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Data used for our Case Studies / Simulated Experiments

1. Minimum Vertex Cover problem (MVC)

– algorithm: FASTVC [4]

– data: 10'000 independent runs on each of the 86 instances

from [4] generated by [5]

2. Traveling Salesperson Problem (TSP)

– algorithm: Chained-Lin-Kernighan heuristic [6]

– data: 10'000 independent runs on 110 symmetric instances from

TSPLib + 3 additional large instances, generated by [5]

– Potential: between 3% to 23% chance that “currentBest” decision

maker could theoretically be outperformed in these datasets

Goal

– Domain: Solving Optimization Problems

– Goal: Using a given algorithm A, get best possible result within time

budget t

– very few assumptions:

o A is an iterative algorithm which attempts to improve its

approximation quality over time

o a run of A can be started, paused, and resumed

o when executing an independent run of A, we can get notified

whenever it improves its approximation quality

Basic Bet-and-Run [1,2]

– parameters: initialization budget 0<t1<t, number k>0 of initial runs

1. start k runs of A and pause each of them after t1/k time units

2. let the run with the current best approximation quality continue for

the t-t1 remaining time units

Generalized Bet-and-Run [X]

– parameters: initialization budget 0<t1<t, distribution policy P

(Luby [3] or even) number k>0 of initial runs, decision maker D,

number 0<m<k of runs to continue

1. start k runs of A and distribute the initial budget t1 according to

distribution policy P among them

2. apply a decision maker D to choose m of the k runs to continue,

thereby consuming 0<t2<t time units

3. distributed the remaining t-t1-t2 time units evenly among the m

selected runs
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Decision Makers D

– Idea: predict future performance of run based on last few measured

(time, quality) tuples

1. PER(n): perceptron with/out single hidden layer with n from 0,1,2,3

2. polynomials (linear, quadratic, cubic)

3. currentBest (original Bet-and-Run), currentWorst, random

4. most or latest improvements (mostImprovements, logTimeSum)

5. diminishing: assumes that time between improvements increases

exponentially, improvements decrease exponentially

Results

– currentBest is hard to beat, as beating it is impossible in most of the

experiments and another method then needs to be as same as good

while actually being better in the few cases where it is possible…

– PER-based decision makers can win against single runs slightly more

often than currentBest on MVC and sometimes on TSP

– diminishing is simple yet a surprisingly good decision maker
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