
An Improved Generic Strategy with

Performance Prediction for Stochastic Local Search

BET-AND-RUN

Thomas Weise (tweise@hfuu.edu.cn), Zijun Wu, Institute of Applied Optimization (IAO), Hefei University, Hefei, Anhui, China

Markus Wagner (markus.wagner@adelaide.edu.au), Optimisation and Logistics, The University of Adelaide, Adelaide, Australia

An Improved Generic Strategy with

Performance Prediction for Stochastic Local Search

BET-AND-RUN

A single r un vs. F17 [2]

40 independent restar ts (EVEN) vs. F17

MVC

64

21

25
57

22
9 1026

47

29
9

50

32

TSP

54

51

41 7

60
628

15

t=2st=2s t=2000s t=2000s

k=40
m=1
t =0.4t1

k=4
m=1
t =0.4t1

40 restar ts with Luby-distr ibuted r untimes (L UBY) vs. F17

diminishing vs. F17

PER()0 tanh(, on log-scaled inputs, CSA) vs. F17

50

32

50

51
7

38 8

60
7

21
538

50

35

21 36

47
9

19 60
32

43

247
12

50

36

22 35

46
10

19 60
31

42

247
13

diminishing vs. F17 [2]k=4

PER()0 tanh(, log-scaled inputs, CSA) vs. F17 k=4

33

53

27 28

2335

48

64

58

14
10

33

53

27 25
23

38

48

64

58

14
10

better
worse

not signif.
same

start pause initial
k runs

choose m runs
to continue

end of
time budget

t1 t1+t2 t=t1+t +t2 3

Phase 1
of length t1

Phase 2
of length t2

Phase 3
of length t3

k
 i

n
it

ia
l

ru
n
s

decision
maker D

m
 s

el
ec

te
d
 r

u
n
s

Data used for our Case Studies / Simulated Experiments

1. Minimum Vertex Cover problem (MVC)

– algorithm: FASTVC [4]

– data: 10'000 independent runs on each of the 86 instances

from [4] generated by [5]

2. Traveling Salesperson Problem (TSP)

– algorithm: Chained-Lin-Kernighan heuristic [6]

– data: 10'000 independent runs on 110 symmetric instances from

TSPLib + 3 additional large instances, generated by [5]

– Potential: between 3% to 23% chance that “currentBest” decision

maker could theoretically be outperformed in these datasets

Goal

– Domain: Solving Optimization Problems

– Goal: Using a given algorithm A, get best possible result within time

budget t

– very few assumptions:

o A is an iterative algorithm which attempts to improve its

approximation quality over time

o a run of A can be started, paused, and resumed

o when executing an independent run of A, we can get notified

whenever it improves its approximation quality

Basic Bet-and-Run [1,2]

– parameters: initialization budget 0<t1<t, number k>0 of initial runs

1. start k runs of A and pause each of them after t1/k time units

2. let the run with the current best approximation quality continue for

the t-t1 remaining time units

Generalized Bet-and-Run [X]

– parameters: initialization budget 0<t1<t, distribution policy P

(Luby [3] or even) number k>0 of initial runs, decision maker D,

number 0<m<k of runs to continue

1. start k runs of A and distribute the initial budget t1 according to

distribution policy P among them

2. apply a decision maker D to choose m of the k runs to continue,

thereby consuming 0<t2<t time units

3. distributed the remaining t-t1-t2 time units evenly among the m

selected runs

t /k=1000ms1 t-t +t /k=61000ms1 1

lo
g

(q
u

a
lit

y
)

b
e

s
t

w
o

rs
t

log(time)

initially best
best at end

MVC/socfb-Stanford3

lo
g

(q
u

a
lit

y
)

b
e

s
t

w
o

rs
t

log(time)

TSP/brd14051

initially best
best at end

t /k=1000ms1 t-t +t /k=61000ms1 1

Decision Makers D

– Idea: predict future performance of run based on last few measured

(time, quality) tuples

1. PER(n): perceptron with/out single hidden layer with n from 0,1,2,3

2. polynomials (linear, quadratic, cubic)

3. currentBest (original Bet-and-Run), currentWorst, random

4. most or latest improvements (mostImprovements, logTimeSum)

5. diminishing: assumes that time between improvements increases

exponentially, improvements decrease exponentially

Results

– currentBest is hard to beat, as beating it is impossible in most of the

experiments and another method then needs to be as same as good

while actually being better in the few cases where it is possible…

– PER-based decision makers can win against single runs slightly more

often than currentBest on MVC and sometimes on TSP

– diminishing is simple yet a surprisingly good decision maker

References

[X] Weise, T. ; Wu, Z.; and Wagner, M. 2019. An Improved Generic Bet-and-Run Strategy with Performance

Prediction for Stochastic Local Search. In 33rd AAAI Conference on Artificial Intelligence, AAAI Press

[1] Fischetti, M., and Monaci, M. 2014. Exploiting erraticism in search. Operations Research 62:114 –122.

[2] Friedrich, T.; Kötzing, T.; and Wagner, M. 2017. A generic bet-and-run strategy for speeding up stochastic

local search. In 31st AAAI Conference on Artificial Intelligence, 801–807. AAAI Press.

[3] Luby, M.; Sinclair, A.; and Zuckerman, S. 1993. Optimal speedup of Las Vegas algorithms. Information

Processing Letters 47:173–180

[4] Cai, S. 2015. Balance between complexity and quality: Local search for minimum vertex cover in massive

graphs. In 24th International Joint Conference on Artificial Intelligence, 747-753

[5] Kadioglu, S.; Sellmann, M.; and Wagner, M. 2017. Learning a reactive restart strategy to improve stochastic

search. In 11th International Conference on Learning and Intelligent Optimization, 109 –123.

[6] Applegate, D.; Cook, W.; and Rohe, A. 2003. Chained Lin-Kernighan for large traveling salesman problems.

INFORMS Journal on Computing 15.

