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Abstract Evolutionary Algorithms (EAs) are population-based, stochastic search al-

gorithms that mimic natural evolution. Over the years, EAs have been successfully

applied to many classification problems. In this paper, we present three novel evolu-

tionary approaches and analyze their performances for synthesizing classifiers with EAs

in supervised data mining scenarios. The first approach is based on encoding rule sets

with bit string genomes, while the second one utilizes Genetic Programming (GP) to

create decision trees with arbitrary expressions attached to the nodes. The novelty of

these two approaches lies in the use of solutions on the Pareto front as an ensemble.

The third approach, EDDIE-101, is also based on GP but uses a new, advanced fitness

measure and some novel genetic operators. We compare these approaches to a number

of well-known data mining methods, including C4.5 and Random-Forest, and show

that the performances of our evolved classifiers can be very competitive as far as the

solution quality is concerned. In addition, the proposed approaches work well across

a wide range of configurations, and EDDIE-101 particularly has been highly efficient.

To further evaluate the flexibility of EDDIE-101 across different problem domains, we

also test it on some real financial datasets for finding investment opportunities and

compare the results with those obtained using other classifiers. Numerical experiments

confirm that EDDIE-101 can be successfully extended to financial forecasting.
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1 Introduction

Data mining is an important process in many business, science and industrial problems.

Its aim is to extract implicit, not yet known information from data [23]. Owing to the

huge amount of data generated and stored in databases nowadays, the commercial and

research values of effective data mining are tremendous. Numerous application areas,

including astronomy, bioinformatics, drug discovery, advertising, customer relationship

management, fraud detection, healthcare, manufacturing, targeted marketing, financial

transactions, government data and environmental monitoring, among others (see [32,

36]), are relying heavily on powerful data mining techniques to uncover trends and

hidden knowledge from large volumes of data.

In the past two decades, a wide variety of different approaches have been pro-

posed in the literature for classification tasks in large datasets, and many of these

approaches have been proven to be very effective. However, not all of them are flexible

and easily extensible. Evolutionary Algorithms (EAs), a family of metaheuristic opti-

mization methods which comprises Genetic Algorithms (GAs), Genetic Programming

(GP), Evolutionary Programming (EP) and Evolution Strategies (ES), are commonly

used to address problems with large search spaces. EAs have been successfully applied

to many different data mining problems too (see [12, 25, 29]). The strength of EAs is

that they require very little domain-specific knowledge of the data to be classified, thus

simplifying the classification tasks to some extent. Besides that, EAs also possess great

versatility, i.e., they can be used to generate solutions of virtually arbitrary structures.

Motivated by these, the purpose of this paper is to propose some novel evolution-

ary approaches for supervised classification tasks in data mining which are flexible

across different problem domains. Three such approaches, including a rule-based EA

and two tree-based GPs, have been presented. The performances of these approaches

are compared to a number of well-established classification methods using some popu-

lar real-world datasets. Different comparisons on (1) the sensitivity of the approaches

to configurations, (2) the accuracy of the approaches, (3) the required runtime, and

(4) the convergence have been performed. The results show that these evolutionary

approaches are promising and comparable to the well-established algorithms. To fur-

ther test their flexibility across different problem domains, we also apply them to real

datasets from the financial sector. It is confirmed via numerical experiments that the

proposed approaches can be extended to financial forecasting.

The rest of this paper is organized as follows. Section 2 starts with some the-

oretical background on classification in supervised data mining, followed by a brief

description of EAs and discussion of some related work. Subsequently, the three pro-

posed approaches are presented in Section 3. In Section 4, we describe the experimental

settings, including the datasets used, the classifiers to be compared, and discuss the

experimental results. Finally, Section 5 concludes the study.
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2 Background

2.1 The Classification Task

Broadly speaking, the task of classification is to assign a class k from a set of pos-

sible classes K to vectors (data samples) t = (t1, t2, . . . , tn) consisting of n attribute

values ti ∈ Ti. In supervised approaches, the starting point is a training set A in-

cluding training samples t ∈ A for which the corresponding classes class(t) ∈ K

are already known. A data mining algorithm is supposed to learn a relation (called

classifier) C : T1 × T2 × · · · × Tn 7→ K which can map such attribute vectors t

to a corresponding class k ∈ K. The training set A usually contains only a small

subset of the possible attribute vectors and may even include contradicting samples

(a = b : a, b ∈ A ∧ class(a) 6= class(b)).

The better the classifier C is, the more often it can correctly classify attribute

vectors. An overfitted classifier has no generalization capability: it learns only the exact

relations provided in the training sample but is unable to classify samples not included

in A with reasonable precision. In order to test whether a classifier C is overfitted,

not the complete available data A is used for learning. Instead, A is divided into the

training set A and the test set A. If C’s precision on A is much worse than on A, it is

overfitted and should not be used in a practical application.

2.2 Evolutionary Algorithms

EAs belong to the family of nature-inspired optimization algorithms [14, 15]. In general,

an EA can be schematized as a population-based search which is characterized by an

initial creation of a set of candidate solutions and a generation cycle, as depicted in

Figure 1. A population of candidate solutions is presumed to evolve over the generation

Reproduction

create new individuals
from the mating pool by
crossover and mutation

Selection

select the fittest indi-
viduals for reproduction

Evaluation

compute the objective
values of the solution
candidates

Fitness Assignment

use the objective values
to determine fitness
values

Initial Population

create an initial
population of random
individuals

Fig. 1: The common EA cycle.

cycles utilizing some forms of natural processes such as selection and reproduction in

order to refine the solutions iteratively [6, 66].

First, a set of randomly configured candidate solutions are created. The cycle itself

then starts with the evaluation of the objective values of these solutions. Based on
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the results, a relative fitness is assigned to each candidate solution in the population.

This fitness value is the criterion on which selection algorithms operate to pick the

most promising individuals for further investigation while discarding the less successful

ones. The candidate solutions that managed to enter the so-called mating pool are

then reproduced, i.e., combined via crossover and/or slightly changed by mutation

operations. When this is done, the cycle starts again in the next generation.

2.3 Related Work

The necessity to discover patterns and analyze trends in large sets of data has made

data mining one of the most active research areas in Machine Learning, Artificial

Intelligence, and Optimization along the years. Numerous methods such as probabilis-

tic models, neural networks, support vector machines, rough sets, decision trees and

evolutionary computation techniques have been proposed in the literature for various

classification tasks, and the majority of these methods have been proven to be very

effective (e.g. [3, 7, 16, 19, 28, 31, 42, 44, 48, 49, 50, 52, 57, 70]). Among them, de-

cision tree algorithms are perhaps the most commonly used. This kind of algorithms

typically consists of two phases, i.e., a tree-building phase and a tree-pruning phase.

Of the many decision tree algorithms that have been used in data mining, C4.5 [49]

and Random-Forest [11, 28] are by far the most well-known.

Besides decision tree algorithms, EAs have also been used extensively in data min-

ing. GAs, the best-known type of EAs, are most often applied to classification in

the form of Learning Classifier Systems (LCSs). There are two types of LCSs: the

Pittsburgh approach [55] and the Michigan approach [33]. The Pittsburgh approach

resembles a traditional GA in which each individual in the population is a set of rules

representing a complete solution. The Michigan approach, on the other hand, uses the

entire population to represent individual rules, where each rule is a partial solution to

the overall learning task. Some examples of recently proposed GA-based approaches

can be found in [3, 19, 35, 59]. For more information about LCSs in data mining, see

[12].

GP, another type of EAs that evolves trees or program-like structures, has found

many applications in classification tasks too (see the review by Jabeen and Baig

[36]). The earliest related work on tree-based evolutionary data mining dates back

to Forsyth’s experiments in 1981, in which he evolved single, binary decision rules that

did not feature branching [21]. Another set of early results in the area of evolving deci-

sion trees has been contributed by Koza [38] as he applied a GP approach to an example

problem also used by Quinlan for illustrating the ID3 algorithm – the predecessor of

the popular C4.5 algorithm [49].

Freitas [24] used a GP framework to create classification rules composed of com-

parison and logical operators. In problems with more than two classes (|K| > 2), he

applied an approach similar to the Michigan-style LCS: a niching method which allows

the selection of |K| − 1 classification rules, each matching a different class. The need

for this niching scheme in the case of multiple-class problems has been discussed in his

work.

The evolution of oblique decision trees has been pursued by Cantú-Paz and Ka-

math [13]. The decision expressions attached to the nodes of such trees have the form
∑

n

i=1
aiti > 0 where the factors a1 . . . an are subject to optimization. Their empirical
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results suggest that EAs not only can find competitive classifiers very quickly but also

scale well with the dimensionality.

In [45], a multi-tree approach for solving classification problems with |K| ≥ 2 is

presented. This approach takes an integrated view of all classes when evolving GP,

and uses one distinct tree for deciding whether a data sample belongs to one of the

|K| classes or not. Numerical results on several benchmark datasets show that the

performance of this approach is highly satisfactory.

While most of the evolutionary classifiers in the literature have been tested on arti-

ficial or pure benchmark data, the Evolutionary Dynamic Data Investment Evaluator,

or EDDIE in short, was developed with real-world problems from the fields of Finance

and Economics in mind [60, 61, 62]. EDDIE-1 [60], for example, was applied to horse

races in 1998. However, the lack of sufficient datasets for testing in horse races at that

time brought about limited performance of EDDIE-1. The subsequent release of ED-

DIE, Li et al’s FGP-1 [40], was used for financial forecasting. In FGP-1, a cost-sensitive

fitness method has been adopted to guide the evolution process [41].

A recent work from Garćıa-Almanza et al [27] combined EDDIE and a reposi-

tory method [26] to evolve a set of decision rules for discovering patterns in financial

datasets. The repository method builds a repository by extracting rules from decision

trees and collecting those with best performances. These rules are then simplified and

added to the repository if some conditions are satisfied (such as not being too similar

to the rules already stored in the repository). Finally, all rules in the repository are

combined to classify the training or test datasets.

Before ending this section, we would like to point out several comparative studies

that can be found in the literature. For example, Bernadó et al [9] compared two

different LCSs to classical, non-evolutionary methods on several datasets and found

that EAs are highly suitable for data mining and classification. Bacardit and Butz [5]

compared a Pittsburgh-style LCS called GAssist to XCS, a Michigan-style LCS, using

some publicly available datasets and revealed important differences between the two

systems. Kharbat et al [37] compared XCS with C4.5 based on breast cancer data and

showed that XCS provides significantly higher accuracy. Orriols-Puig et al [47] reviewed

several evolutionary based machine learning approaches for pattern recognition and

compared them with some of the most influential non-evolutionary supervised learning

methods using a collection of twenty real-world datasets. In terms of accuracy, they

found that UCS, a competitive Michigan-style LCS derived from XCS, appears to be

the best performer. In a separate study, Orriols-Puig and Bernadó-Mansilla [46] further

evaluated XCS and UCS for extracting knowledge from imbalanced data using both

fabricated and real-world problems. They showed that both LCSs are robust to high

imbalance ratios if some critical parameters are correctly configured.

In one of the most recent studies, Tanwani and Farooq [58] performed some ex-

tensive experiments using six well-known evolutionary rule-learning algorithms on nu-

merous publicly available biomedical datasets for the purposes of automatic knowledge

extraction. Another work by Fernández et al [18] also entailed an exhaustive experi-

mental study comparing evolutionary rule-based approaches with some classical non-

evolutionary algorithms using both standard classification problems and imbalanced

datasets. None of these studies, however, has compared evolutionary rule-learning clas-

sification approaches with evolutionary (decision) tree synthesizing approaches directly.

The work presented here, thus, aims to provide new insights into the mutual benefits

and demerits of these two classes of data mining approaches by introducing some novel

enhancements to them.
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3 Evolutionary Data Mining Approaches

3.1 The Rule-Based EA

The first classification approach we propose in this work is similar to the Pittsburgh

LCS [17, 55, 56]. Like the Pittsburgh LCS, we use a GA to work on a population of

classifiers encoded as bit strings, each of which being a list of rules (i.e., individual

classifiers which together form the classifier system). This simple rule design is chosen

so that we can test the ability of the evolutionary approach to build good solutions

(classifiers) of arbitrary structures. At the same time, the design allows us to encode

the rules in an EA.

3.1.1 Classifying with Rules

A rule contains a classification part encoding a class k ∈ K and a condition for each

feature in the input data. Unlike conventional LCSs, the conditions of our rule-based

EA are no simple ternary patterns (like 0, 1, and * for don’t care) to be matched against

data samples but encode a more complex relation.

Class kSepal Length t1

5.1
4.9
7.0

6.4

Sepal Width t2

3.5
3.0
3.2

Petal Length t3

1.4
1.4
4.7
6.0

Petal Width t4

0.2
0.2
1.4
2.53.3

iris setosa (0)

iris setosa (0)

iris versicolor (1)

iris virginica (2)

iris versicolor (1)3.2 4.5 1.4

6.3

0.1 01 2.181 7.42 7.18Rule 1 0 4.08 3.92 1 1.39 3.36

0.420 4.54 0 2.48 05.98 2.34 13.12Rule 2 0 5.33 5.33

0.9 21 0 6.53.44 1.78 0 2.343.12Rule 4 3 7.42 6.70

10 3.92 2.00Rule 3 3 7.185.50 1.700 2.182 1.78 6.51

... ... ... ... ...

c .x1 c .a1 c .b1 c .x2 c .a2 c .b2 c .x3 c .a3 c .b3 c .x4 c .a4 c .b4 k

c .xi meaning

0
1

2

3

t min c .a, c .bi i i< { }

t max c .a, c .bi i i> { }

t max c .a, c .bi i i{ }£
t min c .a, c .bi i i³ { } Ù

don t care’

binary encoding: n=4 bits per value

rule with fewest mismatching tests wins

Fig. 2: An example rule-based classifier applied to the Iris Dataset [2, 54].

Figure 2 sketches the application of such a rule-based classifier to the well-known

Iris Dataset [2, 54], where each data sample t stands for a flower and is characterized

by four real attributes (t1 . . . t4). In our approach, each rule of the classifier therefore

consists of four conditions c1 . . . c4. Each condition ci, in turn, consists of one operation
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selector ci.x and two real values ci.a and ci.b. If ci.x = 0, the condition matches if

ti < min{ci.a, ci.b} and for ci.x = 1, it is true if and only if ti > max{ci.a, ci.b}. ti
must fall into the real interval [min{ci.a, ci.b},max{ci.a, ci.b}] if ci.x = 2 and ci.x = 3

stands for don’t care (like the * symbol in LCSs). All rules are matched against a data

sample t one after the other, starting with the first rule. The corresponding class of

the rule with the least unmet conditions is returned in the end. If there is a tie, the

rule at the lower index wins. This allows for rules describing classes which are nested

within each other. It is thus possible to describe a big hypercube containing a smaller

hypercube of data by simply putting the rule for the smaller area first.

In Figure 2, the application of our rule-based EA to the third instance of the Iris

Dataset is illustrated. By chance, the third rule has the fewest mismatching conditions

(one) and therefore, the data sample is classified with class 1.

3.1.2 Evolving Rules

Since we use a GA with binary encoding to evolve the rule-based classifiers, we also

represent real values ci.a and ci.b in the conditions with binary numbers. We use at

most four bits for each condition. In cases where an attribute can take on more than

sixteen values, the linear scaling mechanism defined in Equation 1 is applied to translate

values z (four bits) to the corresponding conditions ci.a and ci.b respectively.

min{ti : ∀t ∈ T}+ z
max{ti : ∀t ∈ T} −min{ti : ∀t ∈ T}

15
(1)

It is necessary to note that our rule set evolution shares some similarities to the

work of Corcoran and Sen [16]. In their approach, classification rules are encoded in a

real-valued genome where each condition is defined as a range [ci.a, ci.b] given by two

real values ci.a and ci.b. A don’t care situation occurs when ci.a > ci.b. Different from

ours, they used a fixed-length genome where the number of rules is predetermined.

They considered only exact matching rules during the classification process. In our

approach, the rule that has the least errors wins, if no perfect match could be found.

Furthermore, Corcoran and Sen [16] used an internal voting mechanism in case of

draws between two rules matching a sample. For us, the rule with the lower index

wins. We can use this much simpler approach since our rule-based classifiers are able

to permutate rules via crossover and thus, can find their best order during the course

of evolution.

3.2 GP with Unconstrained Decision Trees

As mentioned in Section 2.3, the synthesis of decision trees is a very common data

mining approach. The leaf nodes of decision trees contain the identifiers of the classes

k ∈ K and each inner node usually has two children. The starting point for the classifi-

cation of a data sample t ∈ A is the root of the tree. From there on, a path is followed

to one of the leaves which then represents the estimated class of t. At each node on this

path, a decision is typically made based on the comparison of one attribute value with

a constant. According to this decision, either the left or the right child of the node is

visited. Eventually, the control token will reach a leaf node and the class attached to

this node is returned.
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3.2.1 Classifying with Unconstrained Decision Trees

1.643 ≥ t3

t 1.1363 <

yes

Class 2

yes no

(t3 ≤ t )2┐

6.48 ≤ no

t (-4.9 - 2.6)2 <

-2.54 t + t3 2

yes

Class 2

no

Class 0

noyes

noyes

Class 1Class 0

k

0
0

2

t1

5.1
4.9
7.0

6.4

3.5
3.0
3.2

1.4
1.4
4.7
6.0

0.2
0.2
1.4
2.53.3

13.2 4.5 1.4

6.3
... ... ... ... ...

t2 t3 t4

1

Fig. 3: An evolved decision tree applied to the same data sample as used in Figure 2

In our second classification approach, we extend the decision tree approach by

releasing all constraints on the expressions leading to the decisions. In other words, in-

stead of a simple comparison like t3 > 1.4, complex formulas like (t3 ∗ t1 − 4 ≤ 2 ∗ t2)∨

(t3 − t1 > t2 ∗ 0.2) can be attached to a node in our unconstrained decision trees

(UDTs). Furthermore, the shape of the trees is subject to optimization too.

3.2.2 Evolving Unconstrained Decision Trees

GP is a type of EAs where the search space consists of trees and therefore, is predestined

for the creation of decision trees. In order to evolve arbitrarily structured decision trees,

we apply GP with a function set F = {+,−, ∗,∧,∨,¬,=, >,<,≤,≥, 6=, if-then-else}

and a terminal set consisting of constants, references to attributes, and class identifiers.

In Figure 3, an evolved decision tree with unconstrained node expressions is applied

to the same data sample used in Figure 2. The control flow is highlighted by marking

the nodes and transitions with bold lines.

Our UDT-based GP is different from the related GP approaches discussed in Sec-

tion 2.3. Unlike [13], for example, the trees evolved in our GP are much less restricted

in their form and can, in fact, use arbitrary mathematical expressions (depending on

the function set made available to the GP process). The size of the expressions in the

nodes of our GP may vary and is being optimized too, which increases the information

density in the classifiers.

The UDT-based GP also differs from the multi-tree approach in [45] as we use only

one single tree whose leaves are labels which may belong to any of the |K| classes.
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3.3 EDDIE-101 – An Advanced Tree-based Classifier

Our third classification approach, known as EDDIE-101, is a new variant of the EDDIE

approach. EDDIE-101, like its predecessors, is also based on decision trees but with a

set of new, advanced features being incorporated.

3.3.1 Classifying with EDDIE-101

Figure 4 sketches an individual, a so-called Genetic Decision Tree (GDT, [40]), as it

may have resulted from a reproduction operation in EDDIE-101. Initially, EDDIE-101

does not assign classes to the output leaf nodes but only allocates one counter in them

for each possible class k ∈ K. This occurs in the evaluation and learning phase, during

which the GDTs are applied to each training sample t ∈ A.

if

ifif>

Decision Leave Node Decision Leave Node

t1 22.56 <<

t2 46.56 t5 0.75

P(a)
[1.. K ]| |

P(b)
[1.. K ]| |

P(d)
[1.. K ]| |

P(c)
[1.. K ]| |

Fig. 4: An example GDT of EDDIE-101

Like normal decision trees, the samples are “put” into the root node of the trees and

move along the branches according to the evolved decision expressions. In the learning

phase, the leaf nodes record just how many instances of each class have arrived at

them. The classification result is then the class arriving in the leaf node with the

highest frequency during the training phase.

3.3.2 Evolving Genetic Decision Trees

For synthesizing GDTs, EDDIE-101 adopts the new crossover and mutation operations

introduced by Muni et al [45]. The overall algorithm of EDDIE-101 is illustrated in

Figure 5.

At the beginning of the algorithm, we initialize a group of individuals as the par-

ents. We use the ramped half-and-half method proposed by Koza [39] to initialize the

population. This method creates equal amounts of individuals according to two schemes

(full and grow) for each depth. The full method which enforces that all leaf nodes have

the same depth in one tree and the grow method which limits the maximum distance

between the leaves and the roots but allows the leaves to be at random depths. We

apply tournament selection to weed out individuals with low fitness in each generation

with high probability.
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Tournament selection is used for parental selection as well. In order to give the

surviving individuals with lower fitness a chance to improve, the two losers of a tour-

nament with four contestants are recombined (with probability pc) and mutated (with

probability pm).1 This step is repeated until all free slots in the population (opened

by survival selection) are filled with fresh offspring. Before inserting the newly created

GDTs into the population, however, they are optimized with a local search operation.

In this step, the thresholds in their selector nodes (the nodes enclosed with dotted lines

in Figure 4) are, one after the other, refined with a simple hill climber.

Algorithm EDDIE-101 (M)
M is the maximum generation
BEGIN

Let gen = 0
Initialize the population using the ramped-half-and-half method
while (gen < M)

Evaluate fitness (f4, see Section 3.4.3) of each individual
Update the best individual
Survival selection: tournament selection by f4
Crossover and mutation
Adjust individuals with hill-climbing
gen = gen+ 1

end while
Best individual on test dataset
END

Fig. 5: The EDDIE-101 algorithm

While EDDIE-101 is related to its predecessors, it is also different in several ways:

EDDIE-101 differs from FGP-1 not only in the fitness function utilized and the struc-

ture of the GP process, but also in the way the classifiers are initialized. While EDDIE-

101 counts the instances of each class arriving at the leaf nodes, FGP-1 assigns random

classes to the leaves.

Furthermore, we have not applied the repository method as used by Garćıa-

Almanza et al [27] because its main search operator is based on subtree mutation

which makes it vulnerable to premature convergence. Another reason for not doing so

is that it needs a large repository to manage a high number of rules. Maintaining this

repository costs much time.

3.4 Objective Functions, Voting, and Information Gain

Our first two approaches, the rule-based EA and GP with UDTs, are driven by three

different objective functions, f1 . . . f3, all subject to minimization. The Pareto-front

returned by a multi-objective optimization process is then combined to a single super

classifier. EDDIE-101, on the other hand, utilizes an advanced single-objective concept

(i.e., the objective function f4).

1 A similar approach has been suggested by Muni et al [45].
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3.4.1 Objective Functions for the Rule-based EA and GP with UDTs

The objective values of the candidate classifiers are determined by applying them to

each sample in the training data A. f1 corresponds to the number of samples which

have been classified correctly. Since our aim is minimization, we negate this value.

The value of f2 is determined by a cost matrix which can be specified a priori. It also

allows the introduction of different penalties for certain misclassifications. For instance,

classifying an iris setosa as iris virginica might be less critical than classifying it as an

iris versicolor. If no cost matrix is provided, the identity matrix is used instead and f1
and f2 become interchangeable. The third optimization criterion (f3) is the size of the

classifier, i.e., the number of rules in a rule set or the number of nodes in a decision

tree. The smaller the classifier is, the less likely it is overfitted. Therefore, it makes

sense to add some selection pressure on decreasing the classifier size.

3.4.2 Voting Mechanisms

If the three objective functions are applied in the context of Multi-Objective Evo-

lutionary Algorithms (MOEAs) [63, 71] together with a Pareto-ranking based fitness

assignment process [66], the result will be a set of classifiers instead of a single solution.

If evolving decision trees, for instance, the Pareto set will contain trees of several dif-

ferent sizes. A classifier C1 with fewer nodes (better f3 value) which performs slightly

worse (in respect of f2 or f1) than another one (C2) with more nodes, is neither better

nor worse. In terms of the Pareto relation, this means that C1 is not dominated by C2

and vice versa.

Instead of using only one of the evolved classifiers, we combine the complete Pareto

set resulting from the optimization process to a single super classifier. We therefore

introduce two alternative voting mechanisms V1 and V2. If a data sample is to be

classified, all the members of the Pareto set are applied to it and their results (the

suggested classes) are noted. If V1 is applied, each classifier can cast a number of

votes inversely proportional to the costs it has caused (f2); and with variant V2, the

number of votes of a classifier is inversely proportional to a combination of f1 and f3.

The class that receives the most votes is then the result of the classification.

Compared to other related evolutionary data mining methods, our approaches here

have one obvious advantage: they utilize the full potential of MOEAs by incorporating

the whole Pareto set into one super classifier. With this, none of the evolved solutions,

i.e., the knowledge gathered, is lost and higher robustness against overfitting can be

achieved. Another advantage of this is that results from multiple runs of the optimizer

may also be combined.

Boosting and ensemble learning methods [4, 51] are other approaches that also

combine different learners or classifiers in order to increase precision. These methods

follow a concept different from our simple voting mechanisms by involving learning on

subsets of the training dataset. In our case, all classifiers are trained with the same

data and we do not explicitly aim to create different classifiers; they simply result

from the nature of multi-objective optimization. Voting is only used to utilize the full

information which our EAs extract from their input data.
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3.4.3 Information Gain in EDDIE-101

In EDDIE-101, a novel fitness measure f4 which represents the information gain [8] is

introduced according to Equation 3.

p(l, k) =
P (l)[k]

|K|
∑

i=1

P (l)[i]

(2)

f4(x) =

∑

∀leaves l∈x

(

1 +
|K|
∑

k=1

p(l, k) log2 p(l, k)

)(

−1 +
|K|
∑

k=1

P (l)[k]

)

|A| − |leaves ∈ x|
(3)

As already mentioned, a classifier x is applied to all training samples t ∈ A during the

evaluation phase. Each leaf node l has a set of counters P (l), one counter for each of

|K| classes k ∈ K, and the leaf node remembers how many instances of different classes

have arrived at it. Let P (l)[k] be the number of instances of class k ∈ K arriving at

leaf node l. p(l, k) in Equation 2 is then the frequency of this class in l relative to other

classes. The entropy-based fitness f4(x) ∈ [0, 1] stands for the total discrimination

power of the classifier. If it is 1, the classifier has the best possible training result since

in each leaf node, only samples belonging to a single class have arrived. If f4(x) is 0,

the classifier x exhibits random behavior in which equally many instances of each class

are found at the leaf nodes. f4 is therefore subject to maximization.

4 Experiments and Results

4.1 Datasets

For the purpose of verifying the performances of our evolutionary approaches, we first

applied them to five standard real-world datasets (A1-A5) from supervised data min-

ing. Except for A3 which was already divided into two subsets by default and A5,

where we used 100 samples for testing, 70% of the samples of the datasets Ai were

used as training samples (A) and the remaining 30% as test samples A. This was done

so according to the dataset division utility provided by Weka [22, 34].

The first dataset used A1 is the Iris Dataset [2, 54] already introduced in Sec-

tion 3.1.1. Besides this one, other datasets include the Wine Dataset, the Heart Disease

Dataset, the Wisconsin Breast Cancer Dataset and the Hepatitis Dataset.

The Wine Dataset (A2) by [20] represents the results of a chemical analysis of

different wines. The three examined wines (|K| = 3) all grow in the same region in Italy

but stem from different cultures. For each of the 178 samples t, thirteen characteristic

components t1 . . . t13 have been measured.

The Heart Disease Dataset [69] (A3) contains cardiological diagnostic samples from

Single Proton Emission Computed Tomography (SPECT3) images. Each of the 267

samples (representing a patient) has 22 binary attributes and is classified into one of

the two classes k1 = normal and k2 = abnormal.

The Wisconsin Breast Cancer Dataset [69] (A4) consists of documented clinical

samples which have 10 attributes, each stands for one measurement from a breast

cancer examination with a scale from one to ten. The 699 samples are again to be

classified into two classes.
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The Hepatitis Dataset [30] (A5) consists of 19 attributes which indicate whether a

person suffering from hepatitis will survive this infection or not (|K| = 2). There are

categorical, integer-valued, and also real attributes. This dataset has 155 samples.

To further evaluate the flexibility of the proposed approaches across different prob-

lem domains, we also tested them on much larger real datasets (A6-A8) from the

financial sector. Here, cross validation (i.e., to test different partitions of the datasets)

makes little sense since the financial data basically represent time series that are used

to develop forecasting classifiers. Randomly dividing a time series may lead to much

worse performance of the classifier and thus biased experimental results. For the sake

of consistency, we have decided to use single divisions for both the test and training

data in this set of experiments.

The S&P-500 Dataset (A6) consists of 2700 samples. This dataset stems from the

Heng Seng Index. Available to us were data from the 2nd of April 1963 to the 25th of

January 1974. The attributes of each case are composed by indicators which are derived

from financial technical analysis. These indicators are based on the daily closing price.

We tried to find classifiers which detect an increase of stock value of 4% in a horizon

of 63 days. We divided the data into 1800 cases for training and put 900 cases into the

test dataset.

The DJIA Dataset was obtained from the closing prices of the Dow Jones Industrial

Average. We chose two ranges in DJIA for our experiments, one has 2800 cases (from

the 7th of April 1969 to the 5th of May 1980, A7) while the other consists of 3035

cases (from the 7th of April 1969 to the 9th of April 1981, A8). In A7, on one hand

we again tried to detect an increase of 4% in stock value during a horizon of 63 days

(setup A1
7). On the other hand, we also tried to classify according to a stock value

increase of 2.2% in a horizon of 21 days (setup A2
7). For A8, we targeted an increase

of 2.2% in a horizon of 21 days.

4.2 Classifiers for Comparison

For comparison, we also applied some well-established decision tree-based classification

approaches to the datasets described in Section 4.1. We used the Weka framework

[22, 34] which provides default implementations of these conventional classification

methods.

The first approach included for comparison is the Random-Forest algorithm by

[11] which trains multiple decision trees on sub-samples drawn with the bagging [10]

approach from the input data. Like our approach, the trees are combined with a voting

mechanism. In Weka, we used the default settings for both the tree size as well as the

features in our experiments.

The second approach used for comparison is the popular C4.5 algorithm by [49]

which creates decision trees where an arbitrary number of branches can follow each

node. Its implementation in Weka, called J48, has separate tree branches for each

value of the attribute used for decision at a given node. We used this approach with a

confidence factor of 0.25 and a minimum number of samples per leaf of 2.

Finally, we applied the Weka-specific RepTree algorithm which uses information

gain/variance reduction and prunes the trees with reduced-error pruning and back-

fitting. In the experiments, we used the default settings, i.e., a minimum variance

proportion of 0.001 and a minimal sample weight of the leaf nodes of 2.0.
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4.3 Experimental Setup

In the experiments with our evolutionary data mining approaches, by default we used

EAs with a population size of 2000 individuals, Pareto ranking, tournament selection

with three contestants, and a simple convergence prevention (SCP) algorithm from

[65, 66]. We ran multiple series for 1000 generations each, with different mutation rates

mr ∈ {0.6, 0.7}, crossover rates cr ∈ {0.3, 0.4}, both voting methods v ∈ {V1,V2},

and either with steady-state (ss = 1) or generational (ss = 0) population handling

strategies. All randomized algorithms, i.e., the EAs and the Random-Forest method,

were applied at least ten times to each dataset.

4.4 Experimental Results

With our experiments, we aim to answer three questions:

1. Do different parameter settings of EAs lead to significant differences in the classifi-

cation accuracy of the evolved classifiers? This would be undesirable, since we aim

to provide classifiers which work well regardless of user settings.

2. How are the performances of our approaches compared to the well-known methods

like C4.5 and Random-Forest? Obviously, evolutionary classification is only useful

if the approaches are at least on-par with classical methods.

3. Can more advanced approaches like EDDIE-101 provide better solutions than

straightforward ones like the UDT-based GP? In EDDIE-101, we deviate from

default EA structures and introduce a couple of novel operators (as discussed in

Section 3.3.2) as well as an advanced fitness assignment procedure (Equation 3).

Only if these modifications elevate the performance above the other two evolution-

ary approaches, the overhead of implementing EDDIE-101 can be justified.

We measured the median cA of the percentage of correctly classified samples from

the training data A, the median cA of correctly classified samples on the test data A,

and the best result from all runs on the test data bA.

4.4.1 Robustness across Different Configurations

In Table 1, we present the results achieved with different configurations of our EAs in

the form of rule-based (ap = r) or tree-based (ap = t) ordered by cA. From the table,

it is clear that the best median precision on the test data is always reached by the

rule-based EA. In all but one case, it is also the approach with the best bA value.

The combination of a mutation rate of 30% and a crossover rate of 70% seems to

be more effective than a 40%/60% setting. Interestingly, the classifiers with the best

precision are always found by the generational EAs (ss = 0) while the steady-state EAs

(ss = 1) always achieve the best median result. Between the two voting mechanisms,

no supremacy can be detected.

We further analyzed the influence of each single parameter with two-tailed Sign

Tests [53] and the Wilcoxon’s Signed Rank Test [68]. We found that no single parameter

alone has a significant positive or negative influence when applying the tests with a

significance level of 5%. In other words, our EAs are very robust and deliver results

with similar qualities for a variety of settings. This is a significant positive finding since



15

Iris Dataset (A1)

Rank ap mr cr ss v cA cA bA

1 r 0.7 0.3 1 V2 97.98 98.04 98.04
2 t 0.7 0.3 1 V2 97.98 98.04 98.04
3 t 0.6 0.4 1 V2 97.98 98.04 98.04
4 t 0.7 0.3 0 V1 98.48 98.04 98.04

. . . . . . . . . . . . . . . . . . . . . . . . . . .

15 r 0.7 0.3 0 V1 100.00 94.12 100.00
. . . . . . . . . . . . . . . . . . . . . . . . . . .

Wine Dataset (A2)

Rank ap mr cr ss v cA cA bA

1 r 0.7 0.3 1 V1 100.00 91.67 96.67
2 r 0.6 0.4 0 V1 100.00 91.67 96.67
3 t 0.6 0.4 1 V2 96.61 90.83 93.33
4 t 0.7 0.3 1 V2 97.03 90.83 93.33

. . . . . . . . . . . . . . . . . . . . . . . . . . .

16 t 0.7 0.3 0 V1 97.46 86.67 98.33

Heart Disease Dataset (A3)

Rank ap mr cr ss v cA cA bA

1 r 0.7 0.3 1 V1 92.41 73.93 76.34
2 r 0.6 0.4 0 V2 91.14 73.12 81.18
3 t 0.7 0.3 1 V1 89.87 72.90 75.81
4 t 0.7 0.3 1 V2 86.71 72.04 77.41

. . . . . . . . . . . . . . . . . . . . . . . . . . .

Breast Cancer Dataset (A4)

Rank ap mr cr ss v cA cA bA

1 r 0.6 0.4 1 V1 99.42 99.00 99.00
2 t 0.7 0.3 0 V1 98.24 98.50 99.00
3 t 0.7 0.3 1 V2 97.99 98.00 99.00
4 t 0.6 0.4 0 V1 98.16 98.00 99.00

. . . . . . . . . . . . . . . . . . . . . . . . . . .

7 r 0.7 0.3 0 V2 99.25 98.00 100.00
. . . . . . . . . . . . . . . . . . . . . . . . . . .

Hepatitis Dataset (A5)

Rank ap mr cr ss v cA cA bA

1 r 0.7 0.3 1 V2 98.10 86.28 90.19
2 r 0.7 0.3 1 V1 99.10 84.62 88.26
3 t 0.7 0.3 0 V2 91.43 84.31 86.27
4 t 0.7 0.3 0 V1 96.67 84.31 88.23

. . . . . . . . . . . . . . . . . . . . . . . . . . .

7 r 0.6 0.4 0 V2 98.10 83.33 92.16
. . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 1: The best configurations of the classifier-evolving EAs.

it means that, indeed, little knowledge about good parameter settings is required. The

EAs are hence easy to use.

When comparing the columns cA and cA, we found that the classifiers are only

moderately overfitted except in the Heart Disease Dataset where the evolved classifiers

are almost 20% better on the training data than on the test samples. From these results,

we can deduce that the approaches are able to generalize well, even if excessive runtime

in the form of 1000 generations is provided.
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cA bA b c d e f cA bA a c d e f
a
)
R
u
le
-E

A
A1 98.04 98.04 0 0 0 0 0

b
)
U
D
T
-E

A

A1 96.08 98.04 0 0 - 0 -

A2 89.17 93.33 0 - - 0 - A2 88.33 95.00 0 - - 0 -

A3 73.39 77.42 0 0 0 - - A3 75.27 77.42 0 0 0 0 -
A4 98.00 100.00 0 - - - + A4 98.00 99.00 0 - - - +

A5 84.31 88.24 + 0 - + - A5 81.37 84.31 - 0 - + -

A6 55.56 57.78 0 + - + - A6 52.45 59.62 0 0 0 + -

A1

7
56.67 57.98 + + - + - A1

7
50.66 53.93 - 0 - - -

A2

7
54.47 56.67 - + + + - A2

7
57.80 60.71 + + + + -

A8 52.20 54.40 0 0 0 + - A8 51.82 53.52 0 0 0 + -

cA bA a b d e f cA bA a b c e f

c
)
R
a
n
d
o
m
-F
o
re
st

A1 98.99 100.00 0 0 0 0 0

d
)
J
4
8

A1 98.04 98.04 0 + 0 + 0
A2 96.67 98.33 + + + + - A2 93.33 93.33 + + - + -

A3 74.73 74.73 0 0 + 0 + A3 73.66 73.66 0 0 - - -

A4 99.00 99.00 + + 0 0 - A4 100.00 100.00 + + 0 0 +

A5 80.39 82.25 0 0 0 + - A5 86.28 86.28 + + 0 + 0

A6 52.47 54.69 - 0 - + - A6 56.42 56.42 + 0 + + -

A1

7
51.85 54.17 - 0 - - - A1

7
57.74 57.74 + + + + 0

A2

7
50.18 51.43 - - + 0 - A2

7
45.36 45.36 - - - - -

A8 52.58 56.26 0 0 0 + - A8 52.20 52.20 0 0 0 + -

cA bA a b c d f cA bA a b c d e

e
)
R
ep

T
re
e

A1 96.08 96.08 0 0 0 - -

f)
E
D
D
IE

-1
0
1

A1 97.74 100.00 0 0 0 0 +

A2 90.00 90.00 0 0 - - - A2 96.33 98.11 + + 0 + +

A3 75.80 75.80 + 0 0 + - A3 81.01 82.28 + + + + +

A4 100.00 100.00 + + 0 0 + A4 95.85 98.99 - - - - -
A5 76.47 76.47 - - - - - A5 86.67 91.11 + + + 0 +

A6 50.12 50.12 - - - - - A6 62.42 64.15 + + + + +

A1

7
52.62 52.62 - + + - - A1

7
57.78 60.43 + + + 0 +

A2

7
49.88 49.88 - - 0 + - A2

7
63.90 67.66 + + + + +

A8 50.22 50.22 - - - - - A8 56.00 57.87 + + + + +

Table 2: The approaches in comparison.

4.4.2 Comparisons of Different Approaches

Based on the highly encouraging preliminary results in Section 4.4.1, we resolved to

using a single set of configurations for our evolutionary approaches in this section.

Since steady-state populations delivered the best mean result, we applied this strategy

and the cost-based voting V1 in our rule-based EA and GP with UDTs. While the

population size of 2000 remained unchanged, both mutation and crossover rates were

fixed at mr = 0.3 and cr = 0.7 respectively. These parameter settings used in EDDIE-

101 too.

Moreover, we noticed in the previous experiment that, for most of the problems,

exhausting the full 1000 generations were not necessary. Instead, the optimization

process converged much faster to one optimum most of the time and thus could have

been terminated earlier, as we will show later in Section 4.4.4. For this reason, the

comparisons here were done based on one tenth of the generations previously used,

i.e., 100 generations. This represents the most active phase of the evolution, as can be

seen later in Figure 6.

In Table 2, we show the performances of our approaches (denoted as Rule-EA, UDT-

EA, and EDDIE-101) in comparison with the other three decision tree algorithms. The
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best values in a performance metric for a given dataset are underlined. Every algorithm

is denoted with an alphabetic character from a to f. We compared the results of each

algorithm with others using the two-tailed Mann-Whitney U test with a significance

threshold of 5%. The results of these comparisons are displayed in the five additional

columns for each approach (with headers of a to f denoting the algorithm to which

the comparison was performed). Three different symbols have been used: a 0 denotes

that there is no significant difference between the two algorithms, + means that the

algorithm has yielded significantly better results than the algorithm in the column,

and - is used when the algorithm has performed statistically worse than the algorithm

in the column.

From the table, three things are obvious:

1. EDDIE-101 is significantly superior than other approaches for most of the datasets.

2. In terms of median results, each of the evolutionary approaches has significantly

outperformed or is at least as good as the non-evolutionary approaches in at least

one dataset; both the rule-based EA and GP with UDTs, however, are not as good

as EDDIE-101.

3. Classification for financial forecasting is much harder than classification on the

standard real-world datasets, often can be done only with mediocre accuracy.

The rule-based EA, for instance, is significantly better than Random-Forest on A6 and

A7, J48 on A2
7, and RepTree on A5 to A8. In contrast, it is statistically not as good as

Random-Forest on A2 and A4, J48 on several datasets, and RepTree on A3 and A4.

The UDT-based GP has outperformed all other approaches except EDDIE-101 on A2
7,

but has not done well on A1

7, where it loses against every approach except Random-

Forest. While it has done significantly better than EDDIE-101 on A4, it loses against

Random-Forest on A2 and A4. EDDIE-101 has obtained the best median results for

all datasets except on A1, A2 and A4. A surprisingly interesting observation is that

EDDIE-101 has been outperformed by all other classifiers on A4.

These results indicate that all three evolutionary data mining approaches are indeed

useful and may lead to very good results even with small numbers of runs. In particular,

EDDIE-101 has been able to produce remarkable performances on both the standard

as well as the financial datasets. Especially in the latter, with accuracies of typically

below 55%, the conventional classification schemes are not much better than random

guessing. EDDIE-101, meanwhile, is able to maintain accuracies of more than 60% in

the majority of the test cases. This clearly shows that EDDIE-101 can be a robust

approach not only for classifying standard data, but it also possesses great potential

in forecasting classification.

4.4.3 Runtime

The runtime requirements of our evolutionary approaches are higher than those used

for comparison. 1000 generations of the rule-based EA took between half an hour and

10 hours on an off-the-shelf computer for the experiment in Section 4.4.1. The evolution

of UDT-based GP, meanwhile, needed between 1.5 hours and 6 hours. There are two

reasons for these higher time requirements:

1. EAs are population-based, iterative optimization algorithms which evaluate all can-

didate solutions in the population in each generation. With our population size of

2000 individuals, this makes 2 000 000 evaluations in total.
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2. Evaluating a classifier means applying it to each of the data samples in the train-

ing set. In the Random-Forest method, for instance, its individual classifiers are

constructed using subsets of the training data only.

For the experiment in Section 4.4.2, the rule-based EA still required up to 10 hours to

complete the reduced generation limit of 100 but GP with UDTs needed only 0.5 to 1

hour. A single run of EDDIE-101 took between 3 and 9 minutes – even if multiplied

with 10 to approximate the runtime of 1000 generations, it is still the fastest among

the three evolutionary approaches.

The high runtime requirements by these evolutionary approaches can clearly be

justified by their performances, especially in the case of EDDIE-101. Furthermore,

EAs are very suitable for parallelization, which would reduce the runtime significantly.

4.4.4 Convergence

Figure 6 illustrates the convergence behavior of the evolutionary approaches for syn-

thesizing classifiers in terms of the first objective function f1.
2 For the rule-based EA

and the UDT-based GP, the figures are based on data from the experiment presented

in Section 4.4.1. The sub-figures show that most of the progresses in terms of classifi-

cation accuracy on the training samples are always made in the first 100 generations

and the evolution usually converges after 200 generations. In the Wine Dataset A2,

the process could have been stopped after this phase without any loss in precision.

Generally, significant progresses rarely occur after 400 generations. On a side note, it is

observed that the evolution of rule-based classifiers converges faster than the synthesis

of decision trees.

5 Conclusion and Future Work

In this paper, we have presented three novel evolutionary approaches for building classi-

fiers in supervised data mining tasks. We showed that all three approaches can perform

very competitively compared to some standard decision tree algorithms on five gen-

eral benchmark and four financial forecasting datasets. Their performances have been

robust across a variety of configurations.

We have also demonstrated that even simple classifier structures can be synthesized

by EAs in a way which is no worse than the highly sophisticated algorithms such as

Random-Forest. EDDIE-101 especially stands up to be the most promising among the

three evolutionary approaches, and will be the focal point of our future research. Besides

that, the problem of runtime has not been considered in this work. In our experiments,

EAs in general took much longer to derive classifiers than the conventional algorithms.

The basic principles of evolutionary optimization require creating and evaluating many

candidate solutions. Here, the evaluation, i.e., the application of the evolved classifiers

to the training datasets, most significantly contributes to the runtime. Determining the

fitness of the solutions using only a subset of training data may be one way to speed

up the process. Another straightforward method for reducing the runtime would be to

use efficient parallelization or distribution techniques [1, 43, 66, 67]. Future work will

consider these.

2 EDDIE-101 does not use f1 as the objective function but we computed the f1-values for
it for the convergence analysis here.
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Fig. 6: Convergence of the evolutionary data mining approaches.
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6. Bäck T (1996) Evolutionary Algorithms in Theory and Practice: Evolution Strate-

gies, Evolutionary Programming, Genetic Algorithms. Oxford University Press

7. Bako L (2010) Real-time Classification of Datasets with Hardware Embedded Neu-

romorphic Neural Networks. Briefings in Bioinformatics 11(3):348–363

8. Balian R (2004) Entropy, A Protean Concept. In: Poincaré Seminar 2003,
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