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ABSTRACT

We propose the new concept of hybridizing different local
search algorithms with each other for the TSP. The new hy-
brids outperform their component algorithms. We then hy-
bridize them with an Evolutionary Algorithm and Population-
based ACO. The resulting EC-LS-LS hybrids perform even
better.
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1. INTRODUCTION

The Traveling Salesman Problem (TSP) [2] is defined as
follows: Given n cities, a salesman departs from a start city,
visits each city exactly once, and then returns back to the
start city. The task is to find the city visiting order result-
ing in the minimal overall travel distance. Many algorithms
have been applied to the TSP, from Evolutionary Computa-
tion (EC) [35] to exact methods like Branch and Bound [23].
We make the following contributions: We introduce the new
concept of the LS-LS hybrids (for the TSP), i.e., hybrid al-
gorithms combining two local search (LS) methods. We ex-
plore several LS-LS hybrids combining Multi-Neighborhood
Search (MNS) [36], the Lin-Kernighan Heuristic (LK) [26],
and FSM** [28]. We find that they almost always signif-
icantly outperform their LS components. We further hy-
bridize our LS-LS hybrids with both Population-based ACO
(PACO) [15] and Evolutionary Algorithms (EAs) [35]. We
find that the resulting EC-LS-LS algorithms perform better
than any other method in our experiments and in [28, 36, 38].
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2. INVESTIGATED ALGORITHMS

LS algorithms for the TSP start at a random or
heuristically-generated solution (tour). They remember the
best solution discovered so far and try to improve it step by
step. If a local optimum is reached, the LS applies a larger
random modification. MNS is a LS that, in each iteration,
scans several neighborhoods of the current solution and en-
queues all possible improving moves. The best move is car-
ried out. All invalidated intersecting moves are dropped and
the remaining best move is applied. If the queue becomes
empty, another scan is performed. If no improving moves
can be found, a random sub-sequence of the current tour is
randomly shuffled, which we refer to as soft restart. The LK
heuristic dominates today’s TSP research. We use the im-
plementation from [38]. The Ejection Chain Method (ECM)
FSM** [28] is an improvement of [32]. Although both LK
and FSM** outperform MNS, the hybrids of MNS with Evo-
lutionary Algorithms (EAs) and the Population-based Ant
Colony Optimization (PACO) outperform similar hybrids
based on them [28, 38].

Research on hybrid (“Memetic”) algorithms is almost en-
tirely focused on combining global and local search algo-
rithms (EC-LS), as done in [28, 36, 38, 40]. However, LS al-
gorithms can already exhibit different behaviors which might
complement each other. MNS can find relatively good so-
lutions quickly but often gets stuck in local optima. LK
and FSM** initially are slower but find better final re-
sults [28, 38]. We pairwise hybridize LK, FSM** and MNS
with each other. We apply one LS approach until it cannot
improve the solution anymore. The resulting tour is then
passed as starting point to the other LS. Once this second
LS gets trapped in a local optimum, we use its result as
starting point again for the first LS. This is repeated until
both LS methods cannot find an improvement, in which case
we apply the same soft restart method as above. This is a
generalization of Variable Neighborhood Search (VNS) [18],
which explores the neighborhood of the current solution un-
til it reaches a local optimum. It then uses another search
operator to escape from it. With our new LS-LS hybrids, we
extend the concept to whole LS algorithms instead of just
search operators.

We investigate MA(p T X)-LS and MA(p T A)-LS-LS,
which combine (1 T A) EAs with LS and LS-LS, respec-
tively. The first populations of our M As stem from the Edge-
Greedy, Double Minimum Spanning Tree, Savings, Double-
Ended Nearest Neighbor, and Nearest Neighbor Heuris-
tic [36]. We apply Edge Crossover [37] at a crossover rate
of 1. The LS component of the MA is applied to every so-
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PACO(3,10)-LK10-MNS (rank 1), PACO(3,25)-LK10-MNS (2),
PACO(5,10)-LK10-MNS (3), MA(16+64)-FSM**-LK10 (4),
PACO(5,10)-FSM**-LK10 (5), PACO(3,25)-FSM**-LK10 (6),
MA(16,64)-FSM**-LK10 (7), PACO(3,10)-FSM**-LK10 (8),
MA(16,64)-LK10-MNS (9), MA(2,8)-LK10-MNS (10),

MA (16-+64)-LK10-MNS (11), I\I A(2,4)-LK10-MNS (12.5),
MA(2,8)-FSM**-LK10 (12.5), MA(248)-FSM**-LK10 (14),

MA (244)-FSM**-LK10 (15.5), PACO(5,10)-MNS (15.5),

MA (244)-LK10-MNS (17.5), MA(2,4)-FSM**-LK10 (17.5),

PACO(3,10)-MNS (19.5), PACO(3,25)-MNS (19.5), MA(248)-LK10-MNS (21),
PACO(3,10)-FSM** (29). PACO(5.10)-FSM** (23), PACO(3.25)-FSM** (2),
MA (248)-FSM** (25), MA (2+4)-FSM** (26), MA(16,64)-FSM** (27),

MA (16+64)-FSM** (28), MA(2,4)-FSM** (29), MA(2 8)- FbM** (30),

MA (16+64)-MNS (81), MA(2+4)-MNS (82), MA(2+8)-MNS (33),

MA(16,64)MNS (3/), MA(2,8)-MNS (35), PACO(3,10)-LKn (36),

PACO(J 25)-LKn (57), PACO(J 10)-LKn (38) L I\I NINS (89),
FSM*-LK10 (40), FSM**-LK5 (41), FSM**LK2 (42) LKI0-FSM** (43),
MA(2)-MNS (4), LIS-FSAE S (43), FSMC LIS (46), FSAT** VNS 47),
LIS NINS (48), FSMFLKAO (49), FSM**-LKn (50) LIK20-MNS (51),
LK20-FSM** (52), TK20 (53), LK30 (54), LKI0-MNS (55), LIGSO-MNS (56),

u\ 30-FSM* (57), LK10 (58), LKAO (59), FSM** (60). LKA0-FSM (61)
5 (62), MA(16+64)-LKn (63), LKn-FSN** (64), MA(16,64)-LKn (65

1 m MNS (66), MA(2,8)-LK (67), MA(2+4)-LK (68), MA(2,4)-LK (69),

LKn (70), MA(2+8)-LKn (71), NINS-LKAO (73), MNS-LIK30 (73),

MNS-LK20 (78), MNS-FSM** (75), MNS-LK10 (76), MNS-LK5 (77),

MNS-LKn (78), and MNS (79).

Figure 1: Algorithm ranking from best to worst, based on
various performance measures and statistics (see [36] for de-
tails). The different algorithm types pure local search, LS-
LS hybrid, EC-LS hybrid, and EC-LS-LS hybrid are hlgh—
lighted.

lution generated, both by the initialization heuristics and
crossover. We also hybridize PACO(k,l) with LS and LS-
LS. Here, in each iteration, [ tours are created in the same
way as in the standard ACO. The “oldest” solution in the
archive of size k is replaced by the best of the newly gener-
ated solutions. The pheromone on an edge is proportional
to the number of times the edge is contained in the archive.
The initial populations are again obtained heuristically, in
the same way as in the MAs.

3. RESULTS AND DISCUSSION

We perform 30 independent runs for 79 algorithm setups
on all 110 symmetric TSPLib [33] benchmark cases. We
define the following LS setups: FSM**, MNS, and 6 se-
tups of the LK heuristic, differing in their candidate set
size s =€ {5, 10, 20, 30,40, n} and named LKs, i.e., LK5,
LK10, ..., LKn, respectively. We compare them to 26 LS-
LS hybrids, whose name consists of the two component LS
algorithms in the cyclically applied sequence. We construct
EC-LS and EC-LS-LS hybrids which are named after the EC
method followed by the applied LS. In Figure 6, we present
an abridge algorithm performance ranking generated by the
TSP Suite [36].0ur experiments have led us to four major
conclusions:

1. The new LS-LS hybrids are better than their pure LS
algorithm components. This means that the new idea
of combining the strengths of different LS algorithms
is very promising.

2. The LS-LS hybrids are still slightly worse than the
EC-LS algorithms. This means that a global search
component is necessary in a good TSP solver.

3. The new EC-LS-LS hybrids outperform the LS-LS al-
gorithms as well as EC-LS hybrids. The best overall
algorithm, PACO(3,10)-LK10-MNS, unites the global
search strength of PACO, the ability to find good so-
lutions of the LK heuristic, and the fast exploitation
speed of MNS.

4. In [28, 36, 38, 40] as well as the present study, PACO is

the significantly better host EC method for hybridiza-
tion than an EA. However, we also find an exception
to this rule, as MAs with FSM**-LK10 are better than
the corresponding PACO versions.
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ABSTRACT

The Traveling Salesman Problem (TSP) is one of the most
well-studied combinatorial optimization problems. The best
heuristics for solving TSPs today are based either on the
Lin-Kernighan (LK) heuristic or are Ejection Chain Meth-
ods (ECMs), both of which are local search (LS) algorithms.
Multi-Neighborhood Search (MNS) is another LS algorithm
and especially suitable for hybridization with Evolutionary
Computation (EC) algorithms. Existing studies on hybrid
TSP solvers focus mainly on Memetic Algorithms (MAs),
i.e., EC-LS hybrids. We introduce the new concept of LS-LS
hybrids in order to combine the different strengths of mul-
tiple LS algorithms. We pairwise hybridize several setups
of the three state-of-the-art local searches above. We then
further hybridize these LS-LS algorithms with Evolutionary
Algorithms (EAs) and Population-based Ant Colony Op-
timization (PACO), i.e., obtain EC-LS-LS algorithms. We
conduct a large-scale experimental study with 79 different al-
gorithm setups on all 110 symmetric instances of the TSPLib
benchmark set. We find that most of the new LS-LS hy-
brids have better performance than their components alone
and that the new EC-LS-LS hybrids are the strongest TSP
solvers in our study. They outperform both LS-LS algo-
rithms and hybrids that combine only one LS with an EC
algorithm.

Keywords

Local Search, Hybrid Algorithms, Traveling Salesman Prob-
lem, Memetic Algorithm, Ant Colony Optimization

1. INTRODUCTION

The Traveling Salesman Problem (TSP) [2, 16, 25] is
maybe the most important A/P-hard problem, both in terms
of practical applications as well as being a test bed for novel
optimization approaches [29]. Given n cities, a salesman de-
parts from a start city, visits each city exactly once, and then
returns back to the start city. The task is to find the city vis-
iting order resulting in the minimal overall travel distance.
In other words, given a cost matrix D = (D, ;), where D; ;
is the distance of going from city ¢ to city j (i,5 € 1...n),
the goal is to find a permutation ¢ of the integers from 1 to n
minimizing the sum Dt[l],t[Q] +Dt[2],t[3] +- 4 Dt[n],t[l] . The
focus of this study is the symmetric TSP, where D; ; = D;;
holds.

Many optimization algorithms have been applied to the
TSP, including Local Search (LS) algorithms [13, 26], Evolu-
tionary Algorithms (EAs) [3, 7, 35], Ant Colony Optimiza-
tion (ACO) [8, 9, 11], and Branch and Bound (BB) [23,
27]. Today, the best known LS approaches for the TSP are
either based on the Lin-Kernighan (LK) heuristic [26] or
Ejection Chain Methods (ECM) [13]. Memetic Algorithms
(MAs) [31], hybrid algorithms which combine the global
search ability of an EA with the exploitation strength of
such a LS, are known to be especially efficient [29].

Using other Evolutionary Computation (EC) approaches
as host global search algorithms for hybridization is less com-
mon, although promising: Wu et al. [38] compared several

hybrid and pure versions of the LK heuristic both with EAs
and Population-based ACO (PACO) [15]. The PACO-LK
performed best. Liu et al. [28] proposed the Fundamen-
tal Stem and Cycle Method** (FSM**), an improved ECM
based on the P_SEC algorithm [32]. Similar EA and PACO
hybrid methods were defined and those with PACO per-
formed best. They also outperformed the above-mentioned
PACO-LK [28]. Multi-Neighborhood Search (MNS) [36],
another LS, is especially suitable for hybridization. Com-
bined with PACO, it outperformed both of the above algo-
rithms [28, 38].

To the best of our knowledge, however, there exists no
work combining different LS algorithms to exploit their mu-
tual advantages. Using the TSP as testbed, we explore this
idea. With the present work, we make the following contri-
butions:

1. We introduce the new concept of the LS-LS hybrids.

2. We explore several LS-LS hybrids combining MNS,
LK, and FSM**. We find that they almost always
significantly outperform their LS components.

3. We then hybridize our LS-LS hybrids with both PACO
and EAs. We find that the resulting EC-LS-LS algo-
rithms perform better than any other method in our
experiments and in [28, 36, 38].

4. We conduct an in-depth statistically comparison of all
the above algorithms based on a large-scale experimen-
tal study, where 79 algorithm setups are applied to all
110 symmetric benchmark instances from T.SPLib [33].
We apply runtime-behavior based statistics which pro-
vide more information than simple end-result compar-
isons. This study gathers (and combines from related
works) more precise information, includes more exper-
iments, and provides more statistically sound evalua-
tions than any other previous studies along this line of
research.

5. In this large-scale study, we find that a combination of
PACO, the LK heuristic, and MNS, i.e., a EC-LS-LS
hybrid algorithm, performs best. It unites the global
search strength of PACO, the ability to find good so-
lutions of the LK heuristic, and the fast exploitation
speed of MNS.

The remainder of this paper is organized as follows. In Sec-
tion 2, we introduce the investigated LK, FSM**, and MNS
algorithms, as well as our new LS-LS and EC-LS-LS hybrids.
We then present our experimental study and discuss its re-
sults in Section 3. Finally, the paper ends with conclusions
and plans for future work in Section 4.

2. INVESTIGATED ALGORITHMS

2.1 Local Search

LS algorithms for the TSP start at a random or
heuristically-generated solution (tour). They remember the
best solution discovered so far and try to improve it step



by step. A tour can be considered as cyclic path consisting
of n edges. A search operation which replaces m of these n
edges is called m-opt move [36]. Exchanging of two cities
in the tour corresponds to replacing of (at most) four edges
(4-opt) [24, 30]. Rotating a sub-sequence of cities to the
left or right is a 3-opt [10, 24] move. The reversal of a sub-
sequence of a tour, the maybe most common operator in a
LS for the TSP, is a 2-opt move [21, 24]. If the LS concludes
that it cannot further improve its best tour, it may apply
a larger random modification in order to escape from the
local optimum, while remembering the best overall solution
in an additional variable. This process is repeated until a
termination criterion is reached.

2.2 The Lin-Kernighan Algorithm

The LK heuristic is a LS approach published by Lin and
Kernighan [26] in 1973. Its derivatives dominate today’s
TSP research and many improvements have been proposed.
When the Chained Lin-Kernighan (CLK) algorithm [1] ar-
rives at a local optimum from which it cannot escape, it
generates a new solution by a random 4-opt move instead of
restarting at a random solution. CLK performs particularly
well on TSPs with a large number n of cities. Meanwhile,
the Lin-Kernighan-Helsgaun (LKH) algorithm [19, 20] may
be the most efficient LK variant.

LK can be considered as a variable m-opt LS. For ascend-
ing values of m, the algorithm tests whether replacing m
edges may achieve a shorter tour. Let T" be the current tour
and N the set containing all cities. In each iteration, the
algorithm constructs the sets X = {Xi,..., X} of edges
to be deleted from T"and Y = {Y1,..., Y}, the set of edges
to be added to T', such that the resulting tour would be valid
and shorter. The interchange of these edges is then a m-opt
move. In the beginning, X and Y are empty. Pairs of edges
are added to X and Y such that the end node of the edge
added to X is the starting node of the edge added to Y,
whose end node will then become the starting node of the
edge added to X in the next iteration, if any.

A necessary but not sufficient condition that the exchange
of edges in X and Y results in a valid tour is that the chain
is closed, i.e., that the end node of Y,, is the start node of
Xi1. The sets X and Y must further be disjoint, i.e., no
added edge is deleted again and no deleted edge is added.

We use the LK implementation from [38] in our experi-
ments. It replaces the current tour as soon as an improve-
ment was found (and then begins to construct new sets X
and Y'). This is more efficient [19, 38] than the original LK
heuristic, which continues exploring all possible moves to
find an even shorter tour. We furthermore use candidate
sets [26], i.e., limit the choices of neighbors for any city in
a tour to speed up the algorithm. Finally, when reaching a
local optimum, the algorithm uses the soft restart approach
described in [36, 38], where a randomly chosen sub-sequence
of the current tour is randomly shuffled. An in-depth de-
scription of the LK heuristic used in our investigation can
be found in [38], while [19, 20] provides further explanations
of the standard LK heuristic and its improvements.

2.3 Ejection Chain Method: FSM**

Most LS approaches applied to the TSP directly search
in the space of candidate solutions, i.e., genotypes and phe-
notypes are the same. This is, for instance, the case in the
LK heuristic described above. ECMs, introduced by Glover

sl s2 s2

q2

J
(a) An example (b) Rule 1 of the (c) Rule 2 of
of a S&C refer- Fundamental S&C the Fundamental
ence structure. ECM. S&C ECM.

Figure 2: Examples of a S&C reference structure and the
two rules of the Fundamental S&C ECM.

[13] in 1992, are different. The ECM explored in this work,
FSM**, internally works on a Stem-and-Cycle (S&C) refer-
ence structure, as illustrated in Figure 2a. This structure
consists of a path (called stem) attached to a cycle of nodes.
The common node of stem and cycle is called root r and its
two adjacent nodes on the cycle are called sub-roots (s1 and
s2). The root r marks one end of the stem. The other end
is called the tip t.

If the stem is degenerated to become a single node (i.e.,
r = t), the S&C structure becomes a tour. Otherwise, the
S&C structure can be transformed to two candidate tours
by removing the edge between one of the sub-roots si and
the root r, and then re-connecting si to the tip £. The better
one of these two trial solutions can be chosen.

During the search, the S&C structure is iteratively refined
by two search operators (called “rules”) [14, 32]:

1. Choose a node j on the cycle. Let the two nodes ad-
jacent to it be g1 and g2. Select one of them and refer
to it as q. Delete the edge between ¢ and j and then
add edge (¢, 7).

2. Choose a node j on the stem. Let the node adjacent
to 7 and farther away from r than the other adjacent
node be called ¢g. Connect ¢ to j and delete edge (J, q).

In both cases, ¢ becomes the new tip ¢ (see Figures 2b and
2c) but the root r remains unchanged.

In the P_.SEC ECM by Rego [32], in each step, the rule
and j are chosen which can minimize the overall edge length
of the S&C. Glover [13] and Rego [32] found that choosing
a different root after a relatively small number of such steps
leads to better performance. Therefore, initially, a set R
containing all n nodes is created. At the beginning and
each time the root is to be changed, a new root is randomly
extracted from R.

We investigate the FSM** [28], which improves P_SEC
in several aspects. P_SEC defines a tabu criterion that for-
bids adding an edge again to the S&C which previously was
deleted. FSM** applies the less restrictive criterion of not
allowing an edge to be deleted a second time (i.e., being
deleted, added, and then deleted again from the S&C). The
maximum number steps before a root change is set to 0.45n
and after 0.15n nodes have been used as root, the algorithm
applies the same soft restart method as the tested LK imple-
mentation [36]. Each of these modifications has been con-
firmed to improve the overall performance [28].



2.4 Multi-Neighborhood Search

Another efficient LS approach for the TSP is the MNS
algorithm. In each iteration, MNS performs an O(n?) scan
that investigates four neighborhoods (city swap, sub-sequence
rotate left, sub-sequence rotate right, and reversal) of a tour
at once. It tests all pairs {7, j} as potential indexes for cities
to swap or start and end indexes of sub-sequence rotations
and reversals. For each pair {i,j}, the gain is computed
and all discovered improving moves enter a queue. The ac-
cess to the distance matrix D is minimized by remembering
(and updating) the lengths of all n edges in the current tour
and avoiding the checking of redundant moves (swapping the
cities at index ¢ and ¢+1 is equivalent to a reversal of the sub-
sequence from i to i + 1, for instance). After the scan, the
best discovered move is carried out. Doing this may invali-
date some other moves in the queue, e.g., if a sub-sequence
reversal that overlaps with a potential sub-sequence left ro-
tation was performed. After pruning all invalidated moves
from the queue, the remaining best move is carried out, if
any. If the queue becomes empty, another scan of the cur-
rent solution is performed, as new moves may have become
possible. During this scan, only moves that at least intersect
with the previously modified sub-sequence(s) of the current
best solution need to be considered (to speed up the search).
If no improving moves can be found anymore, a random sub-
sequence of the current tour is randomly shuffled.

This algorithm has performed the best among all of the
methods tested in [36]. It is outperformed by both LK
and FSM** in their pure form, but its hybrid versions with
PACO outperform theirs [28, 38].

2.5 Hybrid Local Search: LS-LS

Research on hybrid (“Memetic”) algorithms is almost en-
tirely focused on combining global and local search algo-
rithms (EC-LS), as done in [28, 29, 36, 38, 40], for in-
stance. However, LS algorithms can already exhibit different
behaviors which might complement each other. Some LS
approaches (like MNS) are efficient to find good solutions
quickly but can easily get stuck in local optima. Others
(LK, FSM**) might initially be slower but find better final
results [28, 38]. ECMs are considered to be able to reach
parts of search space which cannot be reached by LK [12].

In order to take advantages of their different abilities, we
pairwise hybridize LK, FSM** and MNS with each other.
We therefore apply one LS approaches until it cannot im-
prove the solution anymore. Instead of performing a soft
restart, the resulting tour is passed as starting point to the
other LS. Once this second LS gets trapped in a local opti-
mum, we use its result as starting point again for the first
LS. This is repeated until both LS methods cannot find an
improvement, in which case we apply the same soft restart
method mentioned before.

In some sense, this idea can be considered as a general-
ization of Variable Neighborhood Search (VNS) [18]. VNS
explores the neighborhood of the current solution, spanned
by a search operator such as 2-opt, until it reaches a lo-
cal optimum. It then uses another search operator (such as
3-opt) to escape from this trap. With LS-LS hybrids, we
extend the concept to whole LS algorithms instead of just
search operators.

We define six LS-LS hybrids, namely LK-FSM** FSM**-
LK, LK-MNS, MNS-LK, FSM**-MNS, and MNS-FSM**,
We do not explore VNS as component here, as it was already

found in [36] that MNS can outperform VNS based on the
same operators on the TSP.

2.6 Evolutionary and Memetic Algorithms

EAs are the most well-known EC approaches [4, 6]. EAs
first generate a set of A random solutions. Out of these, the
best . < A solutions will be selected as “parents” of the sec-
ond generation. \ offspring solutions are created by applying
either a unary (mutation) or binary (crossover) operator to
the parents. From then on, the p best individuals are se-
lected from the A offspring solutions and their p parents in
each generation in the case of a (u + A)-EA. A (u, A\)-EA
selects only from the A offspring.

We investigate MAs which combine such EAs with LS.
The first population of our MAs is not generated randomly,
but instead stems from the Edge-Greedy, Double Minimum
Spanning Tree, Savings, Double-Ended Nearest Neighbor,
and Nearest Neighbor Heuristic, in order to improve their
performance [36]. We apply Edge Crossover [37], which gen-
erates a new solution by picking edges belonging to either of
its two parents, as recombination operator. It is considered
to be one of the best crossover operators for the TSP [36].
The crossover rate is set to 1. The LS component of the MA
is applied to every solution generated, both by these initial-
ization heuristics and crossover. We propose two families of
MAs: MA(p T A)-LS and MA (g T X)-LS-LS.

2.7 Ant Colony Optimization

The ACO algorithm is an EC approach introduced by
Dorigo [8] in 1992. We consider the state-of-the-art ACO
variant PACO [15] in our experiments. Different from nor-
mal ACO, PACO has linear memory requirements since it
does not use a full pheromone matrix. Instead, it maintains
a population of k solutions.

The pheromones are defined by the edges occurring in
these tours: In each algorithm iteration, [ tours are created
in the same way as in the standard ACO. The “oldest” solu-
tion in the population is replaced by the best of the newly
generated solutions. The pheromone on an edge is propor-
tional to the number of times the edge is contained in the
population. Only few hybrid ACO approaches have been ap-
plied to the TSP, although it was shown in [36] that they per-
form particularly well. We compare hybrid PACO(k,[)-LS
with PACO(k, [)-LS-LS algorithms. The initial populations
are again obtained heuristically, in the same way as in the
MAs.

3. EXPERIMENTS AND RESULTS

We conduct a large-scale experimental study in which we
perform 30 independent runs for 79 algorithm setups on all
110 symmetric T'SPLib [33] benchmark cases. The maxi-
mum computational budget is set to 1 hour per run.

Most metaheuristics, including EAs, MAs, ACO, as well
as all LS approaches are anytime algorithms [5]. Even sev-
eral exact algorithms, such as BB [23], fall into this category.
Anytime algorithms can provide a best guess of what the op-
timal solution of a problem could be at any time during their
run. This means that there are no “final” solutions, as the
point in time when the algorithm is stopped may be arbi-
trarily chosen (here: after 1h). Thus, anytime algorithms
cannot just be characterized by a final solution and runtime
requirement, but should be compared based on their whole
runtime behavior [36].



We therefore use the TSP Suite [36] to execute our ex-
periments, gather data about algorithm runtime behavior,
and to evaluate these data. The TSP Suite also addresses
the problem of properly measuring the time consumed by an
algorithm: Runtime measurements presented in terms CPU
seconds can capture all the complexities and the overhead
of the algorithm implementations, but are strongly machine-
dependent and inherently incomparable. Even if normalized
runtimes (NT) are calculated based on machine performance
factors, they remain problem specific and may not represent
the utility of black-box metaheuristics in general. Counting
the number of generated solutions (i.e., objective function
evaluations, or FEs in short) is the most-often used alter-
native in benchmarking. However, it neglects the fact that
one FE in (plain) ACO and PACO has quadratic complex-
ity whereas in a LS algorithm using 2-opt operations, it may
be in O(1). The TSP Suite thus measures runtime in four
different measures, CPU time, normalized CPU time, FEs,
and the number DF of accesses to the distance matrix D, in
order to provide a balanced overview on algorithm perfor-
mance.

The TSP Suite furthermore ranks algorithms according
to their overall performance. This ranking includes statis-
tical comparisons of results at different runtimes, empirical
cumulative distribution functions (ECDFs) [17, 22, 34] for
different goal values (see the following section), the progress
of algorithms over time, estimated running time (ERT) [17]
curves, final results, as well as the expected runtime to reach
the optimum, amongst others. It therefore represents al-
gorithm performance and robustness from several different
angles.

3.1 LS and LS-LS Performance

First we will investigate LS and the LS-LS hybrids. We
therefore define 8 LS setups, namely FSM** MNS, and
6 setups of the LK heuristic, differing in their candidate
set size (5, 10, 20, 30, 40, and n). We call the LK setups
LK5, LK10, ..., LKn, respectively. We compare them to
26 LS-LS hybrids, namely 6 setups of LK-FSM**, 6 setups
of FSM**-LK, 6 setups of LK-MNS, 6 setups of MNS-LK,
the FSM**-MNS, and the MNS-FSM**.

According to the automated ranking obtained from the
TSP Suite (see Figure 6 at the end of the experiment sec-
tion), LK10-MNS, FSM**-LK10, and FSM**-LK5 have the
best performances amongst the LS and LS-LS algorithms.
In Figure 3, we plot the ECDFs of selected setups for dif-
ferent goal errors F; and runtime measures. The ECDF
illustrates the fraction of runs that have discovered a (best)
solution with F, < Fi, where F} corresponds to the rela-
tive excess length of the tour length compared to the global
optimum. Fj, = 0.01 would correspond to a tour which is
1% longer than the globally optimal tour of a given bench-
mark instance'. The illustrated ECDFs are aggregated over
all 110 benchmark instances. An algorithm is the better the
faster and higher its ECDF rises. For the sake of readability,
we only include the pure LS and six representative hybrid
versions in the diagram.

The ECDF of FSM**-LK10 in Figure 3a, based on the
normalized CPU runtime measure N7, reaches 0.45 for F; =
0. In other words, a global optimum can be reached in about
45% (of the runs) of all benchmark cases under the given
computational budget. Its ECDF curve rises quicker and

LAll optima are known for TSPLib.

reaches higher than those of LK10 and FSM**, which both
converge at 0.4. This means that FSM**-LK10 outperforms
both of its pure components. Similar observations can be
made for LK10-MNS and FSM**-MNS. This confirms that
hybridizing LS algorithms with each other therefore can im-
prove the performance.

Not all LS-LS hybridizations lead to a better performance.
MNS-LK10 and MNS-FSM** which first execute MNS fol-
lowed by LK10 and FSM**, respectively, outperform MNS
but not their second component LS. Their ECDFs are higher
only for a very small time budget, probably due to the fast
initial progress of MNS, but converge around 0.175 and 0.2.
This is better than MNS, which can only solve 10% of the
problem instances. LK10 and FSM** however, can find
the global optima in 40% of their runs. One possible rea-
son for the influence of LS execution order on performance
might be that MNS produces a local optimum from which
the subsequent LS steps cannot easily escape. MNS itself
may be able to improve the results of the other methods, as
it exhaustively scans a relatively large neighborhood.

In the other sub-figures of Figure 3, we increase the goal
error F; to 0.025, i.e., illustrates the fraction of runs finding
a solution that is up to 2.5% longer than the optimum. This
goal can be reached more often. LK10-FSM** and LK10-
MNS now can reach marginally higher ECDF values than
FSM**-LK10 and FSM**-MNS.

In Figure 3c, we change the runtime measure from nor-
malized CPU time NT to the number of objective function
evaluations, i.e., F'Fs. This measure counts the search steps
but disregards their algorithmic complexity, which is to the
disadvantage of the hybrids starting with LK. The hybrids
beginning with FSM** and MNS may need fewer FEs to
solve some of the problems, which leads to higher ECDF
values earlier on in this chart. From Figure 3b we know,
however, that there is no big difference in terms of the ac-
tually consumed CPU times. This shows that it is not suf-
ficient to just count FEs when experimentally investigating
optimization algorithms?. . .

We can furthermore find that a candidate set size around
10 for hybrid LK perform best, although pure LK tends
to perform better with larger candidate set sizes (except for
LKn, see Figure 6 at the end of this section). This shows that
the best parameter settings of a pure LS are not necessarily
the best settings for its hybrid forms. A set of experiments
to find good setups is therefore always necessary, even if we
hybridize algorithms which have been extensively tested in
their separate, pure forms.

3.2 EC-LS and EC-LS-LS Hybrids

After confirming that LS-LS hybrids outperform pure LS
and knowing that EC-LS hybrids outperform both pure EC
and LS from [28, 36, 38], we now investigate combinations of
a EC and our new LS-LS algorithms, i.e., EC-LS-LS hybrids.
Since each single setup consumes more than one week of
runtime on one node in our cluster, we chose the two best
LS-LS methods, LK10-MNS and FSM**-LK10, for EC-LS-
LS hybridization only.

For each of LK10-MNS, FSM**-LK10, MNS, LKn, and
FSM** 9 additional setups were evaluated: 3 hybrids with
PACO (using PACO(3,10), PACO(3,25), and PACO(5,10)))

2ECDF charts based on time measured in DFEs look similar
to those using NT, signifying the DFEs are a better machine-
independent time measure for the TSP than FFs.
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Figure 3: ECDF diagrams of LS versions for different (log-scaled) runtime measures and goal errors.
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Figure 4: ECDF diagram of hybrid EC versions for NT and
F; = 0.0. Compare with Figure 3a.

and 6 MAs, namely MA (2,4), MA(2+4), MA(2,8), MA(2+8),
MA(16,64), and MA(16+64). This resulted in 45 setups of
EC-LS and EC-LS-LS algorithms.

We find that different setups of the same component algo-
rithms (e.g., PACO(3,10)-MNS and PACO(5,10)-MNS) have
relatively similar behavior for all time measures. We choose
representative setups from all eight different EC-LS-LS and
EC-LS combinations for illustration. As the EC methods
hybridized with LK alone are slightly worse than those with
pure FSM** [28], we omit them here.

From the ECDF plots in Figure 4, we observe a significant
improvement of performance in the EC-LS-LS methods com-
pared to the LS-LS algorithms. PACO(3,10)-LK10-MNS
and MA(2,8)-LK10-MNS outperform the best two LS-LS
algorithms (LK10-MNS and FSM**-LK10) both in terms
of speed and number of problems they can solve to opti-
mality. The ECDF of PACO(3,10)-LK10-MNS reaches 0.6,
meaning it can solve about 15% more problems than FSM**-
LK10 and 17.5% more than LK10-MNS. It is also 7% better
than the best EC-LS hybrid, PACO(3,10)-MNS. By solving
55% of the problems, MA(2,8)-LK10-MNS also outperforms

the best EC-LS hybrid. It is significantly worse than the
PACO version, however, which fits well to the observations
in [28, 36, 38, 40].

The PACO(3,25)-FSM**-LK10 and MA (16+64)-FSM**-
LK10 both outperform FSM**-LK10. The ECDF curve
of PACO(3,25)-FSM**-LK10 increases rapidly and reaches
0.55, which is 0.1 higher than just FSM**-LK10. Interest-
ingly, this time the EA is the better host EC method for
hybridization, as MA(16+64)-FSM**-LK10 can solve 59%
of the problems. This one of the rare occasions where we
observe an MA outperforming a hybrid PACO based on the
same LS method on the T'SP.

There is always a significant ECDF gap between EC-LS-
LS and EC-LS methods. Still, the EC-LS hybrids are better
than the LS-LS algorithms in terms of the ECDF. Together
with the studies [28, 36, 38, 40], this substantiates that the
EC component is necessary to find good solutions and rely-
ing on pure LS is not sufficient.

We now plot how the algorithms progress over time. We
plot the medians of the best relative excess tour length F}
discovered until a specific point in (normalized) time in Fig-
ure 5. Since smaller-scale problems can quickly be solved,
we concentrate on problem instances with (large) scale n be-
tween 8192 and 16383 in Figure 5a and those with between
16384 and 32767 cities in Figure 5b.

Even for these problems, the EC-LS-LS hybrids reach
tours close to the global optimum. EC methods hybridized
with (pure) MNS tend to initially progress the fastest by
far. On these large problem instances, they also converge at
slightly better results than EC hybrids with FSM**-LK10,
but on worse solutions than those with LK10-MNS. This
confirms that MNS is very suitable for hybridization and
contributes to the overall search speed.

Finally, in Figure 6, we present an abridge algorithm per-
formance ranking of the representative setups obtained with
the TSP Suite. The best 14 algorithms are all among the
new EC-LS-LS hybrids and all of them are apply LK10 as
component.

4. CONCLUSIONS AND FUTURE WORK

In this work, we introduced the concept of hybridizing
several LS methods with each other. For this purpose, we
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Figure 5: Progress of the EC-LS and EC-LS-LS hybrids in terms of the best objective value in F} discovered so far over the

normalized runtime NT and different large problem scales.

PACO 3,10;-LK10—MNS (rank 1),

PACO(3,25)-LK10-MNS (2), PACO(5,10)-LK10-MNS (3),
MA (16+64)-FSM**-LK10 (4), PACO(5,10)-FSM**-LK10 (5),
PACO(3,25)-FSM**-LK10 (6), MA(16,64)-FSM**-LK10 (7),
PACO(3,10)-FSM**-LK10 (8), MA(16,64)-LK10-MNS (9),
MA (2,8)-LK10-MNS (10), MA(16+64)-LK10-MNS (11),
MA (2,4)-LK10-MNS (12.5), MA(2,8)-FSM**-LK10 (12.5),
MA (2:+8)-FSM**-LK10 (14), MA(24+4)-FSM**-LK10 (15.5),
PACO(5,10)-MNS (15.5), MA(2+4)-LK10-MNS (17.5),

MA (2,4)-FSM**-LK10 (17.5), PACO(3,10)-MNS (19.5),
PACO(3,25)-MNS (19.5), MA(2+8)-LK10-MNS (21),
PACO(3,10)-FSM** (22), PACO(5,10)-FSM** (23);
PACO(3,25)-FSM** (2/), MA(2+8)-FSM** (25),

MA (2+4)-FSM** (26), MA(16,64)-FSM** (27),

MA (16+64)-FSM** (28), MA(2,4)-FSM** (29),

MA (2,8)-FSM** (30), MA (16+64)-MNS (31),

MA (2+4)-MNS (32), MA(2+8)-MNS (33),

MA (16,64)-MNS (54), MA(2,8)-MNS (35),
PACO(3,10)-LKn (36), PACO(3,25)-LKn (37),
PACO(5,10)-LKn (38), LK10-MNS' (39), FSN**-LK10 (40),
FSM**_-LK5 (41), FSM**LK20 (42), LK10-FSM** (43),
MA (2,4)-MNS (44), LK5-FSM** (45) FSM**-LK30 (46),
FSM**-MNS ({7), LK5-MNS (48), FSM**-LK40 (49),
FSM**-LKn, (50, LK20-MNS (51), LK20-FSM** (53),
LK20 (53), LK30 (54), LK40-MNS (55), LK30-MNS (56),
LK30-FSM** (57), LK10 (58), LK40 (59), FSM** (60),
LKAO-FSM** (61), LK5 (62), MA(164-64)-LKn, (63),
LKn-FSM** (64), MA(16,64)-LKn (65), LKn-MNS’ (66),
MA(2,8)-LK (67), MA(2+4)-LK (68), MA(2,4)-LK (69),
LKn (70), MA(2+48)-LKn (71), MNS-LKA0 (73),
MNS-LK30 (73), MNS-LK20 (73), MNS-FSM**’ (75),
MNS-LK10 (76), MNS-LK5 (77), MNS-LKn (78), and
MNS (79).

Figure 6: Algorithm ranking from best to worst, based on
various performance measures and statistics (see [36] for de-
tails). The different algorithm types pure local search, L.S-
LS hybrid, EC-LS hybrid, and EC-LS-LS hybrid are high-
lighted.

pairwise combined the three state-of-the-art TSP solvers
FSM** MNS, and the LK heuristic. We hybridized the new
LS-LS hybrids further with two EC approaches, namely an
EA and PACO. We conducted a large-scale experimental
study applying 79 different setups to all of the 110 bench-
mark instances from TSPLib. Our experiments have led us
to four major conclusions:

1. The new LS-LS hybrids are better than their pure LS
algorithm components. This means that the new idea
of combining the strengths of different LS algorithms
is very promising.

2. The LS-LS hybrids are still slightly worse than the
above-mentioned EC methods hybridized with a sin-
gle LS, ie., EC-LS algorithms. This means that a
global search component is still necessary in a good
TSP solver.

3. The new EC-LS-LS hybrids outperform the LS-LS al-
gorithms as well as EC-LS hybrids. The best overall
algorithm, PACO(3,10)-LK10-MNS, unites the global
search strength of PACO, the ability to find good so-
lutions of the LK heuristic, and the fast exploitation
speed of MNS.

4. In [28, 36, 38, 40] as well as the present study, PACO is
the significantly better host EC method for hybridiza-
tion than an EA. However, we also find an exception
to this rule, as MAs with FSM**-LK10 are better than
the corresponding PACO versions.

In our future work, we will hybridize more than two LS algo-
rithms with each other. Since LK10-MNS and FSM**-LK10
both perform well, it is attractive to also investigate FSM**-
LK10-MNS. We will construct LS-LS hybrids with the ef-
ficient Tabu Search-based TSP solvers introduced in [40].
Furthermore, instead of hybridizing an EC method with an
LS-LS hybrid, we might instead hybridize it with several LS



algorithms at once.

In each search step, it will randomly

choose which LS to use for refining a new candidate solu-
tion. This choice will be adaptive and change according to
the success rate of such refinements.

Finally, the concept of LS-LS and EC-LS-LS hybrid al-
gorithms is also promising for other problem domains. We
will therefore explore its utility on several other well-known
combinatorial optimization problems.
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