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ABSTRACT Object detection methods based on Convolutional Neural Networks (CNNs) require a large
number of images with annotation information to train. In aircraft detection from remote sensing images
(RSIs), aircraft targets are usually small and the cost of manual annotation is very high. In this article,
we tackle the problem of weakly supervised aircraft detection from RSIs, which aims to learn detectors
with only image-level annotations, i.e., without bounding-box labeled data during the training stage. Based
on the fact that the feature maps learned from the CNN network are localizable, we propose a simple
yet efficient aircraft detection algorithm called Weakly Supervised Learning in AlexNet (AlexNet-WSL).
In AlexNet-WSL, we utilize the AlexNet CNN as backbone network, but replace the last two fully connected
layers with a Global Average Pooling (GAP) and two convolutional layers. Based on the class activation
maps, we generate heat maps via reverse weighting for locating the target object. Unlike object detection
methods that require object location data for training, our proposal only needs image-level labelled data.
We furthermore build a set of remote sensing aircraft images, the Weakly Supervised Aircraft Detection
Dataset (WSADD) for algorithm benchmarking. The experimental results on the WSADD show that
AlexNet-WSL effectively detects the aircraft and achieves a detection effect equivalent to the Faster R-CNN
method and the YOLOv3 method, which both require bounding-box labelled data for training, with a lower
false alarm rate and a shorter training time.

INDEX TERMS Aircraft detection, remote sensing image, weakly supervised learning, convolutional neural
network.

I. INTRODUCTION
Remote sensing images (RSIs) are generated by acquiring
target information from reflected, radiated, or scattered elec-
tromagnetic waves through sensors mounted on various
remote platforms, which are far away from the target object.
With the rapid development of remote sensing technology,
various platforms with different imaging methods and dif-
ferent spatial resolutions have emerged and generate a large
number of images. Nowadays, remote sensing images have
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become an indispensable and important resource that are
widely used in civil and military applications [1]. As an
important research direction of remote sensing image inter-
pretation and analysis, object detection has attracted the inter-
est of academia and industry. Aircraft are one of the most
important targets in this field, which brings their recognition
from remote sensing image into the focus of attention.

As the spatial resolution of remote sensing image becomes
higher and higher, the information contained in the images
becomes more and more abundant. With the increasing pro-
cessing speed of computers, the image processing ability rises
and researchers use computer vision to process and analyze
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large numbers of RSIs. The research goal often is to get rid
of the bottleneck of manual interpretation and processing and
to achieve automated, intelligent interpretation of RSIs.

With the rapid improvement of Graphics Processing Unit
(GPU) performance, deep learning-based methods have been
used with overwhelming success in computer vision, data
mining, and recommendation systems. Many fields such
as smart medical care and unmanned driving have made
remarkable achievements [2]. In the field of computer vision,
Convolutional Neural Networks (CNNs) based deep learning
methods have made breakthrough progress in image classifi-
cation [3]–[5], image segmentation [6], [7], and object detec-
tion [8]–[12]. Compared with traditional methods, CNNs can
extract richer semantic features and high-level representa-
tions, and also can better identify the discriminations between
distinct objects. More importantly, the CNN is an end-to-end
model structure. The original image is used as the input and
the output of the network is the final result for the end user,
which removes the need for previously required complex
manual operations such as data preprocessing, feature extrac-
tion, and characterization.

Researchers have tried to introduce CNNs into aircraft
recognition from RSIs, but this application field is still in
its infancy and there are many difficulties and challenges:
(1) Unlike natural scene images, target objects in RSIs occupy
a relatively small part of the image. (2) Under the condi-
tion of high spatial resolutions, more complex backgrounds
and interference factors that are difficult to distinguish from
aircraft targets appear. (3) CNN methods require a large
amount of image data with labeled information to learn, while
labeling RSIs requires high labor costs.

Feature maps extracted by a CNN network are localizable
representations of the image [13], [45]. With this in mind,
we propose a simple yet efficient weakly supervised aircraft
detection pipeline. Based on class activation maps, it locates
the target object in RSIs. With only image-level annotations,
i.e., without bounding-box labeled data, the CNNAlexNet [5]
is used to implement the aircraft detection. We call our
method Weakly Supervised Learning in AlexNet (AlexNet-
WSL). Additionally, we build and provide a new remote
sensing aircraft detection dataset using Google Earth satellite
imagery. The experimental results on the newly-built dataset
show that our proposed method effectively detects the air-
craft. It achieves a detection effect equivalent to both Faster
R-CNN [10] and YOLOv3 [11], which, however, need to use
bounding-box labelled data. Additionally, our AlexNet-WSL
has a lower false alarm rate and a shorter training time.

Our contributions are summed up as follows:
• We design a new aircraft detection model for RSIs,
which integrates Weakly Supervised Learning into a
CNN. The proposed method effectively extracts the
semantic features of the data with only image-level
annotations, thus significantly improving the aircraft
detection process.

• We propose a heat map generation method during the
feedforward step of the test phase. With the highlighted

parts in the heat map, we can generate a binary image
indicating the object location.

• We build a benchmark dataset for remote sensing air-
craft detection, called the Weakly Supervised Aircraft
Detection Dataset (WSADD). We make the WSADD
available in an online repository.

The rest of this article is organized as follows. Section 2
provides a brief overview of the related work on aircraft
detection and weekly supervised learning. In Section 3,
we introduce our novel weekly supervised aircraft detection
algorithm along with a model architecture analysis. Then,
Section 4 details the experimental results and discussions
on the WSADD dataset. Finally, we conclude the paper in
Section 5.

The WSADD is downloadable at the website of:
https://doi:10.5281/zenodo.3843229.

II. RELATED WORK
A. AIRCRAFT DETECTION FROM RSIs
The process of aircraft detection from RSIs involves process-
ing and analyzing images to estimate whether they contain
aircraft targets and then to calibrate the positions of the
detected aircraft. Similar to general object detection methods,
aircraft target detection from RSIs can be divided into the
following three steps: candidate region selection, candidate
region feature extraction, and aircraft target recognition.

For candidate region selection, sliding window methods
[14], [15] based on saliency [16] are commonly used. The
typical approaches for candidate region feature extraction are
based on general low-level features [17], [18], middle-level
features [19], [20], and the specific design features of the
aircraft targets [21], [22]. The methods for aircraft target
recognition mainly employ template matching [23], [24]
and model-based learning [25]–[27]. These methods have
achieved some good results, but also have limitations of ow
precision and long runtime [28]. There is a strong correlation
among these three steps, as the results of each step will
directly affect the next step. Furthermore, the serial connec-
tion between each step needs to be carried out manually,
which complicates the whole detection process.

Deep neural networks have made rapid progress in
the application of object detection in computer vision.
Among them, the R-CNN [29] is considered as a milestone
work. Based on the R-CNN framework, SPP-Net [8], Fast
R-CNN [9], Faster R-CNN [10], YOLO [11], and SSD [12]
were developed successively, continuously improving the
efficiency of object detection.

As a result, the application of deep neural networks has
led to breakthroughs in aircraft detection from RSIs [1].
The work [30] proposes a DBNs based pixel-wise learning
method for aircraft detection from RSIs. In [31], an air-
craft landmark points matching mechanism is integrated into
a vanilla network for object detection in satellite images.
Zuo et al. [32] perform a combination of aircraft detec-
tion and semantic segmentation using a CNN method.
A conditional generative adversarial networks (GANs) based
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unsupervised representation learning is proposed for aircraft
detection in [33]. Based on multi-class activation mapping,
the work [34] constructs two subnetworks, i.e., the target
network and the object network for aircraft detection from
very high resolution (VHR) images.

Although promising results have been reported in the
aforementioned methods, there is still a challenge problem
for the aircraft detection in RSIs: It requires a high number of
data with object location annotation information, such as the
bounding-box annotation shown in Figure 1 (a). The obstacle
of high labor cost for the annotation of the object location in
the image is encountered. Because of the large sizes of RSIs
and the small sizes of aircraft targets, it is difficult to observe
the relevant target object with the human eye.Moreover, there
is the problem of human subjectivity in labeling, which can
easily affect the results of image annotation. Thus, the prob-
lem of artificial object annotation is particularly prominent
for detecting an aircraft in a remote sensing image.

FIGURE 1. Different annotations for aircraft detection in a remote sensing
image.

B. WEAKLY SUPERVISED LEARNING
Weakly supervised learning (WSL) only requires image-level
annotations that indicate whether or not an image contains the
target objects [35]–[40], [46], [47], as shown in Figure 1 (b).
The first attempt to utilize WSL for object detection from
RSIs was proposed in [40]. Although this work solves the
problem of aircraft detection in a RSI under the image-level
annotation, the representation of the aircraft feature still uti-
lizes the bag of visual words (BoVW) [41] method. In [35],
Zhang et al. propose to heuristically mine the positive sam-
ples and to evaluate the learned detector based on the negative
data. A similar idea is used in [36], Han et al. perform geospa-
tial object detection by combining saliency, intra-class com-
pactness, and inter-class separability using a deep Boltzmann
machine. A negative bootstrapping idea is used in [37]. This
work iteratively learns the detector by selecting the most
informative negative samples. In [38], a novel weakly super-
vised, multi-instance learning algorithm is designed to learn
instance-wise vehicle detectors from the region-level group

annotation. Zhang et al. [39] build a coupled CNN for simul-
taneously generating the object proposals and locating the
aircraft target from large-scale VHR images.

The latest works on WSL based object detection from
RSIs are [46], [47]. In [46], Yao et al. propose a dynamic
curriculum learning strategy to perform weakly supervised
object detection from high-resolution RSIs. This work can
progressively learn the object detectors by feeding training
images with increasing difficulty that matches current detec-
tion ability. The work [47] designs a dual-contextual instance
refinement strategy to divert the focus of detection network
from local distinct part to the object and further to other
potential instances by leveraging both local and global con-
text information. With this, it can significantly boost object
detection accuracy compared with the state of the arts.

Different from the above methods, we propose a simple
yet efficient weakly supervised detection strategy for aircraft
detection from RSI. We utilize Alex-Net [5] as backbone
network, but replace last two fully connected layers with
Global Average Pooling (GAP) [42] and two convolutional
layers. Based on the class activation maps, we generate
heat maps via reverse weighting for locating the target
object.

III. AIRCRAFT DETECTION BASED ON WEAKLY
SUPERVISED LEARNING
The framework for aircraft detection using our AlexNet-WSL
is shown in Figure 2. It has two stages, namely the training
and the testing step.

In the training stage, the labels of the training dataset
indicate only whether the image contains an aircraft or not.
No annotation information about its position, shape, or size
are required. The training dataset is divided into the ‘‘positive
sample set’’ with images containing aircraft and a ‘‘negative
sample set’’ with those that do not. The AlexNet-WSL is used
for a binary classification task, i.e., determining whether a
remote sensing image contains aircraft or not.

When the training of AlexNet-WSL is complete, a test
image is input into the trained AlexNet-WSL network model
for forward propagation. Then, the weight corresponding to
the image classification result of ‘‘with aircraft’’ in the fully-
connected layer 9 is extracted, weighted, and averaged with
the characteristic map output by convolutional layer 7 and
then overlapped into a Heat Map. The highlighted area is the
basis for the AlexNet-WSL network model to distinguish the
test image using the ‘‘with aircraft’’ category. The biggest dif-
ference between the ‘‘with aircraft’’ images and the ‘‘without
aircraft’’ images is where the former contain an aircraft target,
so these areas correspond to the position of the aircraft target
in the test image. Then, adaptive threshold based segmenta-
tion is used to obtain a binary graph. Finally, according to
the minimum circumscribed rectangle corresponding to each
connected region in the binary graph, the detection of the
aircraft in the test image is completed. Next, we will describe
the AlexNet-WSL network model, the pipeline of Heat Map
generation, and how to locate aircraft in detail.
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FIGURE 2. Framework for aircraft detection using AlexNet-WSL.

A. AlexNet-WSL NETWORK MODEL
We utilize Alex-Net [5] as our backbone network. It consists
of 12 layers, including 7 convolutional layers, 3 pooling
layers (pooling layer 1, 2, and 5), 1 GAP layer (layer 8),
and 1 fully-connected layer (layer 9). Table 1 illustrates the
structural parameters of the AlexNet-WSL network model.

Every convolutional unit in the CNN is essentially a detec-
tor that can locate the target in the image [10]. For example,
if a target in the image is located in the upper left corner of
the image, the upper left corner of the feature image after
the convolutional layer will produce a greater response. If the
target appears in the lower right corner, the region in the lower
right corner of the feature map will have a larger response.
The fully-connected layer ‘‘flattens’’ the output feature map
of the convolutional layer into a one-dimensional character-
istic vector, which loses the spatial position information of
the image. Most of the parameters in the CNN are occu-
pied by the fully-connected layer. Therefore, we replace the
first two fully-connected layers by two convolutional layers
and a GAP layer. The last fully-connected layer is used for
classification.

This way, the image spatial position information is propa-
gated to the last layer of the network, which provides the basis
for the subsequent generation of a heat map.

TABLE 1. Specific structural parameters of AlexNet-WSL network.

Another benefit is that the number of parameters in the
network model is decreased, which reduces the chance of
model overfitting.

After the last convolutional layer in the CNN, a pooling
layer is added and an average pooling operation is applied.
The size of the pooling window is set as the size of the output
feature map of the convolutional layer. For example, in the
AlexNet-WSL network model, the last convolutional layer is
layer 7, whose output is 43 × 43×512, that is, 512 feature
maps of size 43 × 43. We use GAP to calculate the average
value of all pixels on each feature map as output. This way,
512 feature maps are mapped to 512 average values, which
will form a one-dimensional feature vector as the output of
the GAP layer.

B. HEAT MAP GENERATION
Based on the class activation mapping method proposed
in [13], we generate a heat map of the interesting regions in
the remote sensing image. We illustrate the specific process
in Figure 3. For the structure and specific implementation of
the AlexNet-WSL network model, the decision for the image
classification is based on the feature vector input into the
classifier (i.e., the GAP feature vector in Figure 3). However,
since the feature vector is one-dimensional, it is impossible to
examine the AlexNet-WSL network model to determine the
image category according to specific regions of the image.

The above-mentioned one-dimensional feature vector is
obtained via theGAP of the featuremap output by the 7th con-
volutional layer. Thus, the feature vector corresponds to these
feature maps aggregated one by one. Then, in the final classi-
fication step, if a certain value in the eigenvector contributes
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FIGURE 3. Illustration of the generation process of a heat map.

to image discrimination with the result that ‘‘there is an
aircraft’’, then the corresponding heat map of this value will
reflect this contribution. The weight corresponding to ‘‘with
aircraft’’ is extracted directly from the output characteristic
map of the 7th convolutional layer and the classification result
of the 9th fully-connected layer. A heat map is obtained in via
reverse weighting using Formula (1).

In Formula (1), Hc represents the generated heat map
for category c, Fci represents the output feature map of the
7th convolutional layer in the AlexNet-WSL network model,
and W c

i represents the connection weight between the out-
put characteristic vector of the 8th GAP layer and the
9th fully-connected layer.

Hc =
∑n

i=1
W c
i
∗Fci (1)

C. OBJECT LOCATION
To calibrate the aircraft position information in the remote
sensing test images, we transform the heat map into a binary
image. Then, the maximum inter-class variance is adap-
tively used to find the threshold values of the foreground
and background in the heat map. By traversing different
thresholds, our method calculates the difference between the
background and foreground based on gray values. The larger
the inter-class difference is, the larger is also the variance
between the foreground and background. The threshold is
thus the value at which the inter-class difference reaches its
maximum.

For a remote sensing image with a size of M∗N , the fore-
ground and background are segmented according to the
gray-scale threshold, in which pixels larger than the threshold
are marked as the foreground and the rest is the background.

Let the number of pixels in the foreground be Nf , the average
gray value be Gf , the number of pixels of the background
be Nb, and the average gray value be Gb. The average gray
value of the whole image isG, and the class variance between
the background and foreground is σ . Then

Nf + Nb = M∗N (2)

G = G∗f
Nf
M∗N

+ G∗b
Nb
M∗N

(3)

σ =
Nf
M∗N

(
G− Gf

)2
+

Nb
M∗N

(G− Gb)2 (4)

Substitute (3) into (4) to get the equivalent formula:

σ =
Nf
M∗N

∗ Nb
M∗N

(
Gf − Gb

)2 (5)

If σ (T ) is the variance between the background and fore-
ground, then:

Topt = argmax
T∈0,1,···255

(σ (T )) (6)

where Topt is the threshold value of the method of maximum
variance of inter-class. Then, the foreground and background
are segmented and binarized using the obtained threshold
Topt . Figure 4 shows that binarization can effectively suppress
the response to the background area (the area surrounded by
the red circles in the figure). After binarization, the mini-
mum circumscribed rectangles of each connected region in
the binary image are calculated. The coordinates of these
rectangles are then mapped to the original image to detect
aircraft targets.
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FIGURE 4. Binary process of the heat map.

IV. EXPERIMENTAL STUDY
The environment for all experiments in this section is a
Microsoft Window 10 operating system on an Intel Core
i7-7700 processor with 16 GB memory and an Nvida GTX
Titan X graphics card. We use the Caffe library [43] and
MATLAB interfaces. We now first describe the data set
and the criteria for experiment evaluation used. Next, the
implementation details and the parameter analysis are pro-
vided. Then, we present the quantization and visualization
evaluations.

A. DESCRIPTION OF THE DATA SET AND EXPERIMENTAL
SETUP
1) WSADD
In order to evaluate the aircraft target detection algorithm
based on weak supervised learning, we construct the
WSADD data set and make it available in the online reposi-
tory1. The images in this dataset include airports and nearby
areas of different countries (mainly from China, the United
States, the United Kingdom, France, Japan, and Singapore)
taken from the Google Earth satellite. The dataset comprises
700 RSIs in total, of which 400 images contain an aircraft
target (the ‘‘positive sample set’’) and the other 300 do not
(the ‘‘negative sample set’’). In the process of dataset con-
struction, the spatial resolution of the images was controlled
between 0.3 m and 2 m, and the size was fixed to 768 ×
768 pixels.We sought to collect images from different sensors
during different daytimes, different seasons, and different
light intensities to ensure that the dataset has a high diversity.
Some image samples from the dataset are shown in Figure 5.

1The WSADD is downloadable at https://doi:10.5281/zenodo.3843229

FIGURE 5. Sample image of the WSADD dataset.

As demonstrate in Figure 5, the image scene in the positive
sample set of WSADD is very complex. The proportion of
aircraft targets inside the whole images is small. The images
also contain a large number of background targets, such
as oil tanks, hangars, and boarding buildings. The negative
sample set mainly includes runway and apron images without
aircraft.

2) DATA AUGMENTATION
A data augmentation strategy is adopted to generate new
images from the original input images to expand the vol-
ume of the dataset and to reduce the chance of overfitting.
As shown in Table 1, the input size of the convolutional
layer 1 in the AlexNet-WSL network is 736∗736. Therefore,
the original images of 768∗768 pixels can be randomly
cropped with a window of 736∗736 as well as inverted.
Through this process, the data volume can be expanded by
factor (768− 736)2 ∗2 = 2048. During the network test
stage, we crop the four corners and the middle of the test
image and flip them. This way, ten images are fed into the
network and the corresponding results are averaged as output.

3) CRITERIA FOR EXPERIMENT EVALUATION
Beside running time, following [39], we use three criteria for
evaluating the aircraft detection performance: false positive
rate (FPR), missing ratio (MR), accuracy (AC). Their calcu-
lation formulas are as follows:

FPR =
Number of falsely detected aircraft

Number of detected aircraft

∗

100% (7)

MR =
Number of undetected aircraft

Number of aircraft

∗

100% (8)

AC =
Number of detected aircraf

Number of aircraft

∗

100% (9)

When detected aircraft has a fractional intersection overlap
with a test aircraft greater than 0.5, we take it as a true detected
aircraft. On the other side, we take it as a missed aircraft.
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B. PARAMETER SETTING AND KEY PARAMETER ANALYSIS
1) PARAMETER SETTING
We initialize the AlexNet-WSL by pertaining it on the
ImageNet [44]. During the fine-tuning training, following [5],
we set the initial learning rate of each layer to 0.001 and
reduce it to the previous 10% after 5’000 iterations. For the
momentum andweight decay, we set to 0.9 and 0.005, respec-
tively. The batch size of each iteration is set to 40, and the
total number of iterations depends on the convergence of the
net. During testing, we utilize our proposed Heat Map based
object location for calibrate the aircraft position information
in the test remote sensing image.

2) KEY PARAMETER ANALYSIS
In order to further study the inner characteristics of deep neu-
ral networks for processing the RSIs, like our other work [1],
we now analyze the key parameter of the learning rate by
investigating the different layers of the AlexNet-WSL using
different learning rates.

After the initialization of the AlexNet-WSL, we study the
impact of the parameter transfer using different initial learn-
ing rate settings for the layers in the AlexNet-WSL network.
For the 7 convolutional layers and 1 fully-connected layer in
the AlexNet-WSL, we orderly increase a ‘‘0’’ learning rate.
By this, we can totally get 8 different settings. As shown
in Table 2, each setting can be regarded as a model. In Table 2,
M indicates ‘‘Model’’, the learning rate ‘‘0’’ indicates that the
layer parameters are transferred from the pre-training stage
without fine-tuning onWSADD, and ‘‘1’’ indicates the initial
learning rate is 0.001.

TABLE 2. Different learning rate settings the and corresponding model.

We illustrate the detected results in terms of the AC for
different models in Figure 6. As can be seen from Figure 2,
when using only low-level parameters of the pre-trained
AlexNet-WSLwithout fine-tune in target domain, the models
can achieve an AC equivalent to Model-1. It shows that
low-level features of CNN have similar semantics. When
high-level parameters is not performed fine-tuning, the exper-
imental results will be affected. We can find such phe-
nomenon forModel-4 toModel-8. Based on the observations,
we argue that the low-level parameters of the pre-trained

FIGURE 6. Corresponding detected result of different models.

CNNs can be directly used for the target task, and it is
necessary for high-level parameter fine-tuning.

C. EVALUATION OF THE AIRCRAFT DETECTION
In order to evaluate the effectiveness of the proposed
algorithm, we compare it with Faster R-CNN [23] and
YOLOv3 [24], which have achieved excellent results in
natural scene object detection. To train the AlexNet-WSL
network model, first, 300 images are randomly selected
from the positive sample set of the WSADD dataset and
labeled as ‘‘with aircraft’’. The remaining 100 images are
used as test data. Then, all 300 images in the negative
sample set are selected and labeled as ‘‘without aircraft.’’
The 6th fully-connected layer and 7th layer in the original
Alexnet network model were removed in the design of the
AlexNet-WSL network model, which reduces the number of
parameters of the network model. However, using training
data with only 600 images still makes it difficult to effectively
train the AlexNet-WSL network model and overfitting might
still occur.

Therefore, a strategy of transfer learning is adopted, as dis-
cussed in the previous section. The selected 600 images are
only used to fine-tune and train the AlexNet-WSL network
model. For Faster R-CNN and YOLOv3, pretraining is also
carried out on the ImageNet dataset. Fine-tuning training uses
the same dataset also used for fine-tuning the AlexNet-WSL,
but the bounding box annotation information of the air-
craft position is given for the 300 positive samples. Next,
the remaining 100 images with aircraft, including 358 aircraft
targets in total, are used for testing. The experimental results
are listed in Table 3.

In this study, several commonly used performance indica-
tors for the detection of aircraft targets are compared, includ-
ing the detection rate, missed alarm rate, and false alarm rate.

The higher the detection rate of the aircraft target, the better
is the performance of the algorithm. In practice, the targets
detected by the algorithm may not all be aircraft targets, but
also include some interference targets that are mistaken as air-
craft targets. The false alarm rate measures this phenomenon.
The lower the false alarm rate, the better the ability of the
algorithm to distinguish aircraft from the jamming targets.
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TABLE 3. Experimental results of the different target detection
algorithms on the WSADD dataset.

Table 2 shows that the detection rate of the aircraft tar-
get in the images based on the weakly supervised learning
proposed in this article is 97.77%. This is remarkable, as the
algorithm does not use any target location annotation infor-
mation, but performs equivalent to the Faster R-CNN and
YOLOv3 methods, which require target location annotation
information. Moreover, the false alarm rate of our method is
low and it only needs to train a CNN for classification. After
adopting the migration learning strategy, we only needed to
train on the WSADD dataset for 10 minutes, after which
the network model had converged. For Faster R-CNN and
YOLOv3, although transfer learning is also used, the network
model converged only after training for 3 hours and 10 hours,
respectively.

Figure 7 shows some resulting images. The false alarms
by Faster R-CNN are mainly due to the recognition of other

FIGURE 7. Selected results for RS aircraft target detection.

backgrounds (such as the boarding building) as aircraft, while
the false alarms by YOLOv3 appear at the edges of the
images. These problems, however, do not affect our method.

From the detected results of the third test image in Figure 7,
we notice that our method also performs well for the dense
aircraft detection. For this effect, we argue that there are four
main reasons: (1) AlexNet is a very successful deep net-
work architecture. (2) We have introduced a transfer learning
strategy in the experiment. The network model used is first
pre-trained on the large-scale data set ImageNet and is further
fine-tuned on the domain data set. (3) The feature maps
extracted by a CNN classifier are localizable representation
of the image. (4) The weakly supervised learning mechanism
based on the heat map proposed in this work is feasible.

Our method also has some limitations. For example,
the discovered bounding boxes of the aircraft may be slightly
too large or slightly too small in some cases. Since the training
data used for our method are not labeled with the target
position, our method cannot use this information to modify
the target position information output.

V. CONCLUSION
At present, object detection methods based on CNNs require
a large amount of data with target location annotation
information to be trained. However, in the field of remote
sensing, the labor cost of image annotation is high. There-
fore, we introduced the idea of weakly supervised learning
and combined it with a CNN to develop an aircraft target
detection algorithm for RSIs. In the experiments given in
Section 4, the proposed AlexNet-WSL algorithm achieves
similar detection results as the Faster R-CNN and YOLOv3.
These two methods require target location annotation infor-
mation for their training. The FAR of the proposed method
is slightly lower than that of Faster R-CNN and YOLOv3,
so the effectiveness of AlexNet-WSL is verified. Further-
more, training AlexNet-WSL is about 18 times faster than
Faster R-CNN and about 60 times faster than YOLOv3.

Our AlexNet-WSL does not use boundary regression to
modify and optimize the position information of the detected
aircraft and thus does not need target position annotation
information in the training data. Therefore, the coverage of
the target position output is naturally a bit lower than what
could potentially be achieved in a fully-supervised learning
scenario. This drawback is very small compared to the gained
ability to train without needing target position annotations
and the much higher training speed.
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