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Abstract. The Traveling Salesman Problem (TSP) is one of the most
well-known problems in combinatorial optimization. Due to its NP-
hardness, research has focused on approximate methods like metaheuris-
tics. Tabu Search (TS) is a very efficient metaheuristic for combinatorial
problems. We investigate four different versions of TS with different tabu
objects and compare them to the Lin-Kernighan (LK) heuristic as well
as the recently developed Multi-Neighborhood Search (MNS). LK is cur-
rently considered to be the best approach for solving the TSP, while
MNS has shown to be highly competitive. We then propose new hybrid
algorithms by hybridizing TS with Evolutionary Algorithms and An-
t Colony Optimization. These hybrids are compared to similar hybrids
based on LK and MNS. This paper presents the first statistically sound
and comprehensive comparison taking the entire optimization processes
of (hybrid) TS, LK, and MNS into consideration based on a large-scale
experimental study. We show that our new hybrid TS algorithms are
highly efficient and comparable to the state-of-the-art algorithms along
this line of research.

Keywords: Traveling salesman Problem, Tabu search, Evolutionary al-
gorithms, Ant colony optimization, Memetic algorithms

1 Introduction

The Traveling Salesman Problem (TSP) [1,2,3,4] is perhaps the most-studied
optimization problem. Given n cities, a salesman leaves from a start city, visits
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each of the other cities exactly once, and returns back to the start city. The
tour of the salesman thus forms a cyclic path passing through each node in a
fully-connected graph of n nodes exactly once. In the graph, each edge from city
i to city j has a weight Di,j , which represents the distance. The task is to find
a tour (path) that yields the minimal total weight sum.

The TSP has been researched for decades. The optimization version of it
is NP-hard [3], so the worst-case runtime complexity of any exact TSP solver
is exponential [5]. As exactly solving the TSP is not generally feasible, many
approximate algorithms such as Evolutionary Algorithms (EAs) [6,7,8] and Ant
Colony Optimization (ACO) [9,10,11] have been introduced to tackle it. The Lin-
Kernighan (LK) heuristic [12], a Local Search (LS) method, and its derivatives
are considered to be the best performers for the TSP. In [13], an alternative ap-
proach known as Multi-Neighborhood Search (MNS) was introduced and found
to be a more efficient LS approach for the TSP than, e.g., Variable Neighborhood
Search [14] or Hill Climbing. MNS has also been shown to perform better than
pure EAs and Population-based ACO (PACO) [15].

Tabu Search (TS) [16,17] is one of the most widely known metaheuristics for
combinatorial problems and is able to provide high-quality solutions for many
problems. An EA hybridized with TS is shown to outperform pure TS on small-
scale TSP instances in [18].

The TSP is an ideal testbed for investigating and comparing new algorithms’
performances, since it is easy to understand and standard benchmarks with
known solutions (like the TSPLib[19]) are available. Additionally, there is a
large body of related work involving both the TSP and TS. However, virtually
all of them either only focused on small-scale problems, only compared different
parameter settings of the same tabu object [20] or did not apply sound statistics
to evaluate their results.

With the present work, we make the following contributions:

1. A full in-depth analysis of the performance of a TS algorithm over runtime on
all 110 of the symmetric TSPLib benchmark instances. The analysis is based
on both small-scale and large-scale instances, several different performance
metrics, and several different ways to measure runtime.

2. The comparison of three different tabu criteria as well as two different ways
to search the neighborhood of the current solution in TS.

3. A detailed comparison of TS to state-of-the-art LS algorithms such as LK
and MNS.

4. The introduction of two novel hybrid forms of the investigated TS algorithm
based on both EAs and ACO.

5. A detailed comparison of these hybrid TS algorithms to hybrid variants of
the above-mentioned LS approaches constructed in the same way as those
of TS.

The remainder of this paper is organized as follows. We first discuss related work
on automated experimentation (Section 2.1) and the TSP (Section 2.2). We then
present our TS approach, the three tabu criteria and new hybrid algorithms
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in Section 3. Our large-scale experimental study is discussed in Section 4 and
conclusions as well as future work are given in Section 5.

2 Related Work

The focus of this paper is not only to introduce new TS algorithms for the TSP,
but also on sound experimentation. Before outlining the state-of-the-art TSP
algorithms, we discuss the nature of these algorithms and how they influence
the experimental approach.

2.1 Related work on experimentation

All LS methods and most metaheuristics (e.g., EAs, ACO) are anytime algo-
rithms [21]. Even some exact methods, like Branch and Bound (BB) [22], belong
to this category. Anytime algorithms can provide a best guess of what the opti-
mal solution of a problem could be at any time during their run. LS methods,
for instance, begin with a random solution and iteratively refine it. Given a TSP
instance, BB would maintain the best solution discovered so far and investigate
a set of other solutions only if the lower bound for their tour length is better
than the actual tour length of that best-so-far solution.

If an anytime algorithm A provides a better final solution than another any-
time algorithm B, does this make A better? The traditional answer would be
yes, but what if the best guess of A for the solution is much worse than B’s
until after a very long (run)time? Due to their nature, anytime algorithms thus
cannot be assessed just by a final solution and runtime requirement, but by their
entire runtime behavior [13].

In the field of metaheuristic optimization, experimentation is the most im-
portant tool to assess and compare the performance of different algorithms.
Even though this has been the case for a long time, experimentation approaches
adopted in most of the existing studies rely mainly on the most basic statis-
tics, some of which are even flawed [13]. Proper experimentation is a complex,
time-demanding and cumbersome process.

The COmparing Continuous Optimisers (COCO) [23] system for numerical
optimization, used in the Black-Box Optimization Benchmarking workshops, is
one of the earliest approaches aiming to reduce the workload of an experimenter
by automatizing most of the steps involved in an experimentation process. Its
evaluation procedure generates statically structured papers that contain dia-
grams with runtime behavior information. The necessary data is automatically
collected from executed experiments.

UBCSAT [24], an experimental framework for satisfiability problems, is an-
other representative example of work in this area. UBCSAT focuses on a specific
family of algorithms: the Stochastic LS [25]. In COCO, the objective function
would automatically gather log data before returning its result to the algorithm.
In UBCSAT, this would be done through a trigger architecture, which can also
compute complex statistics online and provide them to the running algorithm.
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COCO and UBCSAT both explore algorithm behavior over runtime instead of
just comparing end results.

The TSP Suite[13] used for running the experiments in our work takes the
idea one step further. First, it provides software development support such as
unit testing. Second, it takes care of parallelization or distribution of workload
on a multi-processor system or cluster. Third, like in COCO, an algorithm per-
formance report can be created automatically. The difference, however, is that
it includes an in-depth description of the experimental procedure and presents
several different statistical analyses, such as statistical tests comparing the mea-
sured runtimes and end results, automated comparisons of the estimated run-
ning time (ERT) [23] curves over goal objective values or problem scales, and
automated comparisons of empirical cumulative distribution functions (ECDFs)
[23,26,24]. All of these statistics result in algorithm rankings, which are later
aggregated into a global ranking list. The global ranking provides some insights
on the general performance of a TSP solver.

Our TSP Suite is the first framework addressing the issue of runtime mea-
sures. Traditionally, runtime is either measured in CPU seconds or the number
of generated candidate solutions (i.e., objective “function evaluations” or FEs
in short). The problem with using CPU time as time measure is that results
obtained on different machines are inherently incomparable, while the number
of generated candidate solutions gives no information about the actual runtime
of an algorithm, since 1 FE may have different computational complexities in
different algorithms. For instance, in a LS algorithm or a mutation operator in
an EA, a new solution may be obtained from an existing tour of known length
by swapping two cities, which has the complexity of O(1). In ACO, the cre-
ation of one new solution has time complexity O(n2). In the TSP Suite, these
shortcomings have been addressed by introducing two new time measures: the
normalized runtime (NT) and the number of times the distance matrix D is
accessed (distance evaluations, DEs). The NT is the CPU time divided by a
specific performance factor based on machine and problem instances, thus ren-
dering (somewhat) machine independent time measure results. The DEs take
into account the different complexities of 1 FE in different algorithms. Statisti-
cal analyses through the TSP Suite are all conducted three times, based on the
FE, NT, and DE respectively. The algorithm ranking created therefore represents
a more balanced and fair perspective of an algorithm’s performance.

2.2 Related work on the Traveling Salesman Problem

A large body of work on the TSP exists, but the relevant literature focuses
mainly on single-algorithm end result comparisons and rarely takes into account
algorithms of different families. Notable exceptions for the latter can be found in
[27,28], while the runtime behavior of different pure and hybrid metaheuristics as
well as LS methods were studied in [13]. BB, LS and Evolutionary Computation
(EC) methods were considered in [22], and the state-of-the-art LS methods LK
and MNS were compared in [29].
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Generally speaking, LS algorithms dominate the research on TSP. They start
at a random or heuristically-generated solution. They remember the best solution
discovered so far and try to improve it. These improvements usually take place
in the form of modifications to the tour. The most prominent examples of such
modifications within the TSP domain are m-opt moves [13]: the exchange of
two cities in a tour, for instance, corresponds to the deletion and addition of
four edges (m = 4-opt) [30], the rotation of a sub-sequence of cities to the left
or right results in the deletion and addition of three edges (3-opt) [?,31], while
the reversal of a sub-sequence of a tour requires deleting and adding two edges
(2-opt) [?,32]. However, LS is likely to be trapped by local optima.

TS [33,16] is a LS method attempting to avoid this premature convergence
problem. In the last 30 years, TS was used to solve the TSP and its variants
several times as discussed in the comprehensive survey by Basu [20]. According
to Basu’s survey, most of the past TS-related studies have focused on just small-
scale TSP instances with no comparison of different tabu criteria, and typically
used only brittle end-of-run statistics. To fill this gap, we will conduct a large-
scale experimental study considering problem instances with more than 1000
nodes. We will also compare different tabu objects and final results with robust
statistical tests before applying statistics over the entire optimization processes.
In Section 3.1, where our algorithm and its components are introduced, we will
provide additional references to corresponding related studies on TS for the TSP.

3 Investigated Algorithms

3.1 Tabu search

In each iteration, a LS algorithm will look for a better solution s′ in the neigh-
borhood N(s) of the current (best) solution s. N(s) is spanned by the available
search operators. For a very simple LS algorithm that only accepts s′ when it is
better than s, the algorithm is likely to get trapped in a local optimum, i.e., a
solution whose neighborhood does not contain any better solution while itself is
not the globally optimal one.

To prevent this, the LS algorithm should be able to accept a move from s to
s′ even if s′ is worse than s – Simulated Annealing [34] is an example of such
an algorithm. However, this may lead to a “cycling” effect in the search space,
if the move leading out of the local optimum is undone in the next algorithm
iteration. TS therefore incorporates a memory structure, called tabu list T , to
forbid certain moves that would return to a recently visited solution. Instead of
searching the neighborhood N(s) of s, TS investigates N(s)\T . For this general
procedure, we analyze the performance impact of the following design criteria.

Tabu object One design criterion for TS is the data structure that is used to
represent prohibited solutions and the tabu list. We investigate three such tabu
criteria [35]:
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Solutions The simplest way is to “tabu” solutions that have been accepted in
the process of the algorithm. Our implementation does this by forbidding not
only a specific solution, such as (1, 2, 3, 4, 5), but also all equivalent solutions in
the symmetric TSP, such as (5, 4, 3, 2, 1), (3, 4, 5, 1, 2) or (4, 3, 2, 1, 5). T here is
implemented as a hash table with O(n) cost to compute the hash code of a tour.
We refer to TS using this method as TSS.

Moves We also prevent certain moves, i.e., applications of search operators,
that could lead back to a recently visited solution. Our TS uses three different
search operators, namely 2-, 3-, and 4-opt, each of which has a tuple of two node
indexes as parameters. We implement this tabu object by storing the nodes
corresponding to the indexes in T and preventing using them again for the tabu
tenure. If we apply a 2-opt move (sub-tour reversal) at index 2 and 4 to tour
(5, 3, 2, 1, 4), we would get (5, 1, 2, 3, 4) and prevent the two nodes 3 and 1 from
being the start or end node of subsequent moves. We refer to TS using this
method as TSM.

Objective Values We forbid repetitive objective values, i.e., tour lengths. If a
tour with length 783 is discovered, then for the tabu tenure |T |, the search must
not move to any tour with the same length (regardless of whether this tour is
the one previously discovered, equivalent to it, or entirely different). We refer to
TS using this method as TSO.

Tabu tenure The number of times (algorithm iterations) a certain move or
solution is prohibited by the tabu list is called the tabu tenure. It corresponds to
the maximum amount of elements in T . This tenure can be either fixed or based
on the problem scale. We compare both methods in our study. In the notation of
setup names used in our experiments, we append a tuple (α+γ) to the algorithm
names, e.g., TSO(10 + 10). The tabu tenure then equals α + γ

√
n, i.e., α is an

absolute value and γ will be multiplied by the square root of the problem scale.

Soft restarts If the algorithm cannot improve its best solution any further,
it can be restarted. Instead of restarting at a completely random solution, we
randomly shuffle a uniformly chosen part of the current best solution. This policy,
introduced by us in [13], leads to sufficient randomness while having a chance of
preserving some good building blocks. At a restart, the tabu list T will not be
emptied. This means two restarts that happen to start at the same solution (by
chance) will still take different paths in the search space.

Investigating the neighborhood In TS, the non-tabu neighborhood N(s)−T
of the current solution s is scanned for a better solution s′. If no such solution can
be found, our algorithms will immediately perform a soft restart (see above). For
all three tabu objects, we search the entire neighborhood for the best possible
s′. An alternative way is to search the neighborhood and if an s′ better than
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s is discovered then accept that one immediately. Since this approach is often
considered as inferior [29,36], we only test it for the solution tabu object setups.
We refer to it as TSF.

3.2 The Lin-Kernighan algorithm

The LK heuristic [12] and its derivatives dominate today’s TSP research [37,36,38].
A tour can be considered as β-optimal when it is impossible to improve the tour
quality by replacing β edges. LK can be considered as a variable β-opt LS. At
each step, the algorithm tests whether replacing β edges may achieve a shorter
tour (for increasing values of β). Let s be the current tour. The algorithm will
then, in each iteration, construct the sets X = {X1, . . . , Xβ} of edges to be
deleted from s and Y = {Y1, . . . , Yβ} of edges to be added to s, such that the
resulting tour would be valid and shorter. The interchange of these edges is then
a β-opt move. In the beginning, X and Y are empty. Pairs of edges are added
to X and Y such that the end node of the edge added to X is the start node
of the edge added to Y , whose end node will then become the start node of the
edge added to X in the next iteration, if any. The LK heuristic we compare our
TS to is based on that by Wu et al. [29], which uses the restart policy defined
in [13], the same as our TS.

3.3 Multi-neighborhood search

MNS is another efficient LS method for the TSP. In each iteration, MNS performs
an O(n2) scan that investigates the same neighborhoods as our TS at once. It
therefore tests all indexes i and j as potential indexes of start or end of a search
operation. For each pair {i, j}, the gain of each operation is computed and all
discovered improving moves enter a queue. The access to distance matrix D
is minimized by remembering (and updating) the lengths of all n edges in the
current tour and avoiding the check of redundant moves (swapping the cities at
indexes i and i+1 is equivalent to a reversal of the sub-sequence from i to i+1,
for instance).

After the scan, the best discovered move is carried out. Doing this may
invalidate some other moves in the queue, e.g., a sub-sequence reversal performed
overlaps with a potential sub-sequence left rotation. After pruning all invalidated
moves from the queue, the remaining best move is carried out, if any. If the
queue becomes empty, another scan of the current solution will be performed,
as new moves may have become possible. During this scan, only moves that at
least intersect with the previously modified sub-sequence(s) of the current best
solution need to be considered in order to speed up the search. If no improving
moves can be found anymore, a random sub-sequence of the current tour will be
randomly shuffled – the same soft restart method as used in our TS and LK.

MNS scans for all 2-opt and some 3- and 4-opt moves, thus investigates the
same neighborhoods as our TS. LK, on the other hand, investigates a larger
sub-set of possible m-opt moves.
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3.4 Evolutionary algorithms

EAs are population-based EC methods that start by generating a set of λ ran-
dom solutions. Out of these, the best µ ≤ λ solutions are selected as “parents”
of the second generation: λ offspring are created by applying either a unary
(mutation) or binary (crossover) operator to the parents. From then on, the µ
best individuals are selected from the λ offspring and their µ parents in each
generation in the case of a (µ + λ)-EA. A (µ,λ)-EA selects only from the µ
offspring. In this paper, we investigate such EAs using the neighborhoods also
used by our TS as mutation operators. Edge Crossover [39], which generates a
new solution by picking edges belonging to either of its two parents, is applied
as the recombination operator at a crossover rate of 1/3.

Hybridization of LS and EAs has a long tradition. Such hybrid algorithms,
where the LS algorithm either takes the place of the mutation operator or is
applied to each new solution (stemming from mutation or crossover), are called
Memetic Algorithms (MAs). Especially in the TSP domain, MAs are considered
to perform well. We propose MAs based on our TS, so called hMA(µ +, λ)TS,
and compare them with likewise-structured hybrids using LK and MNS as LS.
The little h in the name indicates that the first population of the MAs is not gen-
erated randomly, but instead stemmed from the Edge-Greedy, Double Minimum
Spanning Tree, Savings, Double-Ended Nearest Neighbor, and Nearest Neighbor
Heuristics, as in [13].

3.5 Ant colony optimization

ACO is another EC approach first introduced by Dorigo in 1992 [9]. It took
inspiration from the way ants find and reinforce short paths during foraging using
pheromones for communication. Although such algorithms are able to perform
well in many small-scale combinatorial problems, they suffer from quadratic
memory requirements as well as quadratic complexity of the process of creating
solutions.

In this paper, we investigate a state-of-the-art ACO variant, Population-
based ACO (PACO) [15], which has linear memory requirements. The PACO
algorithm maintains a population of k solutions. Pheromones are defined by the
edges occurring in these solutions. In each algorithm iteration, m solutions are
created as in standard ACO and the “oldest” solution in the whole population
is replaced by the best of the new generated solutions. Limited hybrid ACO
approaches have been applied to the TSP, although it was shown in [13] that
they perform particularly well. We therefore propose hybrid hPACO(k,m)TS
and similar variants with LK and MNS (which are heuristically initialized in the
same way as the hMAs).
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4 Experiments and Results

4.1 Experimental setup

We conducted experiments using the symmetric TSPLib benchmark cases, for
which all optima are known. We thus can measure the quality of a solution as
relative error f , i.e., the factor by which a solution (tour) is longer than the
optimum. Here, f = 0 stands for the optimal solution, and f = 1 indicates one
that is twice as long. We obtained results for all 110 problem instances up to
85,900 cities, and we considered all the results in the evaluation.

A total of 45 TS setups were built: 25 pure algorithms, 10 hybrids with
PACO, and 10 hybrid MAs. For each type of the tabu objects, we tested seven
tabu tenure settings: (10+0), (100+0), (500+0), (10000+0), (0+10), (0+20),
and (0+40). For TSF, we only tested four tabu tenure settings: (10+0), (100+0),
(500+ 0), and (10000+ 0). For the hybrid algorithms, we tested the best known
settings from [13], i.e., hPACO(3,10) and hMA(16+64). We hybridized them
with all four TSF settings and tabu tenures (10 + 10) and (500 + 0) for each of
the three tabu criteria.

Additionally, we investigated the pure LK and MNS as well as hybrids of
PACO with LK and MNS. Obviously, there are too many setups to present all
of them in a single plot. Therefore, we divided our analysis into comparisons of
pure and hybrid algorithms. We present only the setups that have performed
the best in our experiments each time.

4.2 Pure algorithm performance

hMATSO

hPACOLK

hPACOMNS

hPACOTSO

LK

hMATSF

MNS

hPACOTSF

TSF10000

TSM(0+40)

TSO(0+10)

TSS(500+0)

lg(NT)

e
c
d

f

(a) ECDF for NT and Ft = 0.0.

e
c
d
f

lg(NT)

(b) ECDF for NT and Ft = 0.1.

Fig. 1: ECDF diagrams for different (log-scaled) runtime measures and goal er-
rors.
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Let us first explore the performance of the pure TS algorithms. In Figure 1,
we plot the ECDF for different goal errors Ft and runtime measures. The ECDF
illustrates the fraction of runs that have discovered a solution with Fb ≤ Ft at a
given point in time. If the ECDF reaches 1, all runs have found such a solution.
In Figure 2, we plot the best normalized objective value Fb discovered by an
algorithm over runtime, where Fb = 0 means that the global optimal has been
reached and Fb = 1 indicates the discovery of a tour twice as long.

Tabu object We first analyze the three types of tabu criteria introduced in
Section 3.1. In Figure 1, whether based on runtime measure NT or FE, the
ECDF of TSO increases faster in the beginning and reaches higher end values.
TSM and TSS are not distinguishable.

hMATSO

hPACOLK

hPACOMNS

hPACOTSO

LK

hMATSF

MNS

hPACOTSF

TSF10000

TSM(0+40)

TSO(0+10)

TSS(500+0)

(a) Progress in Fb over NT for 64 ≤ n <

128.
(b) Progress in Fb over NT for 8192 ≤ n <

16384.

(c) Progress in Fb over FE for 64 ≤ n <

128.
(d) Progress in Fb over FE for 8192 ≤ n <

16384.

Fig. 2: Progress diagrams for different (log-scaled) time measures and problem
scales.

Figure 2 shows the improvement of solution quality over time, As can be seen,
all three criteria have very similar performances. A tabu object actually begins
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to control the search at a relatively late stage, at the point when the algorithm
reaches a local optimum (before that, it would not try to visit the same solution
twice). It seems that at this point, which is not visible in Figure 2 (due to the
large range of y-axis), TSO performs better.

Tabu tenure Not only the choice of the tabu object contributes to the per-
formance of TS algorithms, but also the choice of the tabu tenure. In Figure 3,
the seven ECDF curves of TS using the objective value as the tabu object sepa-
rate into two groups depending on whether the tabu tenure is fixed or based on
the problem scale. In the beginning, the two groups share similar curves, but in
the end, the algorithms using the problem-scale based tabu tenure reach higher
ECDF values.

However, the impact of tabu tenure strongly depends on the tabu object. In
the experiments, we see that the best settings for the three different types of
tabu objects are TSM(0 + 20), TSO(0 + 10), and TSS(500 + 0).

Investigating the neighborhood The most interesting finding in this set of
experiments is that the way our TS algorithms search the neighborhood has a
huge impact on the performance. In Figure 1, TSF has much better performance
than the TS algorithms that accept only the best solution in the neighborhood.
Its curve rises the fastest in the beginning and reaches the highest ECDF in
the end among all the TS algorithms. This proves that it can solve the most
benchmark instances.

Comparison with LK and MNS In Figure 1, we see that LK always as higher
ECDF values than TS and MNS in the end. MNS starts a little faster in the
beginning but its ECDF in the end is lower than TS and LK. All in all, we find
that the best TS setup is better than MNS and worse than LK. Consequently,
the TSP Suite ranks the algorithms as follows: LK, TSF, TSO(0 + 10), MNS,
TSS(500 + 0), and TSM(0 + 20).

4.3 Hybrid algorithm performance

We also investigated our newly proposed hybridized versions of TS with EAs
and PACO. Both of the hybrids were tested using two different settings for each
of TSS, TSO and TSM, as well as four different settings for TSF. We compared
them with the best known settings of the hybrid versions of LK and MNS, namely
hPACO(3,10)LK and hPACO(3,10)MNS.

Two of the best hybrid setups for TS accepting only the best solu-
tion in the neighborhood in each iteration are hPACO(3, 10)TSO(10 + 10)
and hMA(16 + 64)TSO(10 + 10). For TSF, the best settings are
hPACO(3, 10)TSF(10+0) and hMA(16 + 64)TSF(10+0).

Interestingly, in our experiments, the best tabu tenure for pure TSF is 10000,
but for hybrid TSF it is 10. A potential reason for this could be that operators
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e
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TSO(10+0)

TSO(100+0)
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TSO(0+10)

TSO(0+20)
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(a) Progress in Fb over NT for 64 ≤ n < 128.

Fig. 3: ECDF diagrams for different (log-scaled) runtime measures and goal er-
rors.

of the EA, such as crossover and selection, already somewhat avoid convergence
and a long tabu list would require more runtime for less additional benefits in a
hybrid algorithm.

From Figure 1, we can see significant improvement of TS after being hy-
bridized with EAs and PACO. The hybrids of TS outperform pure TS both in
terms of speed and end results: the ECDF curves of the hybrids start slight-
ly earlier, increase more rapidly, and finally reach at higher end points than
those of the pure algorithms. The pure TSO is able to solve less than 20% of
the benchmark instances, while hPACO(3, 10)TSO can solve almost 45% and
hMA(2, 4)TSO 41%, making PACO the better global optimization method to
hybridize TS with than an EA.

The same observations can be made with the hybrids of LK and MNS. We
see that hPACO(3, 10)LK and hPACO(3, 10)MNS outperform the pure LK and
MNS significantly. Besides that, hPACO(3, 10)LK and hPACO(3, 10)MNS per-
form better than hPACO(3, 10)TS.

When we set Ft = 0.1, the hybrid algorithms again outperform the pure ones
and can reach ECDF values higher than 0.9. The PACO hybrids of TSO and
TSF behave very similarly to the MAs. The hybrids of TSF even start earlier
than hPACO(3, 10)LK. If we measure time with FE, the hybrids of TSO start
the earliest among the investigated algorithms.

From Figure 2, we see that the hybrids algorithms always start at a lower
Fb, mainly due to their heuristic initialization. For small-scale problems, both
the hybrids and pure algorithms can decrease Fb towards 0 quickly, i.e., find
the optima quickly. However, in large-scale problems (Figure 2b), the hybrids of
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TSO start at a lower Fb and barely decrease it, while pure TSO gets a smaller
Fb in the end.

The aggregated algorithm ranking provided by the TSP Suite when compar-
ing all setups regarding ECDF, final results, expected runtime to the optimum,
and progress according to different runtime measures is:

hPACO(3, 10)MNS, hPACO(3, 10)LK, algohPACO(3, 10)TSF(10+0),
hEA(16 + 64)TSF(10+0),hPACO(3, 10)TSO(10 + 10), LK,
hEA(16 + 64)TSO(10 + 10), TSF10000, MNS, TSO(0 + 10), TSS(500 + 0), and
TSM(0+20).

5 Conclusions and Future Work

In this work, we have presented a large-scale experimental study investigating
the performance of several TS approaches. We analyzed the impact of three
different tabu criteria and introduced new and highly-efficient hybrid algorithms.
Our experiments have led us to the following major conclusions:

1. The pure TS algorithm works well on small- and medium-scale TSP in-
stances, but it cannot get very close to the global optimal for large-scale
problems.

2. As a simple algorithm, TS performs worse than LK but better than MNS,
while LK and MNS are both significantly more complicated.

3. The tabu object used in the tabu list can influence the performance.
4. Using a tabu object that forbids repeating objective values works better

than forbidding candidate solutions, even though the relevant literature has
focused largely on the latter.

5. Hybridization provides some considerable performance improvement.
6. Hybrid PACO works better than MAs (hybrid EAs), although the relevant

literature has focused largely on the latter.

We will continue to investigate TS algorithms on the TSP. We next plan to
implement additional tabu criteria mentioned in the literature such as [16]. In
addition, we will try more strategies to improve the performance of TS.
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7. Bäck, T., Fogel, D.B., Michalewicz, Z., eds.: Handbook of Evolutionary Computa-
tion. New York, NY, USA: Oxford University Press (1997)

8. De Jong, K.A.: Evolutionary Computation: A Unified Approach. Cambridge, MA,
USA: MIT Press (2006)

9. Dorigo, M.: Optimization, Learning and Natural Algorithms. PhD thesis, Milano,
Italy: Dipartimento di Elettronica, Politecnico di Milano (1992)
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