
Local Search for the Traveling Salesman Problem:

A Comparative Study

Yuezhong Wu∗, Thomas Weise∗†, and Raymond Chiong‡

∗Joint USTC-Birmingham Research Institute in Intelligent Computation and Its Applications (UBRI),

School of Computer Science and Technology, University of Science and Technology of China;

Hefei, Anhui, China, 230027. Emails: yuezhong@mail.ustc.edu.cn, tweise@ustc.edu.cn
†Corresponding Author.

‡School of Design, Communication and Information Technology,

Faculty of Science and Information Technology, The University of Newcastle;

Callaghan, NSW 2308, Australia. Email: Raymond.Chiong@newcastle.edu.au

This is a preview version of paper [1] (see page 9 for the

reference).

Copyright c© IEEE.

Read the full piece at http://dx.doi.org/10.1109/ICCI-CC.

2015.7259388.

Abstract—The Traveling Salesman Problem (TSP) is one of
the most well-studied combinatorial optimization problems. Best
heuristics for solving the TSP known today are Lin-Kernighan
(LK) local search methods. Recently, Multi-Neighborhood Search
(MNS) has been proposed and was demonstrated to outperform
Variable Neighborhood Search based methods on the TSP. While
LK performs a variable k-opt based search operation, MNS is
able to carry out multiple 2-, 3-, or 4-opt moves at once, which are
discovered by a highly efficient scan of the current solution. Apart
from LK and MNS, many other modern heuristics for TSPs
can be found in the relevant literature. However, existing studies
rarely use robust statistics to investigate the heuristic algorithms
in comparison, let alone investigate their progress over time.
This leads to flawed comparisons of simple end-of-run statistics
and inappropriate or even incorrect conclusions. In this paper,
we thoroughly compare LK and MNS as well as their hybrid
versions with Evolutionary Algorithms (EAs) and Population-
based Ant Colony Optimization (PACO). This work, to the best
of our knowledge, is the first statistically sound comparison of
the two efficient heuristics as well as their hybrids with EAs
and PACO over time based on a large-scale experimental study.
We not only show that hybrid PACO-MNS and PACO-LK are
both very efficient, but also find that the full runtime behavior
comparison provides deeper and clearer insights whereas a focus
of final results could indeed have led to a deceitful conclusion.

I. INTRODUCTION

The Traveling Salesman Problem (TSP) [2–4] is maybe the

most important NP-hard problem, both in terms of practical

applications as well as being a test bed for novel optimization

approaches. Given n cities, a salesman departs from a start

city, visits each city exactly once, and then returns back to the

start city. The task is to find the order in which the salesman

should visit all of the cities while traveling the minimal overall

distance. In other words, given a cost matrix D = (Di,j),
where Di,j is the distance of going from city i to city j (i, j ∈
1 . . . n), the goal is to find a permutation t of the integers from

1 to n minimizing the sum Dt[1],t[2]+Dt[2],t[3]+. . .+Dt[n],t[1].

The focus of this study is the symmetric TSP, where Di,j =
Dj,i holds.

Many algorithms for solving TSPs have been introduced.

These include Local Search (LS) algorithms [5], Evolutionary

Algorithms (EAs) [6–8], Ant Colony Optimization (ACO) [9–

11], Branch and Bound algorithm [12] and hybrid algo-

rithms [13]. The best known LS methods to the TSP today

are the Lin-Kernighan (LK) heuristic [5] and its derivatives.

In [14], an alternative approach, Multi-Neighborhood Search

(MNS), was introduced and found to be a more efficient LS

algorithm for the TSP than Variable Neighborhood Search [15]

or Hill Climbing and better than pure EAs and Population-

based ACO (PACO) [16]. PACO algorithms hybridized with

MNS were shown to outperform all of the other tested algo-

rithms, but no LK approach was benchmarked in that study

(see [14] for details). In this work, we make the following

contributions:

1) We provide an in-depth and statistically sound compar-

ison of LK and MNS and show under which circum-

stances which of them performs better;

2) We introduce hybrid versions of both algorithms with

EAs and PACO;

3) We conduct a large-scale experimental study and apply

advanced runtime-behavior based statistics providing

much more information about the performance of these

algorithms than simple end result comparisons. This

study gathers more precise information, includes more

experiments, and provides more statistically sound eval-

uations than any other previous studies along this line

of research;

4) We show that PACO-based hybrids provide much better

results than other hybrids and the pure LS approaches.

The remainder of this paper is organized as follows. In Sec-

tion II, we introduce the investigated LK and MNS algorithms

as well as their new hybrid versions. We then present our

experimental study and discuss its results in Section III.

Finally, the paper ends with conclusions and plans for future

work in Section IV.

mailto:yuezhong@mail.ustc.edu.cn
mailto:tweise@ustc.edu.cn
mailto:Raymond.Chiong@newcastle.edu.au
http://dx.doi.org/10.1109/ICCI-CC.2015.7259388
http://dx.doi.org/10.1109/ICCI-CC.2015.7259388


II. INVESTIGATED ALGORITHMS

LS algorithms start at a random or heuristically-generated

solution. They remember the best solution discovered so far

and try to improve it. These improvements usually take place

in the form of modifications to a tour in the TSP context.

The most prominent examples of such modifications are m-

opt moves [14], which include the exchange of two cities

corresponding to the deletion and addition of four edges (4-

opt) [17, 18], the rotation of a sub-sequence of cities to the left

or right resulting in the deletion and addition of three edges

(3-opt) [17, 19], while the reversal of a sub-sequence of a

tour requires deleting and adding two edges (2-opt) [17, 20].

If the LS concludes that it cannot further improve its best tour

through the modifications it is able to conduct, it may apply

a random modification to the tour in order to escape from

the dead-end (while remembering the best overall solution

in an additional variable). This process is repeated until a

termination criterion is reached.

A. The Lin-Kernighan Algorithm

The LK algorithm for solving TSPs is an LS approach

published by Lin and Kernighan [5] in 1973. Its derivatives

dominate today’s TSP research. Although the LK algorithm

cannot provide general upper-bound guarantees for the solu-

tion quality, it achieves excellent results in practical scenarios.

Many improvements have been proposed and many algorithms

adopt the idea of LK. For example, when the Chained Lin-

Kernighan (CLK) algorithm [21] arrives in a local optimum

from which it cannot escape, it generates a new solution

by a random 4-opt move instead of restarting at a random

solution. CLK performs particularly well on TSPs with a large

number n of cities. Meanwhile, the Lin-Kernighan-Helsgaun

(LKH) algorithm [22, 23] may be the most efficient LK

variant. LKH changes the step width of LK from 2 to 5.

A k-opt LS algorithm iteratively replaces k edges from

the current best tour with another k edges to generate a new

shorter tour. A tour can be considered as k-optimal when it

is impossible to further improve the quality of the tour in this

way. The larger the value of k, the more likely it is that the

final tour is optimal. An n-optimal tour is therefore necessarily

optimal. However, the runtime needed to test all k-exchanges

increases rapidly as the number of n cities increases. As a

result, 2-opt and 3-opt moves are most commonly used.

LK can be considered as a variable k-opt LS. At each

step, the algorithm tests, for ascending values of k, whether

replacing k edges may achieve a shorter tour. The algorithm

works as follows. Let T be the current tour and N the node set

containing all cities. The algorithm will then, in each iteration,

constructs the sets X = {X1, . . . , Xk} of edges to be deleted

from T and Y = {Y1, . . . , Yk} and the set of edges to be

added to T , such that the resulting tour would be valid and

shorter. The interchange of these edges is then a k-opt move.

In the beginning, X and Y are empty. Pairs of edges are added

to X and Y such that the end node of the edge added to X
is the starting node of the edge added to Y , whose end node

will then become the starting node of the edge added to X in

the next iteration, if any.

Algorithm 1 Lin-Kernighan Algorithm

Input: A random initial tour Ts

Output: The shortest tour T ∗ and its length L∗

1: Set a random initial tour Ts as the current tour T
2: Set i = 1. Choose a node as t1. t1 is the start node of the

entire search procedure. If every node has already been

tested as t1, go to step 1.

3: Choose an edge X1 = (t1, t2) that belongs to T . If all

edges have been tried as X1, go to step 2.

4: Choose an edge Y1 = (t2, t3) that does not belong to T
so that G1 = g1 > 0. If this is impossible and all choices

for Y1 have been tested, go to step 3.

5: Set i = i+ 1;

6: Choose Xi = (t2i−1, t2i), such that:

a. Xi 6= Yp, for all p < i, and

b. Add an edge between t2i and t1 so that T ∪Y \X can

form a tour T ′.

If T ′ is a shorter tour than T , set T = T ′ and T ∗ = T ′,

let L∗ = the length of T ∗, go to step 2.

If i = 2 and all choices for Xi have been tested, set i = 1,

go to 4.

If i > 2 and all choices for Xi have been tested, set i = 2,

go to step 7.

7: Choose Yi = (t2i, t2i+1), such that:

a. Gi = g1 + . . .+ gi > 0,

b. Yi 6= Xp for all p ≤ i, and

c. Xi+1 exists.

If Yi can be chosen, go to step 5.

If i = 2 and all choices for Yi have been tested, go to

step 6.

If i > 2 and all choices for Yi have been tested, set i = 2
and go to step 7.

8: Stop (or start with a new initial solution)

A necessary but not sufficient condition that the exchange

of edges in X and Y results in a valid tour is that the chain

is closed, i.e., that the end node of Yk is the start node of X1.

The sets X and Y must further be disjoint, i.e., no added edge

is deleted again and no deleted edge is added.

Suppose gi = Dstart(Xi),end(Xi)−Dstart(Yi),end(Yi) is the gain

of deleting edge Xi and adding Yi. Gi be the sum g1+. . .+gi.
In every step i, Yi must be chosen so that Gi is positive. This

criterion seemed restrictive, but it is actually not, because if

the sum of a sequence of numbers is positive, there is a cyclic

permutation of these numbers such that every partial sum is

positive.

Finally, for any i ≥ 3, the edges Xi are chosen such that a

tour can be achieved by linking the end of Xi to the start of

X1. This reduces the runtime and simplifies the code.

Backtracking is allowed only for i ∈ {1, 2}: If no improve-

ment has been found for i > 2, i is reset to 2 (and X and

Y are reset accordingly). Then, the next candidate edge for

Y2 is tested. After each choice for Y2 has been exhausted, the



algorithm backtracks to X2. When all choices for X2 have

been tested without success, it tracks back to Y1 and finally

to X1. If even then no improvement can be discovered, the

original LK restarts at a new random tour.

In our implementation of the algorithm, we replace the

current tour with a new tour as soon as an improvement was

found. This is different from the original algorithm, which

continues its steps by recording potential exchanges to find an

even shorter tour until no more exchanges can be done, and

then the current tour is replaced by the best tour discovered.

This approach of the original algorithm complicates the code

and can neither give a better solution quality nor reduce its

runtime [22].

The LK algorithm is sometimes implemented by using

candidate sets, i.e., by limiting the choices of neighbors in

a tour for any given node. This restriction is omitted in our

implementation. Finally, instead of restarting at an entirely

random tour, our implementation uses the method described

in [14], where a randomly chosen sub-sequence of the current

tour is randomly shuffled.

B. Multi-Neighborhood Search

Another efficient LS method for the TSP is the MNS

algorithm. In each iteration, MNS performs an O(n2) scan that

can investigate four neighborhoods (city swap, sub-sequence

rotate left, sub-sequence rotate right, and reverse) of a tour at

once. It tests all indexes i and j as potential indexes for cities

to swap or start and end indexes of sub-sequence rotations

and reversals. For each pair {i, j}, the gain is computed and

all discovered improving moves enter a queue. The access

to the distance matrix D is minimized by remembering (and

updating) the lengths of all n edges in the current tour and

avoiding the checking of redundant moves (swapping the cities

at index i and i + 1 is equivalent to a reversal of the sub-

sequence from i to i + 1, for instance). After the scan, the

best discovered move is carried out. Doing this may invalidate

some other moves in the queue, e.g., if a sub-sequence reversal

that overlaps with a potential sub-sequence left rotation was

performed. After pruning all invalidated moves from the

queue, the remaining best move is carried out, if any. If the

queue becomes empty, another scan of the current solution is

performed, as new moves may have become possible. During

this scan, only moves that at least intersect with the previously

modified sub-sequence(s) of the current best solution need to

be considered (to speed up the search). If no improving moves

can be found anymore, a random sub-sequence of the current

tour is randomly shuffled.

This algorithm has performed the best among all of the

algorithms tested in [14]. While LK examines a sub-set of

possible k-opt moves, MNS scans for all 2-opt and some 3-

and 4-opt moves, i.e., is more limited in what it can do. Due

to its structure, however, the search for moves can be done

very quickly and multiple moves may be discovered at once.

In this work, we will analyze which algorithm concept leads

to better performance and under which circumstances.

C. Evolutionary Algorithms

EAs are the most well-known Evolutionary Computation

(EC) methods [24, 25]. EAs first generate a set of λ random

solutions. Out of these, the best µ ≤ λ solutions will be

selected as “parents” of the second generation: λ offspring

solutions are created by applying either a unary (mutation) or

binary (crossover) operator to the parents. From then on, the µ
best individuals are selected from the λ offspring solutions and

their µ parents in each generation in the case of a (µ+λ)-EA.

A (µ, λ)-EA selects only from the λ offspring. In this paper,

we investigate such EAs using the four neighborhoods also

used by MNS as mutation operators. Edge Crossover [26],

which generates a new solution by picking edges belonging to

either of its two parents, is applied as a recombination operator

at a crossover rate of 1/3. It is considered to be one of the

best crossover operators for the TSP [14].

Hybridization of EAs with LS has a long tradition [27].

Such hybrid algorithms, where the LS algorithm either takes

the place of the mutation operator or is applied to each new so-

lution (stemming from either mutation or crossover), are called

Memetic Algorithms (MAs). Especially in the TSP domain,

MAs have been performing well in general. We therefore pro-

pose two MAs: hMA(µ +, λ)-LK and hMA(µ +, λ)-MNS. The

‘h’ in the name indicates that the first population of the MAs

is not generated randomly, but instead stems from the Edge-

Greedy, Double Minimum Spanning Tree, Savings, Double-

Ended Nearest Neighbor, and Nearest Neighbor Heuristic, as

in [14].

D. Ant Colony Optimization

The ACO algorithm is another EC approach and was first

introduced by Dorigo in 1992 [9]. It took inspiration from the

way ants find and reinforce short paths during foraging using

pheromones for communication. Although such algorithms

would typically perform well in many small-scale combinato-

rial problems, they suffer from quadratic memory requirements

as well as quadratic complexity of the process of creating

solutions.

In this paper, we consider a state-of-the-art ACO vari-

ant, PACO [16], which has linear memory requirements.

The PACO algorithm maintains a population of n solutions.

Pheromones are defined by the edges occurring in these solu-

tions. In each algorithm iteration, m solutions are created like

in standard ACO and the “oldest” solution in the population

is replaced by the best of the newly generated solutions.

Limited hybrid ACO approaches have been applied to the TSP,

although it was shown in [14] that they perform particularly

well. We therefore propose hybrid hPACO(m,n)-MNS and

hPACO(m,n)-LK algorithms, which are heuristically initial-

ized in the same way as the hMAs.

III. EXPERIMENTS AND RESULTS

A. Experimentation with Anytime Algorithms

Most metaheuristics, including EAs, MAs, ACO, as well as

all LS methods, are anytime algorithms [28]. Even several ex-

act methods, such as Branch and Bound (BB) algorithms [29],



fall into this category. Anytime algorithms can provide a best

guess of what the optimal solution of a problem could be at

any time during their run. LK and MNS begin with a random

solution and iteratively refine it. In a TSP, BB algorithms

maintain the best solution discovered so far and investigate

a set of other solutions only if the lower bound for their tour

length is better than the actual tour length of that best-so-far

solution.

If an algorithm A provides a better final solution than

another algorithm B, does this make algorithm A better? The

traditional answer would be yes, but what if the best guess of

A for the solution is much worse than B’s, except after a very

long runtime? Thus, due to their nature, anytime algorithms

cannot just be characterized by a final solution and runtime

requirement, but only by their whole runtime behavior [14].

Experiments for analyzing the behavior of an algorithm over

runtime are important but also cumbersome. They generate

much data and manual evaluation can take more time than

implementing the algorithm itself.

One of the first frameworks aiming to reduce the workload

of an experimenter is the COmparing Continuous Optimizers

(COCO) [30] system for numeric optimization. It helps to

automatize most of the steps involved. Necessary data is auto-

matically collected from automatically executed experiments.

A statically structured paper that contains diagrams with

runtime behavior information is generated after an automated

evaluation procedure.

UBCSAT [31], an experimental framework for satisfiability

(SAT) problems, focuses on a specific algorithm family, the

stochastic LS (SLS). UBCSAT gathers information by a trigger

architecture, which is able to compute complex statistics and

provide them to the running algorithm. COCO and UBCSAT

can both measure algorithm performance over runtime instead

of just focusing on the end results.

Our recently developed TSP Suite [14] focuses on investi-

gation of TSP solvers. Like COCO, data is collected during

the evaluation of candidate solutions. However, the reports are

not statically structured papers. Instead, they are more like

small theses and can be freely configured. They contain in-

depth descriptions of the experimental procedure and give

several different statistical analyses such as statistical tests

comparing measured runtimes and end results, automated

comparisons of estimated running time (ERT) [30] curves

over goal objective values or problem scales and automated

comparisons of empirical cumulative distribution functions

(ECDFs) [30–32]. All of the information is aggregated into

human-readable conclusions about the algorithm performance

in the form of global rankings. The TSP Suite further provides

JUnit tests to validate implemented algorithms. Algorithms

can be implemented for normal, sequential execution, but the

framework is still able to parallelize and distribute the work-

load on a cluster (without requiring any additional software).

The TSP Suite is the first framework addressing the issue

of measuring runtime. Measuring runtime in CPU seconds,

for instance, produces machine-dependent results. Even if

normalized runtimes (NT) are calculated based on machine

performance factors, they remain problem specific and may

not represent the utility of black-box metaheuristics in general.

Counting the number of generated solutions (i.e., objective

function evaluations, or FEs in short) is the most-often used

alternative in benchmarking. However, it neglects the fact

that one FE in ACO, for instance, has quadratic complexity

whereas in a LS algorithm, it may be in O(1) on the TSP. The

TSP Suite thus measures runtime in four different measures,

CPU time, normalized CPU time, FEs, and the number DE of

accesses to the distance matrix D of a TSP, in order to provide

a balanced overview on algorithm performance.

B. Experimental Setup

Our experiments were conducted using the symmetric

TSPLib [33] benchmark cases, for which all optima are known.

We thus can measure the quality of a solution as relative

error f , i.e., the factor by which a solution is “longer” than

the optimum. f = 0 stands for the optimal solution, f = 1
indicates that it is twice as long. We obtained and evaluated

results for all 110 instances in the TSPLib. The scale n of the

largest instance in our study is 85,900, which is much more

than the largest scale of the original LK experiments in [5],

where a 318-city problem is the largest one.

For the algorithms, 15 LK setups were built: The pure

LK, six hybrids with PACO, and eight hybrid MAs. The

same numbers of setups and configurations of MNS were

tested. Additionally, we investigated the pure EA(128+256),

the pure PACO(3,25), as well as the heuristically initialized

hEA(128+256) and hPACO(3,25).

C. Pure Algorithm Performance

Let us first explore the performance of the pure LK algo-

rithm and compare it with MNS and the pure EC methods. Ac-

cording to the automated ranking obtained from the TSP Suite,

LK has the best performance amongst these algorithms.

In Figure 1, we plot the ECDF for different goal errors

Ft and runtime measures. The ECDF illustrates the fraction

of runs that have discovered a (best) solution with Fb ≤ Ft.

Hence, an algorithm is good if its ECDF comes as close to 1

and as soon as possible. The pure EA and pure PACO always

have the worst performance among the algorithms considered.

We therefore do not include them in our figures for the sake

of readability.

The ECDF of LK in Figure 1a, based on the normalized

CPU runtime measure NT, increases smoothly and slowly and

approaches 0.4 but never reaches it for Ft = 0. In other

words, a global optimum can be reached in about 40% (of the

runs) of all benchmark cases under the given computational

budget. Although this does not seem to be very good, LK still

has the best performance among all pure algorithm settings.

The ECDF of MNS increases slightly faster than LK’s in the

beginning, but later slows down and finally reaches a little

more than 0.1. Only for small time budgets, MNS outperforms

LK, which can solve four times as many problems if given

enough time.



0
0

ECDF

log (NT)10

0.75

2 4 6 8

0.25

0.5

1

LK MNS
hPACO(3,25)
hEA(128+256)
hMA(16+64)MNS
hMA(2,4)LK
hPACO(3,10)LK
hPACO(3,10)MNS

(a) ECDF for NT and Ft = 0.0.

0
0

ECDF

log (NT)10

0.75

2 4 6 8

0.25

0.5

1

(b) ECDF for NT and Ft = 0.1.

0
0

ECDF

log (FE/n)10

0.75

2 4 6

0.25

0.5

1

(c) ECDF for FEs and Ft = 0.1.

Fig. 1: ECDF diagrams for different (log-scaled) runtime measures and goal errors.

In the other two sub-figures of Figure 1, we increase the

goal error Ft to 0.1, i.e., to investigate the fraction of runs for

finding a solution that is up to 10% longer than the optimum.

Again, the ECDF curves intersect. LK can reach the goal in

almost all of the problems while MNS can solve about 95%

of them. With the increase of Ft, the gap between the two

algorithms becomes smaller.

If we measure time in terms of FEs (Figure 1c) instead of

CPU seconds, MNS performs better within a relative small

time budget and rises earlier. After the intersection, the ECDF

of LK increases faster than the one of MNS and reaches a

higher level in the end.

We can also compare the two pure LS methods with two of

the best setups of pure EC methods and their variants using

initialization heuristics. The EA(128+256) always performs

worse than LK. Using initialization heuristics provides an

initial advantage for the hEA(128+256), but it is still overtaken

by LK in the end. The setups with PACO exhibit similar

behaviors.

From the results, we can conclude that: 1) There is a

threshold of computational budget before which MNS has a

higher chance to reach the global optimum and above which

LK has a higher chance to reach the global optimum; 2) The

ECDF of LK always has a higher end point than the one of

MNS.

We now analyze the relationship between the algorithm

performance and problem scale n. To do so, we grouped the

problems by their scale according to the different powers of

two.

From Figure 2, which illustrates the best objective value

Fb discovered by an algorithm over runtime, we see that LK

can find good solutions for instances with n up to 511 quite

rapidly. With the increasing of instance scale, the performance

of LK decreases, but it can still find approximate solutions

with Ft ≤ 0.05 for 512 ≤ n ≤ 32767. For example, on an

instance with 18512 cities, a solution with f of around 0.03

is discovered.

Compared to LK, MNS can quickly find optimal solutions

with n between 14 and 63. MNS performs better in smaller

instances with n between 8 and 31. When n increases, MNS

performs relatively worse compared to LK. For n between 32

and 1023, after a rapid improvement of the tour length in the

beginning, the progress of MNS becomes much slower and it

is outperformed by LK. For n between 1023 and 65535, LK

always outperforms MNS.

The pure EC methods all create (or receive from the

heuristics) better solutions early on, but their progress is much

slower than the LS algorithms. From Figure 2, we can see that

LK still has the best end results.

We conclude that on small-scale problems, MNS is better.

For moderate-size problems, MNS performs better initially and

is later outperformed by LK, while for large-scale problems

LK always performs better. Such findings, again, can only be

made by using statistics over runtime instead of just comparing

final results, as it is (unfortunately) commonly done in the

literature.

While the NT is related to the actual consumed runtime, we

can also measure the progress in terms of FEs, which is related

to the number of candidate solutions constructed. We therefore

include two diagrams based on FEs in Figure 2 as well.

Although LK still has better end results, MNS is now in the

lead for a much longer time (i.e., if time is measured in FEs).

This may be due to the fact that MNS always executes the

best improvement move found in a whole scan of the solution

while LK takes the first improvement move that it “finds” and,

thus, is more likely to have many smaller improvements (each

needing 1 FE).

In Figure 3, we plot the ERT in terms of NT (y-axis)

for a given solution quality threshold Ft (x-axis), i.e., the

estimated normalized runtime it will take for an algorithm to

reach Ft. For smaller Ft, the time increases. In terms of the

ERT measured by counting accesses to the distance matrix

as a time unit (DEs, not illustrated), LK is always better

than MNS. In terms of FEs, MNS seems to perform better

with Ft > 0.14 and is worse otherwise. In terms of NT, the

situation changes again and there are two intersections of the

ERT curves: MNS performs better for 0.1 ≤ Ft ≤ 0.5 and

LK is better otherwise. Thus, if different time measures were

used, different observations could be found.

From all of the above, we conclude that the tested LK

algorithm is better than MNS in most situations and both the

LS algorithms are much better than the pure EC methods.



2
0

Fb

log (NT)104 6 8

0.25

0.5

0.75

LK MNS
hPACO(3,25)
hEA(128+256)
hMA(16+64)MNS
hMA(2,4)LK
hPACO(3,10)LK
hPACO(3,10)MNS

(a) Progress in Fb over NT for 256 ≤ n < 512.

-2
0

Fb

log (FE/n)100 2 4 6

0.25

0.5

0.75

1

(b) Progress in Fb over FEs for 256 ≤ n < 512.

1 2 3 4
0

1

2

3

4

5

Fb

log (NT)10

(c) Progress in Fb over NT for 16384 ≤ n < 32768.

-4
0

log (FE/n)10-2 0

2

4

6
Fb

(d) Progress in Fb over FEs for 16384 ≤ n < 32768.

Fig. 2: Progress diagrams for different (log-scaled) time mea-

sures and problem scales.

0

max 0, log (med ERT )10 NT }{

0.750.25 0.5 1Ft

0

2.5

5

7.5

10

LK MNS

hPACO(3,25)
hEA(128+256)
hMA(16+64)MNS
hMA(2,4)LK
hPACO(3,10)LK
hPACO(3,10)MNS

Fig. 3: (Log-scaled) ERT in terms of NT.

LK can also outperform the EC methods that use heuris-

tics for initialization, while pure, uninitialized MNS cannot.

Consequently, the TSP Suite ranks the algorithms as follows:

LK, hEA(128+256), hPACO(3,25), MNS, PACO(3,25), and

EA(128+256).

D. Hybrid Algorithm Performance

We also investigated our newly proposed hybridized ver-

sions of LK and MNS with EAs, i.e., MAs, and PACO. Each

of these four hybrids was tested using six different setting for

PACO and eight for the MAs.

From the complete ranking generated by the TSP Suite

based on all setups, it can be clearly seen that different

setups of the same corresponding algorithms have relatively

similar behavior, no matter what kind of measure is considered

(e.g., hPACO(3,10)-MNS and hPACO(5,10)-MNS have similar

behavior in terms of ECDF, ERT and progress). Four of the

best setups from different categories, i.e., hPACO(3,10)-LK,

hMA(2,4)-LK, hPACO(3,10)-MNS and hMA(16+64)-MNS,

have been chosen for illustrating the figures.

From Figure 1, we can see a significant improvement

of LK after being hybridized with EAs and PACO. The

hPACO(3,10)-LK and hMA(2,4)-LK outperform pure LK

on both the speed and end results. We also see that the

ECDF curves of hPACO(3,10)-LK and hMA(2,4)-LK start

slightly earlier than those of pure LK, increase more rapidly,

and finally reach higher (better) end points. Pure LK is

able to solve about 40% of the benchmark instances, while

hPACO(3,10)-LK can almost solve 55% and hMA(2,4)-LK

48%, making PACO the better global optimization method to

hybridize LK with than EAs.

The same observations can be made with the MNS hybrids:

The hPACO(3,10)-MNS and hMA(16+64)-MNS largely out-

perform pure MNS. Their ECDF curves increase rapidly and

reach at almost 52%, which is five times as much as what

pure MNS can achieve. There is always a significant ECDF

gap between the hybrid and pure algorithms.

The hybrids based on MNS are better in the begin-

ning, while hPACO(3,10)-LK can reach a higher end point.



hMA(2,4)-LK is always worse than the hybrids of MNS. When

we measure runtime in FEs, similar behavior can be observed.

When we set the goal error as Ft = 0.1, the hybrid

algorithms again outperform the pure ones. The PACO hybrids

are slightly better than the MAs. However, now the MNS

hybrids are always better than those of LK. Their ECDF curves

(for Ft = 0.1) increase earlier, more rapidly, and finally reach

higher end points.

The ERT diagrams in terms of DEs and NT for a given

Ft share similar shapes with those in Figure 3. In all of

them, hybrid MNS variants can find good solutions the fastest,

followed by the hybrid LK algorithms. Pure LS and EC

methods are much slower. From Figure 2, we again confirm

that the MNS hybrids are initially faster than the hybrid LK

algorithms, although LK hybrids later on find better-quality

solutions.

For large-scale problems, the heuristically initialized EC

methods start with much better solutions, even better than

the hybrid algorithms. This, at first glance, may be confusing,

since our hybrid algorithms were also heuristically initialized,

with the same heuristics. However, for each generated solution,

the hybrid algorithms will apply their respective LS procedure

first before entering the solution into the population and

creating the next initial solution. This means that the hEA and

hPACO have many heuristic results earlier, while the hMA

and hybrid hPACO variants with LS first spend more time on

searching locally.

The most interesting finding, however, is that hybrid MNS

methods tend to outperform hybrid LK approaches, although

pure MNS is clearly worse than pure LK. While an almost

“additive” effect of hybridization was observed in [14], i.e.,

a better LS algorithm hybridized with a better global search

method leads to a better hybrid approach, here we have a

contrasting observation. Although hybrid LK can find better

solutions on the long run, the efficient main loop of MNS,

which can be implemented in a compact way, makes use of

a (linear sized) cache, and can discover several improvements

at once, thus provides faster convergence. Since the maximum

runtime granted to a run executed with the TSP Suite is one

hour and in practical scenarios much less time is usually

available, MNS appears to be the better choice for hybridiza-

tion. On large-scale instances, for a fraction of the runtime, it

may produce solution approximations that are shorter by two

times the optimal length than those discovered by hybrid LK.

Finding such as this would not be possible by just collecting

end-of-run results, as by these hybrid LK would look better.

Regardless of what runtime is available, we confirm that

hybrid algorithms are better than both pure LS and pure

EC methods, heuristically initialized or not. The aggregated

algorithm ranking provided by the TSP Suite when comparing

all setups in regard to ECDF, ERT, final results, expected

runtime to the optimum, and progress according to different

runtime measures is

hPACO(3,10)-MNS, hPACO(5,10)-MNS,

hPACO(3,25)-MNS, hPACO(5,25)-MNS,

hPACO(10,10)-MNS, hPACO(10,25)-MNS,

hMA(16+64)-MNS, hPACO(3,10)-LK, hPACO(3,25)-LK,

hMA(16,64)-MNS, hPACO(5,10)-LK, hMA(128+256)-MNS,

hMA(2+4)-MNS, hPACO(5,25)-LK, hMA(2+8)-MNS,

hMA(2,4)-LK, hPACO(10,10)-LK, hMA(2,8)-LK,

hMA(2,8)-MNS, hPACO(10,25)-LK, hMA(16,64)-LK,

hMA(16+64)-LK, hMA(2+8)-LK, hMA(128,256)-MNS,

hMA(128+256)-LK, hMA(2,4)-MNS, hMA(2+4)-LK,

hMA(128,256)-LK, LK, hEA(128+256), MNS,

hPACO(3,25), PACO(3,25), and EA(128+256).

This ranking also reveals that PACO seems to be a better EC

method to hybridize with than an EA (a hybrid EA is an MA).

This is exactly the same observation previously seen in [14].

IV. CONCLUSIONS AND FUTURE WORK

In this work, we have presented a large-scale experimental

study in which several variants of LS and EC algorithms as

well as their newly proposed hybrids were applied to all 110

symmetric instances of the TSPLib, 30 runs per setting, each

limited to one hour of runtime. Our experiments have led us

to four major conclusions:

1) The pure LK algorithm works well on small- and

medium-scale instances. It can also find approximate

solutions in good qualities for large-scale instances.

2) The pure LK algorithm is better than MNS and EC

methods. Sometimes, MNS and some of the EC methods

can provide better solutions at the beginning, but are

eventually overtaken by LK.

3) Our proposed hybrid algorithms have much better per-

formance than the pure LS and EC approaches.

4) Based on the same LS algorithm, the best setup of hybrid

PACO is always better than any setup of hybrid EAs. The

hybrids of LK with PACO are the best variants among

other LK-based algorithms.

5) Although pure LK is better than MNS, hybrid MNS

outperforms hybrid LK.

The last point is particularly interesting and deserves further

exploration. In our future work, we will investigate hybrid

EC-LK/MNS methods that can use both LK and MNS as their

LS. That is, before refining a solution, we could randomly

select which LS algorithm to apply. The random distribution

could change over time, starting mainly with MNS and later

switching more regularly to LK, in order to fully utilize the

initial high speed of MNS hybrids while also leverage the

better end result quality provided by LK hybrids. We are

also interested to investigate several Tabu Search variants and

compare them with the algorithms presented here.
Acknowledgments: We acknowledge support from the

Fundamental Research Funds for the Central Universities,
the National Natural Science Foundation of China under
Grant 61150110488, Special Financial Grant 201104329 from
the China Postdoctoral Science Foundation, the Chinese
Academy of Sciences (CAS) Fellowship for Young Inter-
national Scientists 2011Y1GB01, the European Union 7th
Framework Program under Grant 247619, and the University
of Newcastle’s Faculty of Science and Information Technology
Strategic Initiatives Research Fund under Grant 1031415.
The experiments reported in this paper were executed on



the supercomputing system in the Supercomputing Center of
University of Science and Technology of China.

REFERENCES

[1] Y. Wu, T. Weise, and R. Chiong, “Local Search for the
Traveling Salesman Problem: A Comparative Study,” in Proceedings

of the 14th IEEE Conference on Cognitive Informatics &

Cognitive Computing (ICCI*CC’15). Piscataway, NJ, USA: IEEE
Computational Intelligence Society, Jul. 6–8, 2015, pp. 213–
220. [Online]. Available: http://www.it-weise.de/research/publications/
WWC2015LSFTTSPACS/WWC2015LSFTTSPACS.pdf

[2] D. L. Applegate, R. E. Bixby, V. Chvátal, and W. J. Cook, The

Traveling Salesman Problem: A Computational Study, ser. Princeton
Series in Applied Mathematics. Princeton, NJ, USA: Princeton
University Press, February 2007. [Online]. Available: http://books.
google.de/books?id=nmF4rVNJMVsC

[3] E. L. G. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and
D. B. Shmoys, The Traveling Salesman Problem: A Guided Tour

of Combinatorial Optimization, ser. Estimation, Simulation, and
Control – Wiley-Interscience Series in Discrete Mathematics and
Optimization. Chichester, West Sussex, UK: Wiley Interscience,
September 1985. [Online]. Available: http://books.google.de/books?
id=BXBGAAAAYAAJ

[4] G. Z. Gutin and A. P. Punnen, Eds., The Traveling Salesman Problem

and its Variations, ser. Combinatorial Optimization. Norwell, MA,
USA: Kluwer Academic Publishers, 2002, vol. 12. [Online]. Available:
http://books.google.de/books?id=TRYkPg Xf20C

[5] S. Lin and B. W. Kernighan, “An effective heuristic algorithm for
the traveling-salesman problem,” Operations Research (Oper. Res.),
vol. 21, no. 2, pp. 498–516, March–April 1973. [Online]. Available:
https://en.wikipedia.org/wiki/Lin%E2%80%93Kernighan heuristic

[6] T. Weise, Global Optimization Algorithms – Theory and Application.
Germany: it-weise.de (self-published), 2009. [Online]. Available: http://
www.it-weise.de/projects/book.pdf

[7] T. Bäck, D. B. Fogel, and Z. Michalewicz, Eds., Handbook of

Evolutionary Computation, ser. Computational Intelligence Library.
New York, NY, USA: Oxford University Press, Inc., Dirac House,
Temple Back, Bristol, UK: Institute of Physics Publishing Ltd. (IOP),
and Boca Raton, FL, USA: CRC Press, Inc., January 1, 1997. [Online].
Available: http://books.google.de/books?id=n5nuiIZvmpAC

[8] K. A. De Jong, Evolutionary Computation: A Unified Approach, ser.
Bradford Books. Cambridge, MA, USA: MIT Press, February 2006,
vol. 4.

[9] M. Dorigo, “Optimization, learning and natural algorithms,” Ph.D.
dissertation, Milano, Italy: Dipartimento di Elettronica, Politecnico di
Milano, January 1992, in Italian.

[10] M. Dorigo, M. Birattari, and T. Stützle, “Ant colony optimization
– artificial ants as a computational intelligence technique,” IEEE

Computational Intelligence Magazine (CIM), vol. 1, no. 4, pp. 28–39,
November 2006. [Online]. Available: http://iridia.ulb.ac.be/∼mbiro/
paperi/IridiaTr2006-023r001.pdf

[11] L. M. Gambardella and M. Dorigo, “Solving symmetric and asymmetric
tsps by ant colonies,” in Proceedings of IEEE International Conference

on Evolutionary Computation (CEC’96), K. Jidō and S. Gakkai, Eds.
Nagoya, Aichi, Japan: Nagoya University, Symposium & Toyoda Audi-
torium: Los Alamitos, CA, USA: IEEE Computer Society Press, May
20–22, 1996, pp. 622–627.

[12] J. D. C. Little, K. G. Murty, D. W. Sweeny, and C. Karel, “An algorithm
for the traveling salesman problem,” Cambridge, MA, USA: Mas-
sachusetts Institute of Technology (MIT), Sloan School of Management,
Sloan Working Papers 07-63, March 1, 1963.

[13] S. Dhakal and R. Chiong, “A hybrid nearest neighbour and progressive
improvement approach for travelling salesman problem,” in Interna-

tional Symposium on Information Technology (ITSim), vol. 1, August
2008, pp. 1–4.

[14] T. Weise, R. Chiong, K. Tang, J. Lässig, S. Tsutsui, W. Chen,
Z. Michalewicz, and X. Yao, “Benchmarking optimization
algorithms: An open source framework for the traveling salesman
problem,” IEEE Computational Intelligence Magazine (CIM), vol. 9,
no. 3, pp. 40–52, August 2014. [Online]. Available: http://www.
it-weise.de/research/publications/WCTLTCMY2014BOAAOSFFTTSP/
WCTLTCMY2014BOAAOSFFTTSP.pdf

[15] P. Hansen, N. Mladenović, and J. A. Moreno Pérez, “Variable neighbour-
hood search: Methods and applications,” Annals of Operations Research,
vol. 175, no. 1, pp. 367–407, March 1, 2010.

[16] M. Guntsch and M. Middendorf, “Applying population based aco to
dynamic optimization problems,” in From Ant Colonies to Artificial Ants

– Proceedings of the Third International Workshop on Ant Colony Op-

timization (ANTS’02), ser. Lecture Notes in Computer Science (LNCS),
M. Dorigo, G. A. Di Caro, and M. Samples, Eds., vol. 2463/2002.
Brussels, Belgium: Berlin, Germany: Springer-Verlag GmbH, September
12–14, 2002, pp. 111–122.

[17] P. Larrañaga, C. M. H. Kuijpers, R. H. Murga, I. Inza, and S. Dizdarevic,
“Genetic algorithms for the travelling salesman problem: A review
of representations and operators,” Journal of Artificial Intelligence

Research (JAIR), vol. 13, no. 2, pp. 129–170, April 1999.
[18] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution

Programs. Berlin, Germany: Springer-Verlag GmbH, 1996. [Online].
Available: http://books.google.de/books?id=vlhLAobsK68C

[19] D. B. Fogel, “An evolutionary approach to the traveling salesman
problem,” Biological Cybernetics, vol. 60, no. 2, pp. 139–144, December
1988.

[20] J. H. Holland, Adaptation in Natural and Artificial Systems: An Intro-

ductory Analysis with Applications to Biology, Control, and Artificial

Intelligence. Ann Arbor, MI, USA: University of Michigan Press,
1975.

[21] D. L. Applegate, W. J. Cook, and A. Rohe, “Chained lin-kernighan for
large traveling salesman problems,” INFORMS Journal on Computing

(JOC), vol. 15, no. 1, pp. 82–92, Winter 2003.
[22] K. Helsgaun, “An effective implementation of the lin-kernighan traveling

salesman heuristic,” Roskilde, Denmark: Roskilde University, Depart-
ment of Computer Science, Datalogiske Skrifter (Writings on Computer
Science) 81, 1998.

[23] ——, “General k-opt submoves for the lin–kernighan tsp heuristic,”
Mathematical Programming Computation, vol. 1, no. 2-3, pp. 119–163,
October 2009.

[24] C. Blum, R. Chiong, M. Clerc, K. A. De Jong, Z. Michalewicz, F. Neri,
and T. Weise, “Evolutionary optimization,” in Variants of Evolutionary

Algorithms for Real-World Applications, R. Chiong, T. Weise, and
Z. Michalewicz, Eds. Berlin/Heidelberg: Springer-Verlag, 2011,
ch. 1, pp. 1–29. [Online]. Available: http://www.it-weise.de/research/
publications/BCCDJMNW2011EO/BCCDJMNW2011EO.pdf

[25] R. Chiong, F. Neri, and R. I. McKay, “Nature that breeds solutions,”
in Nature-Inspired Informatics for Intelligent Applications and Knowl-

edge Discovery: Implications in Business, Science and Engineering,
R. Chiong, Ed. Hershey, PA, USA: Information Science Reference,
2009, ch. 1, pp. 1–24.

[26] L. D. Whitley, T. Starkweather, and D. Fuquay, “Scheduling problems
and traveling salesman: The genetic edge recombination operator,” in
Proceedings of the Third International Conference on Genetic Algo-

rithms (ICGA’89), J. D. Schaffer, Ed. Fairfax, VA, USA: George
Mason University (GMU): San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., June 4–7, 1989, pp. 133–140.

[27] R. Chiong and P. Siarry, “Local search for real-world scheduling and
planning,” Eng. Appl. of AI, vol. 25, no. 2, pp. 207–208, 2012.

[28] M. S. Boddy and T. L. Dean, “Solving time-dependent planning
problems,” Providence, RI, USA: Brown University, Department of
Computer Science, Tech. Rep. CS-89-03, February 1989.

[29] Y. Jiang, T. Weise, J. Lässig, R. Chiong, and R. Athauda,
“Comparing a hybrid branch and bound algorithm with evolutionary
computation methods, local search and their hybrids on the tsp,” in
Proceedings of the IEEE Symposium on Computational Intelligence

in Production and Logistics Systems (CIPLS’14), Proceedings of the

IEEE Symposium Series on Computational Intelligence (SSCI’14).
Orlando, FL, USA: Caribe Royale All-Suite Hotel and Convention
Center: Los Alamitos, CA, USA: IEEE Computer Society Press,
December 9–12, 2014. [Online]. Available: http://www.it-weise.
de/research/publications/JWLCA2014CAHBABAWECMLSATHOTT/
JWLCA2014CAHBABAWECMLSATHOTT.pdf

[30] N. Hansen, A. Auger, S. Finck, and R. Ros, “Real-parameter black-
box optimization benchmarking: Experimental setup,” Orsay, France:
Université Paris Sud, Institut National de Recherche en Informatique et
en Automatique (INRIA) Futurs, Équipe TAO, Tech. Rep., March 24,
2012.

[31] D. A. D. Tompkins and H. H. Hoos, “Ubcsat: An implementation and
experimentation environment for sls algorithms for sat and max-sat,” in

http://www.it-weise.de/research/publications/WWC2015LSFTTSPACS/WWC2015LSFTTSPACS.pdf
http://www.it-weise.de/research/publications/WWC2015LSFTTSPACS/WWC2015LSFTTSPACS.pdf
http://books.google.de/books?id=nmF4rVNJMVsC
http://books.google.de/books?id=nmF4rVNJMVsC
http://books.google.de/books?id=BXBGAAAAYAAJ
http://books.google.de/books?id=BXBGAAAAYAAJ
http://books.google.de/books?id=TRYkPg_Xf20C
https://en.wikipedia.org/wiki/Lin%E2%80%93Kernighan_heuristic
http://www.it-weise.de/projects/book.pdf
http://www.it-weise.de/projects/book.pdf
http://books.google.de/books?id=n5nuiIZvmpAC
http://iridia.ulb.ac.be/~mbiro/paperi/IridiaTr2006-023r001.pdf
http://iridia.ulb.ac.be/~mbiro/paperi/IridiaTr2006-023r001.pdf
http://www.it-weise.de/research/publications/WCTLTCMY2014BOAAOSFFTTSP/WCTLTCMY2014BOAAOSFFTTSP.pdf
http://www.it-weise.de/research/publications/WCTLTCMY2014BOAAOSFFTTSP/WCTLTCMY2014BOAAOSFFTTSP.pdf
http://www.it-weise.de/research/publications/WCTLTCMY2014BOAAOSFFTTSP/WCTLTCMY2014BOAAOSFFTTSP.pdf
http://books.google.de/books?id=vlhLAobsK68C
http://www.it-weise.de/research/publications/BCCDJMNW2011EO/BCCDJMNW2011EO.pdf
http://www.it-weise.de/research/publications/BCCDJMNW2011EO/BCCDJMNW2011EO.pdf
http://www.it-weise.de/research/publications/JWLCA2014CAHBABAWECMLSATHOTT/JWLCA2014CAHBABAWECMLSATHOTT.pdf
http://www.it-weise.de/research/publications/JWLCA2014CAHBABAWECMLSATHOTT/JWLCA2014CAHBABAWECMLSATHOTT.pdf
http://www.it-weise.de/research/publications/JWLCA2014CAHBABAWECMLSATHOTT/JWLCA2014CAHBABAWECMLSATHOTT.pdf


Revised Selected Papers from the Seventh International Conference on

Theory and Applications of Satisfiability Testing (SAT’04), ser. Lecture
Notes in Computer Science (LNCS), H. H. Hoos and D. G. Mitchell,
Eds., vol. 3542. Vancouver, BC, Canada: Berlin, Germany: Springer-
Verlag GmbH, May 10–13, 2004, pp. 306–320.

[32] H. H. Hoos and T. Stützle, “Evaluating las vegas algorithms – pitfalls
and remedies,” in Proceedings of the 14th Conference on Uncertainty

in Artificial Intelligence (UAI’98), G. F. Cooper and S. Moral, Eds.
Madison, WI, USA: San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., July 24–26, 1998, pp. 238–245, also published as
Technical Report “Forschungsbericht AIDA-98-02“ of the Fachgebiet
Intellektik, Fachbereich Informatik, Technische Hochschule Darmstadt,
Germany.

[33] G. Reinelt, “Tsplib – a traveling salesman problem library,” ORSA

Journal on Computing, vol. 3, no. 4, pp. 376–384, Fall 1991.

This is a preview version of paper [1] (see page 9 for the reference).

Copyright c© IEEE.

Read the full piece at http://dx.doi.org/10.1109/ICCI-CC.2015.7259388.

@inproceedings{WWC2015LSFTTSPACS,

author = {Yuezhong Wu and Thomas Weise and Raymond Chiong},

title = {{Local Search for the Traveling Salesman Problem:

A Comparative Study}},

publisher = {Piscataway, NJ, USA: IEEE Computational Intelligence Society},

booktitle = {Proceedings of the 14th IEEE Conference on Cognitive Informatics \&

Cognitive Computing (ICCI*CC’15)},

pages = {213--220},

location = {Beijing, China},

month = jul # {˜6--8, },

year = {2015},

isbn = {978-1-4673-7289-3},

doi = {10.1109/ICCI-CC.2015.7259388},

url={http://www.it-weise.de/research/publications/WWC2015LSFTTSPACS/WWC2015LSFTTSPACS.pdf}

},

http://dx.doi.org/10.1109/ICCI-CC.2015.7259388

	Introduction
	Investigated Algorithms
	The Lin-Kernighan Algorithm
	Multi-Neighborhood Search
	Evolutionary Algorithms
	Ant Colony Optimization

	Experiments and Results
	Experimentation with Anytime Algorithms
	Experimental Setup
	Pure Algorithm Performance
	Hybrid Algorithm Performance

	Conclusions and Future Work
	References

