chip 
designing industry definitely needs crafted defect-tolerant 
design techniques to guarantee the usability of manufactured 
nano-chips. One promising design paradigm for logic function 
implementation on a nano-chip is the defect-aware design flow 
[7]–[11]. The key step in defect-aware design is the 
defect-tolerant logic mapping (DTLM), which is defined as: 
given a defective crossbar and a logic function to be 
implemented on it, find a mapping of the logic function to the 
crossbar with consideration of defects. Since the defect-aware 
design flow is to adjust the function implementation for each 
particular defective nano-chip, it can utilize more defect-free 
resources on the crossbar architectures compared to the 
defect-unaware design flow whose key step is to extract 
defect-free sub-crossbars from original defective crossbars [12], 
[13].  

The DTLM by its nature is equivalent to the Subgraph 
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Isomorphism Problem (SIP), a well-known NP-complete 
combinatorial search problem [14], which can be defined as: 
return an occurrence of bipartite graph G2 as a subgraph of 
bipartite graph G1. A number of methods have been proposed to 
tackle such problem, e. g. a recursive algorithm [11] based on 
backtracking and pruning [15], [16], as well as various versions 
of popular heuristic algorithms specialized for the DTLM [7], 
[10], [17], [18]. But all of the above methods can only satisfy 
the requirement of solving SIP of small scale in nano-chip 
design so far.  

In this paper, the problem of DTLM is first modeled as a 
combinatorial optimization problem through introducing 
Maximum-Bipartite-Matching (MBM) and the corresponding 
search space is reduced significantly. Then a new Memetic 
Algorithm with Fitness Approximation (MA/FA) is proposed to 
find a valid mapping between logic function and nano-crossbar 
architecture in reasonable runtime, which bypasses all the defect 
resources in the nano-architecture. For real-world optimization 
problems, it is often effective to incorporate problem-specific 
knowledge into local search strategies, which are referred to 
“memes” in the case of Memetic Algorithms [19]–[21]. This 
paper presents one such local search operator, called Greedy 
Re-assignment, which reassigns the values of parts of the 
individual by taking advantage of the greedy information 
extracted from the problem instance. Besides, an approximated 
MBM algorithm [7] is used together with the exact MBM 
algorithm [22] to evaluate the fitness of candidate solutions. 
Experimental investigation shows that such hybrid fitness 
evaluation strategy is able to reduce the runtime of the whole 
algorithm dramatically. The proposed algorithm is 
experimentally investigated on a large set of benchmark 
instances with various scales, and compared with the 
state-of-the-art recursive and heuristic algorithms. Experiment 
results show a good balance between efficiency and 
effectiveness can be obtained by the proposed MA/FA and the 
performance of MA/FA attributes to the introduction of the 
Greedy Re-assignment and Fitness Approximation strategies. 

The rest of this paper is organized as follows. Section II 
introduces the background and definition of the DTLM problem, 
and briefly reviews the literatures on DTLM. In Section III, the 
DTLM is transferred into a combinatorial optimization problem 
via introducing MBM. The algorithm, MA/FA with Greedy 
Re-assignment and Fitness Approximation strategies, is 
presented in Section IV. Experimental studies and comparisons 
are given in Section V. Section VI concludes the paper. 

II.  PRELIMINARIES 

A. Nano-crossbar Architecture 

A nanoelectronic crossbar consists of two layers of 
orthogonal nanowires. The region where two wires cross is 
called junction or crosspoint, which may be configured to 
implement a logic device. The assembly process has a stochastic 
nature that the probability of aligning three-terminal devices 
will be very low, while a two-terminal connection can be 
established merely by overlapping two wires perpendicularly. 

Therefore, two-terminal devices such as nanowire FETs (Field 
Effect Transistors), diodes, and molecular switches are 
preferred [6]. 

In this paper, for the sake of simplicity, only “stuck-at-open” 
defect is considered, which is representative and the most 
common in nano-crossbar architectures [23]. A “stuck-at-open” 
defect means that there is either a non-programmable switch or 
missing a switch at the crosspoint, thus the two cross wires at 
this crosspoint are always disconnected. Note that defect 
modeling for emerging nanoelectronics is still an ongoing 
research problem. Without loss of generality, we may assume 
that the defects are independent and uniformly distributed as 
previous work did [7]–[9], [11]. This is a commonly employed 
assumption for theoretical research [24], which allows us to 
focus upon the essence of the proposed method instead of the 
physical details of the defects. It is notable that the approach 
presented in this paper can be easily extended to other defect 
types (“stuck-at-closed” defect, “nanowire open” defect and 
“nanowire bridging” defect [25]) and other defect distributions 
(such as clustered distribution [10]) by modifying the following 
bipartite graph model slightly. 

B. Problem Definition 

An example of a defective 3×3 nanoelectronic crossbar is 
shown in Fig. 1(a). The crossbar consists of two sets of 
orthogonal nanowires. The vertical nanowires are the inputs, 
whereas the horizontal nanowires are the outputs. There is a 
programmable switch at each crosspoint. The 
non-programmable defective switches at the crosspoints are 
each represented by an “X”. 

A given 2D crossbar with defects can be represented by a 
bipartite graph, as shown in Fig. 1(b). A bipartite graph of an 
n×n crossbar is an undirected bipartite graph G1(Uvert, Vhor, E1)  
with partitions Uvert and Vhor, having |Uvert| = n and |Vhor| = n. Uvert 
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Fig. 1. (a) 3×3 nano-crossbar with two defects. (b) Bipartite graph of 
crossbar in (a). (c) Bipartite graph of logic function: F = ab+bc. 
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represents the set of input nanowires, and Vhor represents the set 
of output nanowires. E1 consists of representative edges for all 
the programmable non-defective crosspoints in the crossbar. 

A two-level logic function in a sum-of-products form can also 
be represented by a bipartite graph G2(Uvar, Vterm, E2), as shown 
in Fig. 1(c). In this scenario, Uvar represents the set of logic 
variables, and Vterm represents the set of product terms. E2 
consists of representative edges for the corresponding product 
terms contain the variables. 

When using a crossbar structure to implement a two-level 
logic function, the logical relationships between the variables 
and the product terms in the logic function can be represented 
by the connections between vertical and horizontal nanowires in 
the crossbar. Such logic-function-to-crossbar mapping problem 
can be formulated as a Subgraph Isomorphism Problem (SIP) 
[14]: returning an occurrence of logic function bipartite graph 
G2 as a subgraph of crossbar bipartite graph G1, which is a 
well-known NP-complete combinatorial search problem [14]. 

The DTLM problem can be formally defined as the following 
[11]: Given a defective m×m crossbar bipartite graph G1(Uvert, 
Vhor, E1) having |Uvert| = |Vhor| = m, and an n×n logic function 
bipartite graph G2(Uvar, Vterm, E2) having |Uvar| = |Vterm| = n, find a 
node mapping (M: Uvar→Uvert, Vterm→Vhor) such that (n1, 
n2)E2, n1Uvar, n2Vterm, (M(n1), M(n2))E1 holds. 

C. Literatures Review 

In the domain of subgraph isomorphism research, low 
complexity algorithms have been a subject of research during 
the last three decades. A certain number of algorithms were 
proposed to reduce the overall computational complexity of the 
search process by imposing restrictions on the graphs [26]. An 
alternative approach is that using an adequate representation of 
the search process and pruning unprofitable paths in the search 
space. A successful example that significantly reduces the size 
of the search space is the recursive algorithm proposed by 
Ullmann [15]. This algorithm is still one of the most commonly 
used approaches for SIP. Cordella et al. [16] suggested another 
recursive algorithm which grows a set of partial subgraphs until 
the isomorphic subgraph is found. It was testified that the 
growing process reduces considerably the search space by 
providing pruning rules and a dynamic ordering method.  

Rao et al. [11] proposed a recursive algorithm based on the 
search tree with backtracking, in which, three enhanced 
heuristic pruning techniques were presented to improve the 
efficiency by significantly cutting down unnecessary 
backtracking processes. While, even with the assistance of 
heuristic pruning techniques, the runtime of the recursive 
algorithm [11] is still prohibitive for larger scale graphs duo to 
the recursive nature of the algorithm. It can obtain good 
performance only on small scale problem instances (less than or 
equal to 16 inputs for logic functions).  

Heuristic algorithms are gaining more and more interest in 
recent years. Dehon and Naeimi [7] transformed the DTLM into 
a Maximum-Bipartite-Matching (MBM) problem. They first 
assumed the logic variables had been assigned to the input 
nanowires, then, they constructed a bipartite graph to model 

which product terms can be assigned to which output nanowires. 
Next, they abstracted the problem as to find a complete 
assignment from the product terms to the output nanowires, 
which is equivalent to the MBM problem. Although an exact 
MBM algorithm [21] could find the matching or an evolutionary 
algorithm [27] could produce a matching with near maximum 
cardinality, a linear-time greedy algorithm [7] was proposed to 
provide approximated results while running in substantially less 
runtime.  

Yellambalase and Choi [10] evaluated three different 
heuristic logic mapping algorithms for DTLM with clustered 
defects: the row-wise matching algorithm, the 
column-matching-first algorithm and the redundant 
column-matching-first algorithm. To choose a pin assignment 
from the variables to the input nanowires, one heuristic [10] was 
proposed to greedily assign the most frequently used variables 
in the product terms to the input nanowires with the smallest 
number of defects.  

Simsir et al. [17] introduced a hybrid nanowire-CMOS 
architecture which contained a compiler with a defect-tolerant 
logic mapping heuristic. The heuristic mapping algorithm 
employed the same greedy pin assignment method as [10]. 
While, instead of constructing the complete bipartite graph as 
[7], which is time-consuming, they constructed the bipartite 
matching between product terms and output nanowires step by 
step assisted by an exact MBM algorithm to check if a valid 
matching exists. 

Inspired by the canonization technique which is normally 
used in solving the Graph Isomorphism Problem (GIP), Gogen 
et al. [18] proposed a novel heuristic mapping technique based 
on the canonization instead of the search tree with backtracking, 
called KNS-2DS. KNS stood for K-Neighbor-Sort which was 
used for initializing their main mapping heuristic, 
2-Dimensional-Sort (2DS). 2DS operated on the adjacency 
matrixes corresponding to the crossbar and logic function 
bipartite graph respectively. Experiment results showed that 
KNS-2DS could reduce runtime significantly as opposed to the 
SAT-based technique [28].  

By now, all the state-of-the-arts heuristic algorithms rely on 
the fixed heuristics which show strong bias in favor of only 
small set of problem instances, and it is hard for these heuristic 
algorithms to find valid mappings for large scale logic functions 
with many variables and product terms.  

III.  MODELING AND EVALUATION  

A. Search Space of the DTLM 

Base on the definition of the DTLM, two decision vectors can 
be employed to represent the mapping trial M: input mapping 
vector (IMV) and output mapping vector (OMV) [29], where, 
IMV [v] = i if variable v is assigned to input nanowire i, 1≤v≤n, 
1≤i≤m; OMV [p] = o if product term p is mapped to output 
nanowire o, 1≤p≤n, 1≤o≤m. It seems that we can search the 
whole solution space spanned by IMV and OMV as previous 
works [29] and [30] did, but the extremely huge size of search 
space, P(m, n)×P(m, n), will make the problem very hard to be 
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solved with limited computational resource, where P(m, n) is 
the number of n-permutations of m. 

Fortunately, as suggested in [7] and [17], when logic 
variables are previously assigned to input nanowires (IMV), the 
solution space of another mapping vector (OMV) will be 
restricted severely. For example as shown in Fig.1, if IMV is set 
as [1, 2, 3] which means a is assigned to A, b is assigned to B, c 
is assigned to C, thus ab cannot be assigned to D, because there 
is no edge between B and D in crossbar bipartite graph. 
Therefore, we can construct a bipartite graph to model which 
product terms can be assigned to which output nanowires as 
shown in Fig. 2. While creating the bipartite graph, we add one 
node on the “left side” for each product term p, and one node on 
the “right side” for each output nanowire o. An edge between p 
and o indicates that the product term p is compatible with the 
defect pattern of the crossbar, and can be realized by o. Then, 
the problem is transformed to find a complete assignment from 
the product terms to the output nanowires which is equivalent to 
the MBM problem [22]: 

Given an undirected bipartite graph G = (U, V, E), where U 
and V are disjoint and all edges in E go between U and V. A 
matching is a subset of edges ME such that for all vertices 
vUV, at most one edge of M is incident on v. We say that a 
vertex vUV is matched by matching M if some edge in M is 
incident on v; otherwise, v is unmatched. A maximum matching 
is a matching of maximum cardinality, that is, a matching M 
such that for any matching M', we have |M|≥|M'|. The set of 
dashed lines in Fig. 2 is a MBM in the graph. 

B. Ford-Fulkerson Method for MBM 

Given an undirected bipartite graph G = (U, V, E), one can 
use the Ford-Fulkerson method [22] to find a MBM in 
polynomial time in |UV| and |E|. The trick is to construct a flow 
network where flows correspond to matchings. The 
corresponding flow network G' = (V', E') for G is defined as 
follows: We let the source s and sink t be new vertices, and V' = 
UV{ s, t}. The directed edges of G' are the edges of E, 
directed from U to V, along with |UV| new edges: E' = {(s, u): 
uU}{( u, v): uU, vV, and (u, v)E}{( v, t): vV}.  To 
complete the construction, unit capacity is assigned to each edge 
in E'. Thus, given an undirected bipartite graph G, one can find a 

MBM by creating the flow network G', running the 
Ford-Fulkerson method, and directly obtaining a maximum 
matching M from the integer-valued maximum flow f found. 

The Ford-Fulkerson method is iterative as shown in 
Algorithm 1  [22]. The algorithm starts with f(u, v) = 0 for all u, 
v V’, giving an initial flow of value 0. At each iteration, the 
flow value is increased by finding an "augmenting path" that can 
be thought of simply as a path from the source s to the sink t 
along which more flow can be sent and augmented. This process 
is repeated until no augmenting path can be found. The 
max-flow min-cut theorem proves that upon termination, this 
process yields a maximum flow. The details of the basic 
Ford-Fulkerson algorithm and its improved versions can be 
referenced in [22]. 

C. Optimization Model 

Given the IMV, the search space of OMV can be significantly 
reduced via creating the corresponding bipartite graph modeling 
which product terms can be assigned to which output nanowires. 
Furthermore, it is possible to employ the Ford-Fulkerson 
method to find a MBM exactly between product terms and 
output nanowires. If each product term has a corresponding 
output nanowire in the matching, the given IMV is judged global 
optimum and a valid mapping is found. For example, given IMV 
= [1, 2, 3] for Fig. 1, its corresponding bipartite graph can be 
created as shown in Fig. 2, in which a MBM OMV = [3, 2] 
(dashed lines in Fig. 2) would be obtained, which means both ab 
and bc have corresponding output nanowires in the matching, so 
the given IMV = [1, 2, 3] is a global optimum and the 
combination of IMV = [1, 2, 3] and OMV = [3, 2] is a valid 
mapping trial M. 

The MBM problem is exactly a matching problem, which can 
be relaxed to be an optimization problem via allowing the 
existence of unmatched product terms in the solution. The 
following objective function can be defined for the given IMV: 

1 1

/
n n

p p p

p p

Objective m w w
 

     (1) 

Where, mp  {0, 1} represents if product term p has a 
corresponding output nanowire o in the matching under the 
given IMV, while, weight wp represents the impact of product 
term p on the fitness value. Objective = 1 means each product 
term has a corresponding output nanowire in the matching, so a 
valid mapping is found.  

ab

bc
E

F
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Fig. 2. Maximum-bipartite-matching (dashed lines). 
 

Algorithm 1: Ford-Fulkerson Method [22] 
 

//Ford-Fulkerson method for maximum flow (MBM) 
Input : Flow network G' = (V', E') 
Output : Maximum flow f 
1: f  = 0 
2: while there exists an augmenting path p do 
3:   augment flow f along p 
4: end while 
5: return  f 
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So far, the problem of DTLM is modeled as a combinatorial 
optimization problem, or rather as an assignment problem (AP) 
[31]–[35]: optimizing the pin assignment from logic variables to 
input nanowires (IMV), while evaluating the IMV according to 
(1) through the exact MBM evaluation (Ford-Fulkerson 
method).  

D. Problem Characteristics 

Although the DTLM has been modeled as an AP, it is 
difficult to apply the widely used effective algorithms for APs 
directly due to the characteristics of the DTLM itself. For 
example, the encoding of the solution (IMV) in the DTLM is 
essentially an incomplete permutation, while a complete 
permutation is necessary in algorithms for QAP (Quadratic 
Assignment Problem) [31] or a combination of integers for TAP 
(Terminal Assignment Problem) [32]. Such difference in 
encoding requires problem-specific operators for the DTLM, 
such as the mutation operator in MA/FA to be introduced in 
section IV. In addition, the high time-complexity of quality 
evaluation of candidate solutions in the DTLM is also a 
challenge compared with other APs. This issue has to be 
considered from the point of view of algorithmic efficiency to 
design operators for the DTLM, such as the local search 
operator in MA/FA to be introduced in section IV.  

IV.  MA/FA  FOR THE DTLM 

In this section, the Memetic Algorithm (MA) specialized for 
the DTLM is presented. Besides incorporating successful 
elements of previous effective heuristic mapping algorithm [10], 
[17], the proposed MA gains pretty good balance between 
quality of solution and running time in two approaches: 1) 
incorporating evolutionary computation framework to enhance 
the global optimization; 2) introducing approximated MBM 
evaluation method [7] to reduce the running time of the whole 
algorithm. The idea of introducing local search and fitness 
approximation into EAs is a proven technique [36], which can 
help to solve complex problems more effectively and 
efficiently. 

A. Framework of MA/FA 

The procedure of proposed MA/FA is depicted in Algorithm 
2. The Genetic Algorithm (GA) is adopted to work as the 
evolutionary computation framework of the Memetic Algorithm 
due to its success history on many assignment problems 
[31]–[35]. The detailed design of the elementary steps of the 
algorithm is introduced below. 
1) Encoding 

The encoding of IMV solutions used in our implementation is 
straightforward. We encode the permutation  (denotes a 
permutation of the set M = {1, 2,…, m}) as a vector of input 
nanowires, such that the value j of the i th component in the 
vector indicates that input nanowire j is assigned to logic 
variable i ((i) = j ). 

It is notable that the logic function size n is smaller than the 
crossbar architecture size m in some cases, so IMV is an 
incomplete permutation. In order to take advantage of the 

previous crossover operators proposed previously, CX 
recombination, the complete permutation  is used instead of 
incomplete permutation. However, only the first n components 
will be decoded as IMV for the MBM-based fitness evaluation. 
2) Crossover 

The CX recombination operator [31] has been testified to be 
an effective operator for assignment problems. It preserves the 
information contained in both parents in the sense that all alleles 
of the offspring are taken either from the first or from the second 
parent. The operator does not perform any implicit mutation, 
since an input nanowire j that is assigned to variable i in the 
child is also assigned to variable i in one or both parents. 

In the first phase, all input nanowires found at the same 
variable in the two parents are assigned to the corresponding 
variables in the offspring. Then, starting with a randomly 
chosen variable with no assignment, a nanowire is randomly 

G1(Uvert, Vhor, E1)    Bipartite graph of crossbar architecture 
G2(Uvar, Vterm, E2)  Bipartite graph of logic function 
N   Population size  
P    Parents 
B   Offspring 
t   Iteration counter 
f   Fitness value 
    Greedy strength factor  
    Exact evaluation gap 
Pcross   Probability of crossover 
Pmut   Probability of mutation 
Pls   Probability of local search 

Algorithm 2: MA/FA 
 

//The pseudo-code of MA/FA for the DTLM 
1: Pi = random permutation , i=1, 2,…, N  
2: f(Pi) = Exact_MBM_Evaluation(Pi), i=1, 2,…, N 
3: t = 0; 
4: Repeat 
5: t = t+1 
6:   for  i = 1 to N do 
7:     select two parents Pj, Pk,from P randomly 
8:     Bi = Crossover(Pj, Pk, Pcross) 
9:   end for 
10: for  i = 1 to N do 
11:    Bi = Mutation (Bi, Pmut) 
12:    Bi = Greedy_Reassignment(Bi, Pls, ) 
13: end for 
14: for i = 1 to N do 
15:     if t% == 0 then 
16:        f (Bi) = Exact_MBM_Evaluation(Bi) 
17:     else 
18:        f (Bi) = Approximated_MBM_Evaluation (Bi) 
19:     end if  
20: end for 
21: P = Selection_for_Survival (P, B) 
22: until  runtime reached or a valid mapping founded  
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chosen from the two parents. After that, additional assignments 
are made to ensure that no implicit mutation occurs. Then, the 
next unassigned variable to the right (in case we are at the end of 
the genome, we proceed at its beginning) is processed in the 
same way until all variables have been considered. 
3) Mutation 

Since the logic function sizes n may be smaller than or equal 
to the crossbar architecture sizes m, we consider applying a 
mutation operator in two cases: 1) If n<m, we will randomly 
select a gene to be mutated and exchange its value with another 
gene from the last n-m gens. 2) If n=m, we will randomly select 
two genes and then exchange their values. 
4) Selection 

Selection occurs two times in the main loop of MA/FA. 
Selection for reproduction is performed before a crossover 
operator can be applied, which is based on a purely random 
basis without bias to filter individuals, and selection for survival 
is performed to reduce the population to its original size, which 
is achieved by choosing the best individuals from the pool of 
parents and children [31]. 

B. Greedy Re-assignment Local Search 

It was thought that some universal local search methods, such 
as the 2-opt [37] and the fast-2-opt [31] heuristics, could be 
applied to the problem of DTLM. These universal local search 
methods employ no problem-specific knowledge, and require 
very frequent quality evaluation of the generated solutions to 
gain information for guiding search, which means a large 
number of runs of Ford-Fulkerson algorithm for MBM are 
needed during the execution of the whole algorithm. While in 
practice, the execution of Ford-Fulkerson is very 
time-consuming for a moderate scale of MBM problem. 

A variant of the 2-opt heuristic was tested on the DTLM 
problem. In order to speed up the local search process, the 
variant is based on performing the first swapping found that 
increases the fitness. The experimental results were negative as 
expected. The MA with the variant of the 2-opt heuristic cannot 
find a valid mapping in the given runtime on most benchmark 
instances. 

There is a good knowledge that has been testified to be 
effective on most instances of DTLM, that is, a more frequently 
used variable needs more functional crosspoints. By assigning 
the most frequently used variables in the product terms to the 
input nanowires with the smallest number of defects, the greedy 
assignment heuristic might find the feasible solution with a high 
probability [10] [17]. However, there is no flexibility in such 
strong greediness, resulting in poor performance even on small 
scale problems as shown in Section V. C. In addition, direct 
application of such strategy will make all individuals identical 
solution (all individuals are the same). 

Inspired by the knowledge, a new problem-specific local 
search operator is designed in MA/FA, which reassigns the 
input nanowires of parts of the variables via taking advantage of 
the greedy information extracted from the problem instances. In 
more detail, given a pin assignment (IMV), n× variables and 
their corresponding n× input nanowires are randomly selected 

and remarked as unvisited, where n is the number of variables 
and 01 is named greedy strength factor here. Then, the 
greedy assignment heuristic is applied on these selected 
variables and nanowires to get a new solution (IMV). The new 
local search process, which incorporates problem-specific 
knowledge with stochastic evolutionary search, is named 
Greedy Re-assignment Local Search (Algorithm 3 ). 

The greedy strength factor  provides a flexible control on 
the randomness or greediness of the local search operator. The 
randomness/greediness of the operator will decrease/increase 
along with the increasing of . When =1, the whole IMV will 
be re-assigned according to the greedy assignment heuristic [10], 
[17], which will result in identical solution for the current 
DTLM instance, therefore the operator will reach its minimum 
randomness and maximum greediness. 

Besides randomly selecting n× variables, a greedy selection 
strategy that selects the n× most frequently used variables was 
also studied. The experimental analysis showed that, with such 
greedy selection strategy, the diversity of the population 
degraded quickly, and the runtime of the algorithm for getting a 
valid mapping was extended dramatically in most cases, 
furthermore, the algorithm could not even find a valid mapping 
in the given runtime on some benchmark instances. 

C. MBM-oriented Fitness Evaluation 

The fitness function can be defined directly from the 
objective function (1): 

1 1

/
n n

p p p

p p

Fitness m w w
 

     (2) 

Where, mp and wp have been defined in Section III. C. Fitness 
= 1 means each product term has a corresponding output 
nanowire in the matching, so a valid mapping is found.  

An appropriate weight setting can guide the optimization 
algorithms to converge to the global optima (“1” for our fitness 
function) faster. As suggested in [30], the value of weight wp is 
related to the number of variables vp in product term p, that is, it 
is harder to map a produce term p whose vp is larger. Therefore, 

Algorithm 3: Greedy-Re-assignment-Local-Search 
 

//Greedy re-assignment from logic variables to input 
nanowires IMV 
Input : Pin assignment IMV  
Output : New pin assignment IMV 
1: randomly select n× variables and their corresponding 
n× input nanowires, mark them unvisited 
2: while there are unvisited logic variables do 
3:   find the unvisited variable v with maximum degree 
4:   find the unvisited input nanowire i with maximum 
degree 
5:   IMV[v] = i 
6:   mark v and i as visited 
7: end while 
8: return IMV 
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wp are expressed as vp
k and k is set experimentally. Fig. 3(a) to 

(f) show the influence of the value of k on the performance of 
MA/FA on two randomly selected benchmark instances with n = 
48 and m = 60. They are statistic mean values from 30 
independent runs for each instance. Fig. 3(a) and (d) show the 
evolutionary curves of fitness value with runtime (limited to 
90s). In order to see the differences clearly, they are enlarged for 
the last 10s as shown in Fig. 3(b) and (e). Fig. 3(c) and (f) show 
the evolutionary curves of success rate (the probability of a 
valid mapping is found) with runtime. Although the figures 
show that larger k can accelerate MA/FA converge to a higher 
fitness value, what we really care about is the success rate rather 
than the fitness value, so k is set as 4 for MA/FA as shown in 
Fig. 3(c) and (f). Similar experiments results are obtained for 
other EAs and other benchmark instances in this paper, and k = 
4 is among the best values that can be chosen, so k is fixed at 4 
for all the EAs in the following experiments. 

D. MBM-oriented Fitness Approximation  

The problem of DTLM is an emerging application that we are 
facing highly integrated nanoelectronic architectures. It is 
possible that more than millions of crossbar-based arrays in a 
nano-chip need to be configured in the future. Therefore, the 
runtime is one of the critical factors for this application from a 
practical perspective. In this section, an approximated fitness 
evaluation strategy is introduced to reduce the runtime caused 
by the high time-complexity of the exact MBM evaluation. This 
is a common technique in surrogate-assisted evolutionary 
algorithms.  

Surrogate models [38] (e. g. polynomial models, neural 
networks, support vector machines) are often used for 
computationally expensive optimization or high-dimensional 
optimization, and the models need to be pre-trained offline or 

learned/updated online resulting in extra time consumption. 
Therefore, these conventional models cannot be applied to this 
application. Instead of approximation models, we introduce an 
existing linear-time greedy algorithm [7] (Algorithm 4 ) to 
provide approximated MBM evaluation within substantially 
less runtime. The approximation method does not need to be 
pre-trained or learned online, thus it is well suited for the DTLM 
from a practical point of view. 
  Given an undirected bipartite graph G = (U, V, E) to represent 
the relationships between the product terms and the output 
nanowires. Let U be the set of product terms, and V the set of 

(a) (b) (c) 

(d) (e) (f) 
Fig. 3. The influence of value of k on the performance of the MA/FA on two randomly selected benchmark instances (No. 7 and 12) with n=48 and m=60. 
 

Algorithm 4: Approximated-Matching [7] 
 

//Approximated algorithm for matching product terms to 
output nanowires OMV 
Input : Bipartite graph G = (U, V, E) 
Output : Pin assignment OMV 
1: do { 
2:   p  = unmapped product term in U with largest fan-in in 
G 
3:   do { 
4:     o  = nanowire randomly selected from unused output 
nanowires in V 
5:     if  p can be mapped to nanowire o then 
6:       OMV[p] =  o 
7:       mark p as mapped 
8:       mark o as used 
9:     end if  
10:    } while (p unmapped) 
11:  } while (there are unmapped p in U) 
12: return  OMV 
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output nanowires. Let p represent a product term in U, and o an 
output nanowire in V. The approximated MBM algorithm 
(Algorithm 4 ) picks the p terms in decreasing order of their 
fan-in size in G (because larger fan-in product terms are harder 
to map), and chooses the o terms randomly. When the number of 
functional junctions per nanowire is bound to a constant, the 
number of wires tested in line 5 for each product term p is a 
constant. Consequently, this algorithm runs in linear time, 
O(|U|). 

In MA/FA, both the exact and approximated algorithms for 
MBM are used to evaluate the fitness of candidate solutions in 
order to balance the accuracy and speed. Specifically, we use 
single exact MBM evaluation for the population in every  
iterations, where  is called exact evaluation gap here. The 
influence of the value of  will be tested in Section V as 
suggested in [39].  

E. Accuracy of the Approximated-Matching 

A reasonable evaluation method is proposed for the accuracy 
of Approximated-Matching. Give a bipartite graph G(U, V, E), 
the measure Accur1 can be defined as follows: 

|M1M2|/|M1|×100%  (3) 
While the measure Accur2 is can be defined as: 

|M1M2|/|M2|×100%  (4) 
Where M1 (the real MBM) and M2 are the matchings found by 

the Ford-Fulkerson Method and Approximated-Matching 
respectively. Accur1 and Accur2 represent how the intersection 
M1M2 overlaps with M1 and M2 respectively. Since a strict 
theoretical analysis of the accuracy is very hard and out of the 
scope of the paper, we test the accuracy of 
Approximated-Matching on n = 48 benchmark instances, where 

IMVs are randomly generated one hundred times to obtain 
statistic mean values. Fig. 4(a) and (b) show the results of 
Accur1 and Accur2. High Accur1 (above 80%) means that the 
most of matching M1 can be obtained by 
Approximated-Matching, while high Accur2 (above 85%) 
means that the most of matching M2 are existed in the real MBM 
or M2 is a approximated subset of M1. Therefore, 
Approximated-Matching can prove good approximations to the 
real MBMs. 

MA/FA can avoid the false optima in the following three 
aspects: 1) The good accuracy of Approximated-Matching can 
relax the problem of false optima, 2) MA/FA uses the idea from 
generation-based evolution control [39] which can guarantee 
the correct convergence when the approximate fitness model 
has false optima, 3) The problem of DTLM is a combinatorial 
search problem in nature, thus what we are really concerned 
with are the global optima (when fitness = 1) which are always 
true. If the approximated evaluation gets a maximum fitness 
value ‘1’, a valid mapping is searched. 

V. EXPERIMENTAL STUDIES 

A. Benchmark Instances 

As far as we know, no benchmark instances have been 
specialized for the DTLM, so we randomly generate a large set 
of benchmark graphs for logic functions and crossbar 
architectures as previous work did [10], [29], [30]. All the 
benchmark graphs used in the simulation in this paper and 
MA/FA source codes with supporting documents are available 
at: http://home.ustc.edu.cn/~yuanbo/ MAFAforDTLM.rar. 

For benchmark graphs of crossbar architectures, we set 
different sizes: m = 16, 24, 60, 64 and defect density (1-|E1|/m2): 
p = 15% (the worst case value [6]) and uniform defect 
distribution (which is the most common assumption in 
nanoelectronics [7]–[9], [11]). For ease of recording and 
comparison, we give such a name rule, C_nA1_pB1_C1, where 
A1 is the size of the graph, B1 is the defect density and C1 is the 
sequence order in the benchmark set with the same attributes 
(both m and p). For example, graph C_m60_p15%_5 means that 
the graph is of size 60, defect density 15% and it is the 15th 
graph in the benchmark set with the same attributes m = 60 and p 
= 15%.  

For benchmark graphs of logic functions, we set different 
sizes: n = 16, 24, 48 and average logic density (|E2|/n2): p = 40% 
(a typical value [29]) and uniform edge distribution. For ease of 
recording and comparison, we give such a naming rule, 
F_nA2_pB2_C2, where A2 is the size of the graph, B2 is the logic 
density and C2 is the sequence order in the benchmark set with 
the same attributes (both n and p). For example, graph 
F_n48_p40%_3 means that the graph is of size 48, logic density 
40% and it is the third graph in the benchmark set with the same 
attributes n = 48 and p = 40%. 

B. Parameters Setting 

The population size N is set N = 40 according to the problem 
scale, since the computational complexity of the fitness does not 

 

 
Fig. 4. Accuracy of Approximated-Matching on benchmark instances a) 
n=48 and m=60 and b) n=48 and m=64. 
 

http://home.ustc.edu.cn/~yuanbo/%20MAFAforDTLM.rar


IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 18, NO. 6, DECEMBER 20143 9 

allow evolving much larger populations in reasonable time. A 
large greedy strength factor  will weaken the stochastic nature 
of evolutionary algorithm, thus we set  = 0.1 empirically. We 
set optimal parameters Pcross = 0.8, Pmut = 0.2 and Pls = 0.8 
experimentally by cross validation. 

In addition, MA/FA uses the idea from generation-based 
evolution control [39]. In order to test the influence of exact 
evaluation gap  on the performance of MA/FA, we record the 
average runtime (in seconds) of the algorithms if they find a 
valid mapping on n = 48 benchmark instances. Thirty 
independent runs are executed to obtain statistic mean values. A 
few different values of exact evaluation gap  are tested as 
shown in Fig. 5(a) and (b). The experimental results show that 
MA/FA have better performance on  = 5 and 10, and the 
sensitivity is low between  = 5 and 10. Although 100% 
mapping success rate can be obtained in most cases, higher 
success rates can be obtained by setting  = 10 on some hard 
problems (such as No. 7, 12 and 18 in Fig. 5(a)), thus  is fixed 
at 10 in the paper.  

All the experiments in this paper are performed on 2.66GHz 
Intel Core 2 Quad processors Q6700 platform with 6G memory. 
However, all tested algorithms are implemented as monolithic 
processes and no CPU core parallelism is exploited.  

C. Comparisons with the State-of-the-art Algorithms 

The heuristic mapping algorithm (HMA) [17] and recursive 
mapping algorithm (RMA) [11] are two representative 
algorithms for the DTLM whose performances have been 
testified successfully. Therefore, they are used for comparison 
in this paper. As stated above, they can only deal with small 

scale problems, so we set two experiments in the comparisons, n 
= m = 16 and n = m = 24. 

The runtime of the three algorithms (HMA, RMA, and 
MA/FA) is limited to 60s and 90s for n = m = 16 and n = m = 24 
respectively. All the algorithms are run independently for thirty 
times on each benchmark instance. For different problem scales, 
we randomly select twenty benchmark instances (mapping logic 
graphs to crossbar graphs) for comprehensive comparison. It is 
notable that the heuristic mapping algorithm is a deterministic 
algorithm, so the same result will be obtained after being run 
multiple times. Therefore, the success rate will be either 0% or 

TABLE I 
EXPERIMENTAL RESULTS OF HMA  [17], RMA [11] AND MA/FA  ON 

n=16, m=16 BENCHMARK INSTANCES 

No.  
HMA [17] RMA [11] MA/FA 

Psucc Avg Psucc Avg Psucc Avg 
1 0% NA 10% 7.328 100% 0.013 
2 100% 0.001 70% 8.36 100% 0.002 
3 100% 0.002 60% 13.608 100% 0.002 
4 100% 0.015 37% 6.344 100% 0.004 
5 100% 0.001 33% 11.222 100% 0.01 
6 100% 0.004 27% 12.348 100% 0.003 
7 100% 0.001 20% 15.732 100% 0.003 
8 100% 0.006 13% 31.433 100% 0.031 
9 0% NA 17% 21.54 100% 0.046 
10 0% NA 53% 12.73 100% 0.003 
11 100% 0.003 10% 3.944 100% 0.025 
12 0% 0.001 37% 17.298 100% 0.007 
13 100% NA 37% 25.357 100% 0.004 
14 100% 0.024 17% 21.445 100% 0.007 
15 100% 0.009 47% 11.287 100% 0.002 
16 100% 0.001 53% 8.586 100% 0.003 
17 0% NA 20% 17.638 100% 0.01 
18 0% NA 73% 13.089 100% 0.003 
19 100% 0.001 73% 4.504 100% 0.002 
20 100% 0.001 73% 10.462 100% 0.002 

 
TABLE II 

EXPERIMENTAL RESULTS OF HMA  [17], RMA [11] AND MA/FA  ON 

n=24, m=24 BENCHMARK INSTANCES 

No.  
HMA [17] RMA [11] MA/FA 

Psucc Avg Psucc Avg Psucc Avg 
1 0% NA 0% NA 100% 1.487 
2 100% 0.034 3% 10.574 100% 0.018 
3 0% NA 0% NA 100% 0.266 
4 0% NA 0% NA 100% 0.238 
5 0% NA 0% NA 100% 0.904 
6 100% 0.033 0% NA 100% 0.217 
7 0% NA 0% NA 100% 2.357 
8 0% NA 0% NA 100% 1.277 
9 0% NA 0% NA 100% 2.268 
10 0% NA 0% NA 100% 0.588 
11 0% NA 0% NA 100% 0.74 
12 0% NA 0% NA 100% 0.179 
13 0% NA 0% NA 100% 0.914 
14 0% NA 0% NA 100% 0.211 
15 0% NA 3% 38.213 100% 0.087 
16 0% NA 0% NA 100% 0.268 
17 0% NA 0% NA 100% 0.173 
18 0% NA 0% NA 100% 0.611 
19 0% NA 0% NA 100% 4.199 
20 0% NA 0% NA 100% 5.776 

 

 

 
Fig. 5. The influence of exact evaluation gap  in MA/FA on benchmark 
instances a) n=48 and m=60 and b) n=48 and m=64. 
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100%. Table I and II record the experimental results of different 
algorithms including: 
 Psucc: the success rate of the algorithms, i.e., the fraction 

of the thirty runs that found a valid mapping. 
 Avg: the average runtime (in seconds) of the algorithms if 

they find a valid mapping in thirty runs. 
Table I shows the experimental results of HMA, RMA and 

MA/FA on the benchmark instances of n = 16, m = 16. It can 
been seen that: 1) HMA has success rate of 100% on more than 
half of the test instances (14 out of 20), while has success rate of 
0% on other 6 test instances. The runtime of HMA is very short, 
this is due to that HMA uses the greedy pin assignment heuristic 

and the incomplete bipartite graph construction strategy. 2) 
RMA can find valid mappings on all instances, but it is very 
time-consuming compared with the other algorithms, this is due 
to the nature of recursion it adopts. Besides, RMA has low 
success rate (<50%) on most test instances (13 out of 20), 
although it was granted a long preset runtime (60s). 3) MA/FA 
can achieve success rate of 100% on all test instances with very 
short runtime, even on the instances that are hard for HMA and 
RMA (such as No. 1, 9, and 17). 

TABLE III  
EXPERIMENTAL RESULTS OF HMA  [17], GA, MA  AND MA/FA  ON n=48, m=60 BENCHMARK INSTANCES 

No.  
HMA GA MA MA/FA 

Psucc Avg Psucc Avg Std Psucc Avg Std Psucc Avg Std 
1 0% NA 100% 15.36 4.25 100% 6.06 1.55 100% 2.95 0.89 
2 100% 0.12 100% 5.65 2.19 100% 1.94 0.69 100% 1.89 0.25 
3 0% NA 100% 6.37 2.66 100% 2.36 0.4 100% 1.98 0.08 
4 0% NA 100% 19.97 5.32 100% 8.79 2.33 100% 4.6 1.98 
5 0% NA 100% 22.96 6.07 100% 10.51 2.66 100% 5.54 1.29 
6 0% NA 100% 27.66 9.97 100% 10.19 2.31 100% 4.97 1.63 
7 0% NA 67% 58.33 16.55 93% 50.09 14.16 90% 30.04 16.51 
8 0% NA 100% 8.39 2.08 100% 3.22 1.15 100% 2.2 0.48 
9 0% NA 100% 13.42 4.02 100% 4.04 1.1 100% 2.27 0.5 
10 0% NA 100% 18.72 4.58 100% 8.11 2.6 100% 4.45 1.53 
11 0% NA 77% 57.61 13.06 100% 33.69 11.95 100% 22.7 12.38 
12 0% NA 30% 64.98 9.39 57% 61.55 13.24 70% 46.09 18.48 
13 0% NA 100% 11.32 2.61 100% 4.65 1.55 100% 2.55 0.75 
14 0% NA 100% 27.18 7.38 100% 9.7 3.49 100% 4.46 1.03 
15 0% NA 97% 43.22 15.03 100% 19.76 6.59 100% 13.3 6.71 
16 0% NA 97% 40.29 11.63 100% 24.13 13.19 100% 11.62 5.47 
17 0% NA 100% 28.05 8.43 100% 10.02 1.81 100% 5.66 2.19 
18 0% NA 93% 54.72 15.56 100% 42.46 11.67 100% 24.5 13.41 
19 100% 0.16 100% 8.2 2.29 100% 2.44 0.91 100% 1.96 0.05 
20 0% NA 90% 48.3 16.46 100% 22.61 5.56 100% 10.63 4.44 

 
 TABLE IV 

EXPERIMENTAL RESULTS OF HMA  [17], GA, MA  AND MA/FA  ON n=48, m=64 BENCHMARK INSTANCES 

No.  
HMA GA MA MA/FA 

Psucc Avg Psucc Avg Std Psucc Avg Std Psucc Avg Std 
1 0% NA 100% 22.88 5.17 100% 8.61 2.41 100% 5.52 1.64 
2 0% NA 100% 13.3 3.96 100% 6.02 2.69 100% 3.29 1.15 
3 0% NA 100% 12.51 3.21 100% 4.73 1.33 100% 2.64 0.82 
4 0% NA 100% 14.27 3.61 100% 4.9 1.39 100% 2.73 0.81 
5 0% NA 100% 12.5 3.91 100% 5.23 1.81 100% 2.64 0.76 
6 100% 0.05 100% 5.45 1.9 100% 2.37 0.73 100% 2.03 0.24 
7 0% NA 100% 10.13 2.55 100% 3.18 0.76 100% 2.1 0.06 
8 100% 0.15 100% 10.65 2.91 100% 3.4 1.12 100% 2.14 0.13 
9 0% NA 100% 11.17 3.03 100% 4.1 0.85 100% 2.25 0.38 
10 100% 0.16 100% 15.84 4.18 100% 6.54 1.6 100% 3.3 1.14 
11 0% NA 100% 11.61 3.87 100% 3.65 1.14 100% 2.21 0.19 
12 0% NA 100% 34.22 8.51 100% 15.25 2.95 100% 7.12 1.88 
13 0% NA 100% 16.42 3.62 100% 6.15 1.89 100% 2.97 0.97 
14 0% NA 100% 33.17 11.84 100% 14.78 3.29 100% 8.47 2.26 
15 0% NA 100% 17.08 5.63 100% 8.38 2.28 100% 4.46 1.48 
16 0% NA 100% 5.88 2.54 100% 2.45 0.79 100% 2.12 0.09 
17 0% NA 100% 18.96 5.41 100% 6.03 1.87 100% 3.16 0.93 
18 0% NA 100% 4.48 2.13 100% 1.69 0.8 100% 1.92 0.49 
19 0% NA 100% 26.98 6.21 100% 10.35 3.36 100% 4.25 1.29 
20 0% NA 100% 11.8 3.9 100% 4.03 1.51 100% 2.38 0.41 
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Table II shows the experimental results of HMA, RMA, and 
MA/FA on the benchmark instances of n = 24, m = 24. It can be 
seen that: 1) HMA works on only two test instances (No. 2 and 
6) and the runtime is short (0.05s). 2) Granted a long runtime 
(90s), RMA can solve only two test instances (No. 2 and 15) 
with quite low success rate (3% in both cases) and long runtime 
(10.574s and 38.213s). 3) MA/FA can achieve success rate of 
100% on all test instances with very short runtime 
(0.018s5.776s).  

The above experiment results reveal that the recursive 
mapping algorithm [11] is very time-consuming with low 
success rates even on n = m = 16 problems, while the heuristic 

mapping algorithm [17] has a fairly poor performance on 
benchmark instances of n=m=24 although it is very fast. MA/FA 
can solve all benchmark instances efficiently and effectively. 

D. Effectiveness of the Greedy Assignment Local Search and 
Fitness Approximation 

Because the runtime of the recursive algorithm is 
prohibitively long, we only test the heuristic mapping algorithm 
for large scale problems. In addition, two other EAs are added 
to the comparisons. One is a MA following the flow of MA/FA 
without the Fitness Approximation operation, that is,  =1 in 
MA/FA. Another EA is the GA following the flow of the MA 

 

 

 

 

 
Fig. 6. The evolutionary curves of mapping success rate with runtime for the GA, the MA and MA/FA on n=48, m=60 benchmark instances 
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without the Greedy Re-assignment Local Search. With the 

comparison with these two algorithms, the effectiveness of 
Greedy Re-assignment Local Search and Fitness 
Approximation can be investigated. 

The parameters of MA/FA are set as in the previous 
experiments. The parameters of the MA are set as the same as 
MA/FA, except for value of  = 1. The parameters N and Pcross 
of the GA are set as the same as other EAs, and we set Pmut = 0.8 
for the GA experimentally by cross validation. 

Because MA/FA uses a hybrid fitness evaluation strategy, so 
we give a pre-determined maximum runtime for the algorithms. 
The runtime of the three EAs is limited to 90s and all the 

algorithms are run independently for thirty times on each 

benchmark instances. For different problem sizes, we randomly 
select twenty benchmark instances (mapping logic graphs to 
crossbar graphs) for comprehensive comparison. Table III and 
IV show the experimental results of different algorithms (HMA, 
the GA, the MA and MA/FA) including: 
 Psucc: the success rate of the algorithms, i.e., the fraction 

of the thirty runs where they find a valid mapping. 
 Avg: the average runtime (in seconds) of the algorithms if 

they find a valid mapping in thirty runs. 
 Std: the standard deviation of the runtime (in seconds) of 

the algorithms if they find a valid mapping in thirty runs. 

 

 

 

 

 
Fig. 7. The evolutionary curves of mapping success rate with runtime for the GA, the MA and MA/FA on n=48, m=64 benchmark instances 
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We perform statistical tests for the runtimes of paired EAs, 
GA vs. MA, GA vs. MA/FA and MA vs. MA/FA, on each single 
benchmark instance. In particular, a two-tailed t-test is 
conducted with a null hypothesis stating that there is no 
difference between two algorithms in comparison. The null 
hypothesis is rejected if the p-value is smaller than the 
significance level  = 0.05. The runtime of the algorithm which 
is statistically shorter than both other EAs will be highlighted in 
bold.  

Table III shows the experimental results of HMA, the GA, the 
MA and MA/FA on the benchmark instances of n = 48, m = 60. 
It can be seen that: 1) HMA only works on two test instances 
(No. 2 and 19) with short runtime (0.12s and 0.16s). 2) The GA 
has success rate of 100% on 13 test instances, and low success 
rate (<50%) on No. 12. 3) Compared to the GA, the MA 
improves the success rate significantly on test instances No. 7, 
11, and 12. Besides, the runtime is reduced to approximately 1/2 
to 1/3 on most instances (No. 16, 810, 1317, 19, 20). The 
comparison (the GA vs. the MA) demonstrates the advantages 
of introducing the Greedy Re-assignment Local Search. 4) 
Compared to the MA, the runtime of MA/FA is reduced further 
on most test instances (18 out of 20) as highlighted in bold. 
Also, MA/FA maintains as higher success rate as the MA, 
except on test instances No. 7, where the success rate is reduced 
slightly (3%). The comparison (the MA vs. MA/FA) 
demonstrates the advantages of introducing the Fitness 
Approximation for MBM evaluation. 

Table IV shows the experimental results of HMA, the GA, 
the MA and MA/FA on the benchmark instances of n = 48, m = 
60. It can be seen that: 1) HMA works only on three test 
instances (No. 6, 8, and 10) with short runtime (0.05s, 0.15s, 
and 0.16s), while the EAs have success rate of 100% on all test 
instances. 2) Compared to the GA, the runtime of the MA is 
reduced to approximately 1/2 to 1/3 on all test instances. 3) 
Compared to the MA, the runtime of MA/FA is reduced further 
on almost all test instances (19 out of 20) as highlighted in bold. 
The comparisons (the GA vs. the MA, the MA vs. MA/FA) 
demonstrate the advantages of introducing the Greedy 
Re-assignment Local Search and the Fitness Approximation 
Strategy. 

Given fixed n and p, the density of valid solution increases 
with the crossbar size m as suggested in [40], therefore the 
success rate of mapping is improved and the runtime is reduced 
as shown in Table III and IV. In addition, the accuracy of the 
approximated MBM evaluation also increases along with the 
crossbar size m as shown in Fig. 4, because a matching of 
approximated maximum cardinality is easier to find in a denser 
graph, therefore the performance of MA/FA can be further 
improved. 

Fig. 6 and 7 show the evolutionary curves of mapping success 
rate with runtime for the GA, the MA and MA/FA on the 
benchmark instances of n = 48, m = 60 and 64. Good 
performance of the MAs, especially MA/FA, can be observed 
obviously. 

VI.  CONCLUSION 

In this paper, a new framework to solve the DTLM via 
modeling the problem as a combinatorial optimization problem 
is presented. A new Memetic Algorithm is proposed to 
implement the framework, in which a Greedy Re-assignment 
Local Search operator is designed to make good use of the 
domain knowledge and the information extracted from the 
problem instances, a Fitness Approximation method is adopted 
to reduce the time consumption in fitness evaluation operation. 
In particular, a hybrid fitness evaluation strategy is presented, 
which incorporates approximated fitness evaluation with the 
exact fitness evaluation to get a proper balance between 
accuracy and time efficiency of fitness evaluation. The 
performance of proposed methods are testified and evaluated on 
a large set of benchmark instances of various scales. Experiment 
results show that the Greedy Re-assignment Local Search can 
help algorithm to find optimal solution with consumption of 
lower computational resources, while the hybrid fitness 
evaluation strategy with Fitness Approximation can reduce the 
time consumption for fitness evaluation dramatically. It is also 
obviously observed that the proposed MA/FA algorithm has the 
advantage on getting good balance between effectiveness and 
efficiency on various DLTM problem instances.  
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