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Abstract In the field of Evolutionary Computation, a common myth that “An
Evolutionary Algorithm (EA) will outperform a local search algorithm, given
enough runtime and a large-enough population” exists. We believe that this is not
necessarily true and challenge the statement with several simple considerations.
We then investigate the population size parameter of EAs, as this is the element
in the above claim that can be controlled. We conduct a related work study, which
substantiates the assumption that there should be an optimal setting for the pop-
ulation size at which a specific EA would perform best on a given problem instance
and computational budget. Subsequently, we carry out a large-scale experimental
study on 68 instances of the Traveling Salesman Problem with static population
sizes that are powers of two between (1+2) and (262 144 + 524 288) EAs as well as
with adaptive population sizes. We find that analyzing the performance of the dif-
ferent setups over runtime supports our point of view and the existence of optimal
finite population size settings.
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J. Lässig
Faculty of Electrical Engineering and Computer Science,
Hochschule Zittau/Görlitz;
D-02826 Görlitz, Germany.
E-mail: jlaessig@hszg.de

This is a preview version of this article [91] (see page 30 for the reference).
The final publication is available from Springer (who hold the copyright) at
http://link.springer.com. See also
http://dx.doi.org/10.1007/s10898-016-0417-5 .

http://link.springer.com
http://dx.doi.org/10.1007/s10898-016-0417-5


2 Thomas Weise et al.

1 Introduction

Evolutionary Algorithms (EAs) [5, 17, 26, 84, 85] are population-based global op-
timization algorithms. Despite the fact that much research has been done showing
that larger populations are not always useful, it is still a common belief in the
Evolutionary Computation (EC) community that

An EA will outperform a local search algorithm, given enough runtime and
a large-enough population.

In this article, we aim to

1. challenge this statement from several angles, and
2. analyze the impact of the population size parameter on the performance of

EAs, both with a literature review and an experimental study to support our
arguments.

We will first point out some simple issues with the statement above in Section 2,
and then review the literature related to population size impact in Section 3.
We support our arguments with a comprehensive experimental study using the
Traveling Salesman Problem (TSP) [3, 29, 49, 52] as a test bed in Section 4. Our
goal is to provide evidence showing that the two conditions enough runtime and
large-enough populations are not sufficient to let an EA outperform another EA with
a smaller population, let alone a good local search algorithm. Instead, we show that
there are static population size settings that are optimal in terms of performance
for a given computational budget. In Section 5, we investigate whether (simple)
adaptive population sizing schemes can change this situation qualitatively. We find
that the behavior of the adaptation schemes we tested provides further support
for our arguments. Finally, in Section 6, we summarize our findings and give an
outlook on future work on this topic.

2 Basic Considerations

2.1 What does “Outperform” mean?

A first issue with the initial statement emerges from the fact that there is no
clear definition of what “outperform” means. Often, “outperform” is interpreted
as “finding better solutions”. As pointed out in [90], this approach is not sufficient
as it ignores the runtime requirement. Consider a situation where a local search
finds a solution that is 0.001% worse than the global optimum within one second,
while an EA needs one month to find such a solution and later discovers the global
optimum. Only if runtime does not matter, it can be stated that the EA has
outperformed the local search. In practical scenarios, runtime always matters.

Exact deterministic algorithms, random walks, or random sampling will, too,
sooner or later find the global optimum. If finding the global optimum is indeed the
criterion for whether an optimization algorithm is good or not, it must do so faster
than these algorithms. This invalidates assumptions about an infinite population
and infinite runtime.
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2.2 Better Solutions if Enough Runtime

One premise often encountered in the field of optimization is that a global opti-
mization algorithm, such as an EA or a Swarm Intelligence [12, 79] method, can
find better solutions than a local search algorithm if enough runtime is granted. It
is indeed true that several global optimization methods can find optimal or close-
to-optimal solutions if given enough time [9]. However, in many problems, suitable
local search algorithms can find the global optimum, too. If they can do so faster
than an EA, it does not matter how much runtime is granted, the EA cannot be
considered as better than the local search. A good example of this is the TSP,
where approaches based on the Lin-Kernighan heuristic [54, 98], a local search,
are currently considered to be the best-performing algorithms and can solve many
TSP instances to optimality [34].

2.3 Outperform if Large-Enough Populations

It is further believed that large populations in EAs can prevent premature con-
vergence, i.e., getting stuck in a local optimum. In other words, if the population
is large enough, the EA will find the global optimum eventually. Then again, the
runtime needed for one generation of an EA is proportional to the population size.
If the population of the EA is so large that the computational budget of the opti-
mization process is exhausted during the first generation, the EA will behave like
a random sampling algorithm [61]: It will only generate the random (initial) solu-
tions of the first generation and then terminate. Random sampling algorithms are
not considered to be good optimization methods and usually will not outperform
even trivial local search algorithms. Besides memory, runtime constraints therefore
put hard limits on the population size. In other words, it may not be possible to
simply increase the population size of an EA until it finds better solutions than a
local search method.

2.4 Finding the Global Optimum

Even if an EA is granted long runtime and a large population, it is not guaranteed
that it will find the global optimum: It may converge prematurely [86, 88].

A search operation is complete [80, 85, 88] if it can produce any possible solu-
tions from any other possible solutions. If the unary (mutation) operation of the
EA is complete, the EA will eventually escape the basin of attraction of the local
optimum trapping it and find the global optimum. However, mutation operators
necessarily have a bias to create solutions that are similar to their parents. The
production of completely different solutions is much less likely. Without this bias,
mutations would be the same as random sampling steps. Random sampling creates
any possible solutions with the same probability. In a prematurely converged EA,
escaping the current local optimum with mutation may have a smaller probability
due to this bias. It could potentially take much longer to find the optimum with
that EA than finding it with random sampling.

The use of binary (crossover) operations is one of the elements distinguishing
EAs from local search methods. Crossover provably has a tremendous positive im-
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pact on the convergence speed of the search [19] in some (but not all [2]) problems.
Crossover operators usually produce new solutions that either contain parts of the
input (parent) genotypes or are sampled from a subspace defined by these parents.
Such crossover operators are not complete since, for two given parent solutions,
there are points in the search space they cannot produce. In a prematurely con-
verged EA, the presence of crossover operators and the allocation of trials to them
may decrease the probability of escaping the local optimum.

The global search ability of an EA therefore does not guarantee that it will
reach a better solution than local search. In [86, 88], we have provided some de-
tailed analysis on several problematic aspects that may cause premature conver-
gence, as well as potential remedies for them.

2.5 Representation Design

It is well-known that the performance of an EA can be significantly improved
by choosing a good representation, i.e., suitable data structures for genotypes, for
phenotypes, for the genotype-phenotype mapping (GPM) translating the former
to the latter, as well as efficient search operations [26, 75, 85]. Such represen-
tations are usually compact [26, 74] and unbiased [8, 64]. The GPMs should be
surjective [64], injective [74], and consistent [64]. The search operations should be
complete [80, 85, 88], should not destroy good solution components [74], and genes
jointly encoding one phenotypic trait should be co-located in the genotype [69].
Indirect representations form a special class [6]: Developmental ontogenic map-
pings [18, 63], for instance, improve the scalability of an EA, i.e., the ability to
solve larger-scale problems, by translating small genotype data structures to much
larger phenotype data structures via an injective, non-surjective, iterative GPM
process. Several pitfalls when solving optimization problems can be avoided by
good representation design [86, 88].

Although the concept of genotypes and phenotypes stems from the EC field,
it can also be applied in local search methods. The wide variety of available repre-
sentations, ranging from bit strings, permutations, real vectors, to tree and graph
data structures is therefore not a unique feature or advantage of EAs. The only
distinct representation component of an EA is the binary crossover operator. As
pointed out in the previous section, crossover may significantly improve the speed
of an optimization process, but may also contribute to premature convergence.

2.6 Advanced Methods

There exist several advanced techniques to improve the performance of an EA,
and they often try to prevent premature convergence. Sharing, niching [27, 36] and
clearing [65] try to prevent the population of an EA from collapsing to identical
individuals. The population can also be clustered in order to additionally explore
multiple optima at once [58, 87]. Instead of optimizing the objective function
directly, FUSS [41], Novelty Search [50], and FFA [89] try to find only new solution
characteristics, where new may be defined with respect to the objective function
and history of the search.
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Other methods aim to improve the speed of the optimization process. Link-
age learning [32] and variable interaction learning [15] try to detect the a priori

unknown relationships between the decision variables of a problem and use this
information for a more targeted search. If an objective function is at least partially
separable, this can be exploited by cooperative co-evolutionary approaches [15, 67].
Self-adaptation methods for the population size or mutation rate also aim to im-
prove the search speed (but may cause premature convergence [77]).

Most of the above methods require a population size significantly larger than
1 to work. They therefore represent another unique feature (besides crossover)
distinguishing EAs from local search. In this paper, we focus on pure EAs and
cannot consider the full spectrum of this variety of methods. Nevertheless, different
ways to adapt the population size will be analyzed both in our literature study
(Section 3.3) and experiments (Section 5).

2.7 Outperform in General

There is another ‘hidden’ problem with the initial statement: It implicitly general-
izes. It does not limit the type of optimization problems to some specific features.
The No Free Lunch Theorem (NFLT) for optimization [97] implies that no op-
timization algorithm can consistently outperform another one over all possible
optimization tasks. This also implies that EAs can outperform local search algo-
rithms only on problems with specific features.

2.8 The Nature of an EA

We consider a (µ + λ) EA, which starts with a set of λ randomly created candidate
solutions. Out of these, the best µ ≤ λ solutions will be selected as “parents” of the
second generation: λ offspring are created by applying either a unary (mutation)
or binary (crossover) operator to the parents. From then on, the µ best individuals
are selected from the λ offspring and their µ parents in each generation.

We already have established that such an EA should behave like random sam-
pling for µ → ∞. A (1 + 1) EA, on the other hand, is a greedy hill climber [92, 93],
i.e., the simplest local search, which puts all of its computational effort on exploita-
tion. Both random sampling and hill climbing usually should be outperformed by
more advanced local search algorithms such as Tabu Search [7, 24, 25] or Simulated
Annealing [13, 46, 72] on practically relevant problems. An interesting question,
which we will investigate in the remainder of this article, is whether there is an
optimal population size (i.e., a setting of µ and λ in between) at which the EA
can outperform local search?

3 Related Work: Population Sizes in EAs

In the previous sections, we have provided a set of basic considerations on the na-
ture of EAs under extreme population settings. We will now review the literature
on population sizes of EAs, which we divide into three groups: studies that ana-
lyze the behavior of EAs from a mathematical perspective, studies that focus on
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experimental investigations, and those that consider adaptation of the population
size.

3.1 Theoretical Analysis

Most theoretical approaches to the relationship between the population size and
algorithm performance consider relatively narrow classes of problems, such as One-

Max and bit-string based representations. They usually analyze under which con-
ditions the expected running time to discover the global optimum is polynomial,
i.e., the EA is efficient [42], and when it becomes exponential. Yao [100] called
problem instances that can be solved efficiently with an EA EA-easy and those
that cannot EA-hard.

Several researchers have studied the impact of population sizes for EAs with-
out recombination: Jansen and Wegener [43] defined an example problem that
can be solved efficiently by an EA with a population size above a certain thresh-
old, whereas a (1 + 1) EA, i.e., local search, needs super-polynomial runtime in
expectation. Similar to Jansen and Wegener, Witt [95, 96] applied an EA with
fitness proportionate selection to an example problem. He, too, found that a pop-
ulation size of 1 leads to exponential runtime in expectation, whereas an EA with
a population size above a problem scale dependent threshold is efficient. Inter-
estingly, he also showed that with a slight modification to the objective function,
opposite results can be obtained. That is, EAs with population sizes above a
problem-dependent threshold become inefficient while (1 + 1) EAs have polyno-
mial expected running times1.

He and Yao [33] compared (1 + 1) EAs with (µ + µ) EAs (again without recom-
bination) and found that, in some cases, EAs with populations (µ > 1) can solve a
problem efficiently, while (1 + 1) EAs cannot. In cases where (1 + 1) EAs are effi-
cient in solving a problem, a high selection pressure may render a population-based
EA inefficient. Chen et al [14] even showed that an EA without recombination and
large populations loses the ability to solve a TrapZeros problem in polynomial
time.

Jansen et al [44] analyzed a (1 + λ) EA on the OneMax and LeadingOnes

problems and found that λ > 1 does not bring a performance benefit over λ = 1
on these problems. They further provided empirical results indicating that some
harder problems may require λ > 1 to discover the optimum.

Jägersküpper and Storch [42] found that a (1, λ) EA will outperform a (1 +
λ) EA on the bit string domain if λ is logarithmic in the problem scale n. On
unimodal problems, the (1, λ) EA with smaller populations becomes inefficient.
For larger populations, both the EAs behave similarly. Rowe and Sudholt [76]
derived a threshold below which the running time of a (1, λ) EA is exponential
and above which it is polynomial in expectation on the OneMax problem. They
also concluded that for other unimodal problems, the threshold may be higher.

Storch [81, 82] investigated a (µ + 1) EA avoiding duplicates in its population
and without recombination on four example problems, including OneMax. They
showed that for some problems, such an EA is only efficient if µ is greater than
a certain polynomial in the problem scale. Li and Wang [51] found a relationship

1 This could be a manifestation of the NFLT.
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between the optimal population size of an EA and the encoding length (i.e., the
problem scale n). “Optimal” here implies that the EA performs worse for either
larger or smaller populations.

Gao [23] defined bounds for the population size of an EA with fitness pro-
portionate selection above which the actual sampling rates for schemas closely
resemble those theoretically expected based on Holland’s Schema theorem. These
bounds are based on the assumption that fitness proportionate selection and the
objective function together would nicely steer the EA towards good solutions,
which is not necessarily the case (as in the counter examples in [96]).

This (surely incomplete) overview on theoretical analysis of the population
size parameter complements our ideas from the previous sections. A (1 + 1) EA
is a hill climber, which may be able to outperform ‘true’ EAs on some unimodal
problems. The existence of lower bounds for the required population size to render
an EA efficient on other problems, together with the fact that a (∞ + λ) EA equals
random sampling, support the assumption that there should be optimal population
size settings in between.

An interesting issue is that problems one would normally use an EA for in
practice are often NP-hard, while problems in the above-mentioned studies seem
to be rather easy. As a result, these studies considered only the expected run-
time to find the optimum, which one would intuitively expect to be exponential
for NP-hard problems such as the TSP2. When dealing with such problems, we
are therefore interested in the (functional) relationship between consumed run-
time and approximation quality. In order to obtain such relationships, at least
approximately, experimental investigations appear to be necessary.

3.2 Experimental Analysis

As results from theory are still limited, we now provide an overview of experimental
studies investigating the population size parameter.

Sarker and Kazi [78] applied an EA to a two-stage transportation problem
and tested population sizes from 50 to 2000. They observed that larger popula-
tions provide better results, but require more objective function evaluations (FEs).
They found that the increase in required FEs was sub-linear to the increase of pop-
ulation sizes. We argue that it is necessary to compare the solutions that different
algorithm settings achieve using the same amount of runtime or FEs.

Gotshall and Rylander [28] provided an explanation for optimal population
size settings: “We show that increasing the population size increases the accuracy of

the [EA]. Increasing population size also causes the number of generations to converge

to increase. The optimal population for a given problem is the point of inflection where

the benefit of quick convergence is offset by increasing inaccuracy.” They performed
250 runs per population size and counted how many of them contain a correct
solution on three different benchmark problems, including OneMax and the NP-

2 The question of whether there is a population size threshold above or below which the
expected running time becomes polynomial would then, again intuitively, be answered with
probably not.
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hard Maximum Clique problem. As for the termination criterion, they (seemingly)3

used the number of generations that all individuals in the population become
synonymous. We compare the improvement of approximation quality of different
setups over time and thus, neither consider an explicit point of termination nor
focus on finding the correct solutions only.

Another reason why optimal settings for the population size parameter could
exist is given by Abu Bakar and Mahadzir [1]: “If the population size is too large, the

selective pressure will be reduced considerably and this will make the search ineffective.

On the other hand if the population size is too small, selective pressure will be strong

and this exploits certain individuals that will result in a premature convergence.” In
their experiments on Sudoku puzzles with population sizes in the range of 10 to
1000, the lowest CPU time and the lowest number of generations, mutations, and
crossover applications to find a correct solution were all achieved with a population
of 500 individuals.

Hidalgo [35] used an EA with a fixed number of 1024 FEs for the OneMax

and Trap functions. He tested which division of these FEs in different runs with
different population sizes yields the best results. He obtained the best results
when all FEs were granted to a single run with the largest tested population (32
on the OneMax and 256 on Trap problems). His comparison also showed that on
some problems, smaller populations yield better results earlier but are eventually
outperformed by the larger populations, which we can confirm in our experiments
(at least until the optimal setting is reached).

Roeva et al [73] tested population sizes from 5 to 200 for 200 generations on an
E. Coli Fed-batch Cultivation Model. The best results were obtained for popula-
tion size 100. The computational time always increases with increasing population
sizes. In our analysis, we do not only consider end results, but the progress over
runtime [90].

Lin and Chen [53] investigated (µ + µ) and (µ, µ) EAs on Path-wise Discrete
Lipschitz Quasi-Basin class benchmark problems and found that small population
sizes are good in terms of the FEs needed to discover the optimum. We, on the
other hand, compare approximation quality over runtime, as we cannot generally
expect to discover the global optima in TSPs or other NP-hard problems.

Costa et al [16] investigated an EA with population sizes of 50, 100, 512,
and 1000. On several numerical benchmark problems, the population size of 512
led to best results. The population size of 1000 had performed the worst. They
concluded that the limited amount of 5000 FEs granted to each experiment is the
reason behind it. On their experiments with the Royal Road problem, the EA with
population size 1000 had the best results.

Piszcz and Soule [66] investigated a set of example problems for Genetic Pro-
gramming (GP) and identified optimal population sizes in terms of the compu-
tational effort needed to solve the problems. Both smaller and larger sizes would
lead to additional efforts required. We again argue that only focusing on final re-
sults may not unveil the full characteristics of the population size parameter. Like
Gotshall and Rylander [28], Piszcz and Soule [66] also discovered a relationship
between the optimal population size and the problem scale.

3 “We suspect the increase of generations to convergence is probably due to the overall

increase in probability that a mutation will take place in the population and in the increased

time it takes for a greater number of chromosomes to completely converge.” [28].
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Hu and Banzhaf [38] considered the problem of population sizes from the per-
spective of the rate of evolution Re – the rate of adaptive genetic changes being
accepted into the population of a GP process applied to a Symbolic Regression
problem. They tested the population sizes 200, 2000, and 20 000. The observed
differences were small, but larger populations led to a better average fitness. They
also have a higher Re in the first generations, while the smallest population has a
higher Re later on. In order to be compatible with the other experiments in the
same work, generations were used as time measures. It should be noted that a pop-
ulation of 20 000 individuals can perform 100 times more FEs than a population
of 200 individuals, while the diagrams provided were for 50 generations only.

Hu et al [40] compared a standard EA with a fixed population size to their
asynchronous parallel EA. For the standard EA, they tested four different popu-
lation sizes from 136 to 685 on the OneMax problem and found that it needs less
time to discover the optimum for the smallest setting. On a multi-modal problem,
they got a similar observation. This could either indicate that an optimal setting
exists at smaller population sizes for these problems, or that the problems are
simply too easy and do not require a global optimization technique.

Besides the size of the population, its initial ‘content’ may also have an im-
pact on the result quality and convergence speed. Maaranen et al [59] showed
that pseudo-random initialization is fast and easy-to-use, while more sophisti-
cated techniques such as quasi-random or SSI processes may have advantages if
the ‘goodness’ of the final solution is valued higher than the speed of convergence
during the first generations.

In summary, several studies have indicated that there should be an optimum
for the population size setting in various optimization problems. It is a general
consensus that small populations may lead to premature convergence, whereas
large populations may waste computational resources [45, 47, 73]. However, many
of the presented studies

– experimented with relatively small population sizes (often below 1000),
– considered generations as the time measure (thus ignoring that generations

require more computational efforts with increasing population sizes),
– focused only on final results or whether the global optimum has been obtained

(whereas we consider the whole progress over runtime), or
– considered problems that are not NP-hard.

It must be investigated whether EAs with larger populations, if given enough
runtime, will always find better solutions eventually than those with smaller pop-
ulations, or whether they may perform absolutely worse on some problems and
under certain conditions, as some theoretical papers have indicated [14, 44, 95, 96].
Further experiments therefore may contribute to clarifying the situations.

3.3 Adaptation of the Population Size

The studies discussed in the previous section indicate that optimal settings for the
population size may exist and that they likely are problem instance-dependent, i.e.,
not known in advance. Therefore, a very active area of research is the dynamic
adaptation of population sizes in EAs [20, 21, 56, 61]. A wide variety of different
approaches to population size adaptation exist, which include
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1. finding a good population size based on some initial candidate solution sam-
ples [101],

2. randomly changing the population size while the algorithm is running [16] (in
the absence of any prior information about good population size settings, the
EA will have good population sizes at least from time to time),

3. restarting with increased population sizes [4] (if the runs with smaller popu-
lation sizes can already find a sufficiently good solution, much runtime can be
saved),

4. decreasing the population size [11, 30] (in order to first make use of the global
search capabilities to locate the basin of attraction of the global optimum and
then exploit it more quickly with smaller populations), as well as

5. modifying it based on the progress of the optimization process [20, 39, 57].

Besides the different conceptual ideas given above, another reason for this variety
is that optimization problems may have extremely different characteristics. Also,
according to the NFLT [97], a strategy working on one family of problems may
not work on another family of problems.

Under the assumption that having a larger population means trading in run-
time for better global search capability, adapting the population size is useful
only under limited computational budgets, i.e., in practical scenarios. If runtime
is plenty, as it is often assumed when claiming that EAs will outperform local
search, the benefits of adapting the population size decrease. Then, the largest
population size setting available could be used statically during the whole opti-
mization process in order to obtain at least similar or better solutions. Even the
best adaptation strategy therefore does not invalidate our arguments in Section 2.

4 Experimental Results of Static Population Sizes

We have selected the TSP as a test bed to experimentally investigate the impact
of static population size settings on the performance of an EA. The TSP is very
well studied [3, 29, 49, 52]. It is also an often-encountered sub-problem of other
combinatorial or vehicle routing tasks (e.g., see [60]). A TSP instance can be
defined by n cities and the distances between them. The goal is to find the shortest
round trip tour visiting each city and returning back to its starting point. This
optimization version of the TSP is NP-hard [29].

We used the TSP Suite [90] to benchmark a (µ + λ) EA. We selected the path
representation [48] for tours, where permutation (1, 3,2) in a 3-city problem de-
fines a tour first visiting city 1, then city 3, after that city 2, and finally returning
to city 1. Other representations such as satellite lists [62], -trees [70] and 2-level
trees [22, 70] are more efficient in terms of runtime complexity of the search oper-
ations processing them. Nevertheless, the path representation is very simple and
will lead to more easily reproducible results and qualitatively similar conclusions.

We tested 19 powers of 2 for µ, ranging from 1 to 262 144, and set λ = 2µ. The
mutation operator randomly chooses between four operations, as defined in [63, 90]:
swapping two cities in a tour, reverting a sub-sequence of a tour, or rotating a sub-
sequence one step to the left or right. We used the well-known Edge crossover [94]
at a crossover rate of 1/3.

Due to memory requirements of the largest population setting, we have limited
our analysis to the 68 smallest-scale TSPLib instances [71], ranging from burma14
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with 14 cities to si535 with 535 cities. We compared the EA with a random walk
based on swap moves, as well as a hill climber and the best pure local search
algorithm from [90], multi-neighborhood search4 (MNS), both using the same four
unary operators as the EA. For each configuration and benchmark instance, we
performed 30 independent runs.

4.1 Global Ranking

The TSP Suite automates most of the experiment execution, and it also has an
evaluator component for computing a range of statistics and aggregating them into
a global ranking [90]. This ranking can provide a first glance of the performance
relationship between different algorithms and setups. For the experiment described
above we obtained:

MNS (rank 1), (2048 + 4096) EA (2), (4096 + 8192) EA (3),
(1024 + 2048) EA (4), (512 + 1024) EA (4), (8192 + 16 384) EA (6),
(128 + 256) EA (7), (64 + 128) EA (8), (256 + 512) EA (9), (1 + 2) EA (10),
(32 + 64) EA (11), (8 + 16) EA (12), hill climbing (12), (16 + 32) EA (14),
(4 + 8) EA (15), (16 384 + 32 768) EA (16), (2 + 4) EA (17),
(32 768 + 65 536) EA (18), (65 536 + 131 072) EA (19),
(131 072 + 262 144) EA (20), (262 144 + 524 288) EA (21), and random walk (22).

The automated procedure concludes that the local search algorithm MNS
can outperform all EA setups. The best EA performance is detected around the
(2048 + 4096) EA. Generally, EAs tend to perform worse the more their popula-
tion sizes differ from this setting. EAs with really large populations perform the
worst among the EAs, but are still better than the random walk. The hill climber
ranks roughly similar to EAs with smaller populations.

In the following subsections, we will explore the experimental results in more detail
and verify this automatically obtained ranking. We use F, defined as the amount
that a tour is longer than the optimal tour divided by that optimal tour length,
as a quality measure [90]. F = 0 corresponds to an optimal tour and a tour that
is 10% longer than the optimal one has F = 0.1.

4.2 Progress over Time

EAs and local search algorithms are anytime algorithms [10], meaning that they
can provide an approximate solution for a problem at any time during their course.
The approximation quality may improve if more time is given. This means that
it is not sufficient to just compare their final results, as the point of termination
when these results are measured would be an arbitrary choice of the researcher [90].
Thus, it is necessary to compare how the algorithms progress and improve their
approximation quality over runtime.

4 In [55, 98, 99], we found that an ejection chain method using the stem-and-cycle structure,
the Lin-Kernighan heuristic and Tabu Search can outperform MNS, respectively. However,
hybrids of MNS and EAs or Ant Colony Optimization outperform similar hybrids of these
algorithms.



12 Thomas Weise et al.

0 log (FE/n)10

F
b

2
0.0

4

0.2

0.8

0.4

0.6

1.0

(a) Progress over FE for prob-
lem burma14

-2 0
0

log (FE/n)10 4

2

F
b

4

6

(b) Progress over FE for prob-
lem KROA100

0 2
0.0

2.5

5.0

log (FE/n)10

F
b

6

10.0

7.5

-2

(c) Progress over FE for prob-
lem KROA200

-2 0 4
0

2

4

6

log (FE/n)10

F
b

(d) Progress over FE for prob-
lem rd100

-2 0 2 6

8

12

log (FE/n)10

4

F
b

0

(e) Progress over FE for prob-
lem rd400

6log (FE/n)1020

F
b

0.4

0.8

1.2

1.6

2.0

-2
0.0

(f) Progress over FE for prob-
lem si535

Fig. 1: The progress of algorithms in terms of the median best error Fb encountered
over runtime measured in FEs for different benchmark instances. The hill climber
performs very similar to EAs with the smallest populations, whereas the behavior
of EAs with large populations, during their initial phase, is more similar to random
walk. MNS performs the best. See Figure 3a for the legend.

In Figure 1 we plot how the quality Fb of the best tour an algorithm has dis-
covered until a given point in time improves exemplarily for six of the benchmark
cases. The time is measured in terms of the number of created solutions, i.e., in
FEs.

In the diagrams, we blend the colors for the (µ + λ) EAs from blue
for the (1 + 2) EA to violet for the (2048 + 4096) EA and red for the
(262 144 + 524 288) EA. Among these setups, the convergence speed decreases
steadily from the smallest population sizes to the largest ones. EAs with small
populations perform very similar to the hill climber (orange), and their curves
often overlap. The hill climber is a little bit faster in terms of improving F than
the (1 + 2) EA at the beginning because of its strong exploitation. A good local
search algorithm like MNS (green) has a much faster convergence rate than the
EAs.

The larger the population size becomes, the longer the EA behaves
like a random walk (cyan): For benchmark case kroa100, the curves of the
(262 144 + 524 288) EA and random walk overlap until log

10
(FE/n) ≈ 4, i.e., for

1 000 000 FEs, but after that the EA performs better.
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Fig. 2: The ECDF over different time measures (FE, FE, NT) and goal quality
thresholds Ft. (µ + λ) EAs with population sizes around 2048 can solve more
problems (Ft = 0) and achieve better solution qualities than those with small
populations (which perform similar to hill climbing) or large populations (which
behave similar to random walk). MNS performs the best. The algorithm behaviors
are consistent over different time measures. See Figure 3a for the legend.

4.3 Probability to Solve a Problem

A question that cannot be answered from Figure 1 is which of the setups can
solve the benchmark problems or, at least, reach good approximation qualities. To
reasonably well illustrate the convergence behavior, these figures often start with
Fb ≥ 6, i.e., tours seven times as long as the optimum, while acceptable deviations
are at most in the low single-digit percent range.

In Figure 2 we plot the empirical cumulative distribution function (ECDF) [31,
37, 83, 90], which is defined as the fraction of runs that have reached a given goal
solution quality Ft, aggregated over all benchmark cases. If the ECDF reaches 1,
all runs have found solutions with Fb ≤ Ft.

From Figure 2a, we see that only about 20% of the best setups of the (µ + λ) EA
can find the globally optimal solutions. Figures 2b to 2d illustrate the ECDF in
the case where we are willing to accept non-optimal solutions and Ft is increased
to 0.1 over 0.01 and 0.025. The ECDF curves rise higher as well, reaching close
to 1 for the (2048 + 4096) EA and Ft = 0.1.

For all four Ft-cases, we observe some similar behavior: The ECDFs of the
(µ + λ) EAs with small populations rise earlier, due to the strong exploitation
ability of these setups. They are more similar to the curves for the hill climber.
However, they stagnate earlier as well, for the same reason. The highest ECDF
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values are reached by the (2048 + 4096) EA, but for larger populations, the ECDF

drops again. The largest populations are about as likely to solve a problem to
acceptable quality as a random walk. Due to the fact that they spend almost all
runtime on exploration, they can solve almost no problems, even if a Ft = 10%
error was admissible.

In [90], we outlined that measuring the runtime only in FEs may be unfair, as
one FE may require different computational times for different algorithms. MNS,
for instance, performs an O(n2)-scan of its current solution, looking for several
improvements at once, while a local search move in our hill climber may require
O(1) and the crossover operator in the EA requires O(n) steps for creating single
new solutions. In Figures 2e and 2f, we therefore also plot the ECDFs for “distance
evaluations” (DEs), a finer-grained way to count algorithm steps than FEs, and the
“normalized runtime” (NT), which is proportional to the clock time passed [90].
These plots do not look significantly different from Figure 2a, indicating that we
can here limit our considerations to FEs as the time measure.

4.4 Knee Points and Scale

Another question is at what sort of solution quality the EAs converge and what the
impact of the problem scale (the number n of cities of the TSP) is. For this purpose,
we plot the estimated running time (ERT) [31, 90] (y-axis) to reach different goal
qualities Ft (x-axis) in Figure 3. Each diagram therein presents aggregated results
over all benchmark instances with a scale n between two given consecutive powers
of 2.

We find that all tested algorithms except MNS have curves characterized by
‘knee points’. Solutions with tour lengths above a knee point can be obtained
relatively quickly, but the estimate of the runtime needed to obtain better solutions
steeply increases. For EAs with small populations and problems with n ≥ 32, this
knee point is roughly at Ft ≈ 0.125. In comparison, for population sizes around
2048, it is located at slightly better qualities, except for the smallest and largest-
scale problems. Using large populations has a very strong negative impact on the
(µ + λ) EA performance: The knee point quickly moves towards higher Ft-values.
With the increase of problem scale n (rising sub-figure index), more and more of
the reddish ERT curves disappear from the diagrams. We can thus again confirm
the similarity between the EAs with small populations and the hill climber. The
visible deviations in their ERT curves for n > 256 probably are the reason why the
automated ranking by the TSP Suite given in Section 4.1 did not place the hill
climber and the (1 + 2) EA directly next to each other.

The problem scale n seemingly does not have much impact on the knee points,
which are at solution qualities too poor for any practical relevance. It has, how-
ever, an impact on the quality threshold Ft where the ERT goes to infinity, i.e.,
below which no solutions were discovered in the experiments. This threshold moves
towards worse qualities as n increases.
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Fig. 3: The estimated running time in FEs (ERTFE) over goal quality thresholds Ft.
The ERT increases if the goal solution quality is improved (Ft decreases). It steeply
increases at knee points. For larger-scale problems, this knee point shifts towards
worse qualities (to the right). (µ + λ) EAs with small populations and the hill
climber have similar performances and outperform (µ + λ) EAs with population
sizes around 2048 on small-scale problems and mediocre Ft, but are slower to reach
very small Ft. (µ + λ) EAs with large populations and the random walk cannot
even achieve Ft = 1 (tours twice as long as the optimum) within 108n FEs if n

increases over 256. MNS is again the best.

4.5 Final Results

The TSP Suite terminates a run of an algorithm if it has consumed 1h of runtime,
100n3FEs, 100n4DEs, or discovered the global optimum, whichever happened ear-
lier. It applies a Mann-Whitney U test with Bonferroni correction to compare the
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best solution qualities Fb the different setups have achieved until their termina-
tion. ‘Wins’ significant under an error probability of 0.02 were used to rank the
algorithms and we obtained:

MNS (rank 1), (16 384 + 32 768) EA (2), (8192 + 16 384) EA (3),
(32 768 + 65 536) EA (4), (4096 + 8192) EA (5), (2048 + 4096) EA (6),
(65 536 + 131 072) EA (7), (1024 + 2048) EA (8), (512 + 1024) EA (9),
(256 + 512) EA (10), (128 + 256) EA (11), (64 + 128) EA (12), (4 + 8) EA (13),
(2 + 4) EA (14), (1 + 2) EA (15), (8 + 16) EA (16), (32 + 64) EA (17), hill
climber (18), (16 + 32) EA (19), (131 072 + 262 144) EA (20),
(262 144 + 524 288) EA (21), and random walk (22).

These results paint a different picture. The (2048 + 4096) EA is taken over by four
EAs with larger populations that find (statistically) significantly better results.
Together with the findings from the previous sections, this means that they just
need more computational efforts. The two worst-ranked EAs are those with the
largest populations. However, it could be that they would rank better if more
runtime was granted. This brings us back to the issue discussed in Section 2.1: for
larger problems, the 1h of runtime limit is the critical criterion, but this is already
more than what is available in most practically relevant scenarios.

This ranking indicates that the best population size of the EA is positively
correlated to the total available runtime. This is supported by, e.g., Figure 3, from
which we can see that the EAs with small populations usually find solutions above
Ft = 0.125 faster than the (2048 + 4096) EA. They would be the better choice in
situations where computational budgets are limited. Either way, the local search
algorithm MNS is still better than all tested EA setups.

5 Experimental Results of Adaptive Population Sizes

On our example problem, the TSP, we found that there appears to be an optimal
static population size setting above and below which the algorithm performs worse.
In Section 3.3, we pointed out that there exist a wide variety of different concepts
on how the population size of an EA may be adapted in order to improve its
performance. Here we investigated seven very simple population size adaptation
schemes.

5.1 Investigated Setups

A good population size adaptation scheme should be able to improve the perfor-
mance of the best static population size setting. Hence we carried out experiments
to compare the (2048 + 4096) EA and the (512 + 1024) EA, both incorporated
with different adaptation schemes.

The simplest adaptation scheme in our experiment randomly decides after
each generation whether the population size is increased or decreased. Besides
that, we tested two static adaptation schedules, which increase or decrease µ and
λ after every generation, respectively. We also tested two approaches that use
information about the progress of the search, one increases and the other decreases
the population size only after a generation where an improved solution was found.
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Finally, we tested a policy that increases the population size after a generation
where an improvement was found and decreases it otherwise, as well as the opposite
strategy. In an adaptation step, we shrank the populations by factor 3/4 or grew
them by 4/3, i.e., increase and decrease are inverse operations except for rounding
errors.

5.2 Observations

We again used the TSP Suite to execute the 14 adaptive setups and compared them
with the corresponding non-adaptive, static settings. Figure 4a shows a naming
scheme for this series of experiments, which is used in the following text.

The global overall ranking of the algorithms’ performance provided by the
TSP Suite, based on several different metrics, has the static (2048 + 4096) EA
(b) and (512 + 1024) EA (n) at ranks 1 and 2, followed by the random adaption
schemes nr and br at ranks 3 and 4. Then, the population size decreasing variants
of the (512 + 1024) EA are listed, thereafter followed by those of the optimal static
population size. The population size increasing policies perform the worst.

In Figure 4, we illustrate several facets that have influenced this ranking. Fig-
ure 4b shows that the static (2048 + 4096) EA has the highest ECDF for Ft = 0
and finds the global optima of more problem instances (about 20%) than any other
setup. It is closely followed by its variant br, which changes the population size
randomly. The (512 + 1024) EA and its randomly-adapting variant can only solve
about 17% of the problems. However, they do so much faster and their ECDF rises
earlier. The population size decreasing setups solve fewer problems. Among them,
setups with name suffix d+i, marked with thicker lines in the figures, perform the
best. The population size increasing setups are worst in terms of the ECDF.

The simple population size adaptation schemes we tested solve fewer problem
instances than the corresponding static setups on the TSP example we used. The
setups that randomly change the population size are likely to have, on average,
the same population size as their static counterparts. Hence their behavior is quite
similar to them. Decreasing the population size seems to be a better option than
increasing it.

We have already confirmed that EAs with smaller populations converge faster,
but are less likely to find the global optimum. This is evident again in Figures 4c
to 4e: The adaptive setups that strictly decrease the population sizes (naming
suffixes d and d+, marked with thinner lines) progress much faster than the static
settings in terms of their ECDF if the goal is to find a tour no more than 10%
longer than the optimum (Ft = 0.1, Figure 4c). The static settings achieve this goal
more often in the end. The population size decreasing setups are also much faster
in improving their best-so-far tour lengths Fb over time, see Figures 4d and 4e.
Due to the scale of the y-axis of these figures, it is not possible to see whether they
converge at a worse objective value, but this can be assumed based on Figure 4b.

5.3 Summary

Due to the limitations of this small study and the crudeness of the tested ap-
proaches, it is not possible to make general statements about population size
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name: ( µ + λ ), after each generation name: ( µ + λ ), after each generation
b: (2048+4096), unchanged / static setting br: (2048+4096), randomly either inc or dec
bi: (2048+4096), inc bi+: (2048+4096), inc if improvement found

bi+d: (2048+4096), inc if improvement found, else dec bd: (2048+4096), dec
bd+: (2048+4096), dec if improvement found bd+i: (2048+4096), dec if improvement found, else inc

n: ( 512 +1024), unchanged / static setting nr: ( 512 +1024), randomly either inc or dec
ni: ( 512 +1024), inc ni+: ( 512 +1024), inc if improvement found

ni+d: ( 512 +1024), inc if improvement found, else dec nd: ( 512 +1024), dec
nd+: ( 512 +1024), dec if improvement found nd+i: ( 512 +1024), dec if improvement found, else inc
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Fig. 4: Second row: The ECDF over different time measures and goal quality thresh-
olds Ft. The EAs without population size adaptation methods can solve more
problems. Third row: The progress of algorithms in terms of the median best error
Fb over different runtime measures. EAs with adaptively decreasing population
sizes are faster (but solve fewer problems, see Figure 4b).
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adaptation. Any adaptation can either increase or decrease the population (or
both) and do so either according to a fixed schedule or based on some progress
metric. Our experiment tested the simplest concepts for each of these ideas and
thus provides some basic, first impression.

As pointed out in Section 3.3, population size adaption schemes are mainly
beneficial in scenarios with limited runtime, where balancing exploration and ex-
ploitation is more crucial. In our experiment here, however, much runtime (e.g.,
1 hour or 100n3 FEs) was granted in order to verify whether EAs can outper-
form local search if given enough runtime. It became visible that population size
decreasing methods converge faster than the corresponding static setups, at the
cost of worse final results. If the computational budget had been smaller, these
methods would have outperformed the static settings within the budget.

Since enough runtime was granted, the static setups have achieved a better
overall performance ranking. Even the liberal runtime constraints were not suffi-
cient for the population size increasing schemes to reach better solutions as statis-
tical tests (not detailed here) showed. Adaptive population sizing therefore may
not resolve our arguments in Section 2 on the assumption that EAs can outperform
local search. Still, they likely can lead to some tangible improvement of perfor-
mance in scenarios with small computational budgets, especially if more advanced
methods are used.

6 Conclusions

The two take-away messages of this work are:

1. The belief that EAs will outperform local search if given enough runtime and

using large-enough populations, widespread in the EC community, is likely to be
incorrect in many scenarios where runtime and memory are limited.

2. Instead of obtaining better results with larger populations, there likely are
optimal population size settings in such scenarios above and below which the
overall performance of an EA deteriorates.

Both points above can be derived with simple considerations, which we have done
in Section 2. We also found evidence for them in the related work study as well as
in our experiments.

EAs with a population size of 1 are essentially hill climbing algorithms (i.e.,
local search). EAs with infinitely large population sizes are random sampling al-
gorithms. The theoretical results outlined in our literature study (Section 3.1)
indicate that for some problems, there are lower limits of the population size only
after which an EA becomes efficient in solving certain problems. For these prob-
lems, there thus should exist an optimal setting for a specific finite computational
budget according to key message 2. This assumption is further substantiated by
several of the experiment-oriented related studies listed in Section 3.2.

We also conducted a large-scale experimental study using the TSP, in which we
compared the performance of EAs with population sizes spanning 19 powers of 2
with each other, with a random walk, a hill climber, and a local search algorithm.
The experiments confirmed that (µ + λ) EAs with small populations behave sim-
ilar to the hill climber, whereas those with very large populations behave similar
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to random walk. In between these two extremes, we found that µ ≈ 2048 performs
the best, if λ = 2µ and with respect to the termination criteria in the TSP Suite.

In [90], we only investigated four pure EA configurations, which, with µ = 16
and 128 and λ of either 64 or 256, were quite different from this setup. Nevertheless,
even the (2048 + 4096) EA performs significantly worse than the specialized local
search algorithm MNS. This is one additional piece of evidence pointing towards
the correctness of our arguments regarding the claim that EAs will outperform
local search if given large-enough populations and long-enough runtime.

Our literature study provides substantial support for our key messages. Our
experiments alone, although extensive and conclusive, can only serve as further
indicators, since

1. we only considered the TSP and gave no information about possible scenarios
of other problems,

2. we only tested one representation for solutions of the TSP, the path represen-
tation, which may not be the most efficient choice,

3. we only covered a limited amount of setups, all of which used the same crossover
rates and operators and λ = 2µ,

4. we only considered (µ + λ) EAs5, and
5. we did not consider advanced techniques (see Section 2.6), which may signifi-

cantly improve the performance of an EA, or even other selection algorithms
such as Tournament selection. Finally,

6. the best performing setting of an EA depends on the overall computational
budget (see Sections 4.5 and 5.3). This confirms that EAs with larger popu-
lation sizes may provide better results if granted more runtime – which may
likely be infeasible in practice.

We further analyzed some simple adaptation strategies for the population size
and found that they do not lead to better performances under the given large
computational budget. Some setups that adaptively decrease the population size
increase the convergence speed at the cost of final result quality. They may perform
significantly better than static settings if the available runtime is small. This fits
to the finding that EAs with (static) smaller population sizes converge faster. It
can be expected that more advanced population size adaptation schemes, based
on ruggedness information [68] like [101], will improve the performance of EAs
more significantly. Still, it is likely that none of them can ensure that EAs will
outperform local search consistently or on the majority of practical problems.

It should be noted that our considerations focus on the combinatorial domain.
Numerical optimization problems have different features, e.g., they allow for less
disruptive and more targeted mutation and crossover operators. EAs may here
have a salient advantage over local search methods. However, even within the
combinatorial domain, there are several aspects that we want to clarify in our
future work: We plan to investigate whether similar observations can be made in a
variety of different problems and also investigate different solution representations.

The experiments conducted in this paper were performed in a scientific setup.
The computational budget was chosen deliberately large to allow for a fair test-
ing of our hypotheses. Additional experiments must be conducted to investigate

5 We also tested (µ, λ) EAs, but like Lin and Chen [53], we found that these performed
worse than the (µ+ λ) EAs, so we excluded them from the discussion for the sake of brevity.
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the role of the population size parameter in real-world scenarios with real-world
resource limitations.

Finally, similar to, e.g., Chen et al [13], we confirmed in [55, 90, 98, 99] that
hybrid algorithms composed of an EA and a local search can consistently outper-
form pure local search. However, despite the maturity of the field, more research is
necessary on whether, when, and why pure EAs can outperform specialized local
search methods on combinatorial problems under practical conditions.
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RIA) Futurs, Équipe TAO, Orsay, France

32. Harik GR (1997) Learning gene linkage to efficiently solve problems of
bounded difficulty using genetic algorithms. PhD thesis, University of Michi-
gan, Ann Arbor, MI, USA

33. He J, Yao X (2002) From an individual to a population: An analysis of
the first hitting time of population-based evolutionary algorithms. IEEE
Transactions on Evolutionary Computation (IEEE-EC) 6(5):495–511, DOI
10.1109/TEVC.2002.800886



24 Thomas Weise et al.

34. Helsgaun K (2009) General k-opt submoves for the lin–kernighan tsp heuris-
tic. Mathematical Programming Computation 1(2-3):119–163, DOI 10.1007/
s12532-009-0004-6

35. Hidalgo JI (2005) Balancing the computation effort in genetic algorithms. In:
Corne DW, Michalewicz Z, McKay RI, Eiben ÁE, Fogel DB, Fonseca CM,
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