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Genetic Programming
Thomas Weise, Member, IEEE, Ke Tang, Member, IEEE

Abstract—In this article, we evaluate the applicability of
Genetic Programming (GP) for the evolution of distributed
algorithms. We carry out a large-scale experimental study in
which we tackle three well-known problems from distributed
computing with six different program representations. For this
purpose, we first define a simulation environment in which
phenomena such as asynchronous computation at changing speed
and messages taking over each other, i.e., out-of-order message
delivery, occur with high probability. Second, we define extensions
and adaptations of established GP approaches (such as tree-
based and Linear Genetic Programming) in order to make
them suitable for representing distributed algorithms. Third,
we introduce novel rule-based Genetic Programming methods
designed especially with the characteristic difficulties of evolving
algorithms (such as epistasis) in mind. Based on our extensive
experimental study of these approaches, we conclude that GP
is indeed a viable method for evolving non-trivial, deterministic,
non-approximative distributed algorithms. Furthermore, one of
the two rule-based approaches is shown to exhibit superior
performance in most of the tasks and thus can be considered
as an interesting idea also for other problem domains.

Index Terms—Genetic Programming, SGP, LGP, Rule-based
Genetic Programming, Fraglets, Distributed Algorithms, Elec-
tion, Critical Section, Mutual Exclusion, GCD
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I. INTRODUCTION

C
OMPUTER networks are one of the most vital com-

ponents in today’s economy and society on the whole.

Virtually every computer is either already part of a distributed

system or may become one in future [2]. While many internet

technologies, protocols, and applications grew into maturity

and have widely been researched, new forms of networks and

distributed computing have emerged during the recent years.

Amongst them, we can find large-scale wireless networks,

mobile ad hoc networks (MANETS) [3], sensor networks [4],

wireless sensor networks [5], Smart Home environments [6],

Ubiquitous Computing [7], and experimental ideas like Amor-

phous Computing [8].

The devices interacting in such networks often have scarce

resources, such as little memory, low processing power, and
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a limited battery capacity. Additionally to these restrictions,

new requirements such as self-adaptation and self-organization

arise. A software architect designing a sensor network, for

instance, must not only be concerned with functional aspects

like data aggregation [9] associated with the purpose of

the system, but also consider non-functional criteria such

as energy consumption throughout the complete software

engineering process. This results in the development of new

algorithms for traditional problems such as election [10–12],

often with changed requirements, priorities, and framework

conditions.

A. Motivation

The design of a program for a distributed system is the

transformation of an expected behavior of a network as a

whole to a program which must be executed on each of its

nodes in order to achieve this behavior. In other words, a

(known) globally beneficial target configuration is translated

into local rules. Investigating new methods for this purpose

and evaluating their utility can be considered as a good idea

in the current time.

In this context, many researchers are drawing inspiration

from biological systems in order to face the new challenges

of the emerging network technologies [13]. Natural swarming

behaviors [14], for example, have been adapted as a paradigm

for manually designing routing algorithms [15].

At second glance, we find that the ability of organisms

to form swarms is the result of evolution. Over millions of

years, this process transformed a beneficial global system

configuration to local behavior rules. This way, many efficient

natural distributed systems were created along with all local

interaction patterns needed to maintain them.

Existing natural systems often have desirable features such

as resilience and scalability. Facets of these systems are thus

often emulated in order to equip distributed systems with

similar features, as is the case in Swarm Intelligence-based

routing. By imitating the process which created these facets

instead, we consider a more basic approach in this article:

the evolution of complete distributed algorithms with Genetic

Programming.

B. Evolving Distributed Algorithms

Evolutionary Algorithms (EAs) [16–18] are metaheuristics

which are inspired by natural evolution in order to solve

complex problems. With the foundations laid in the 50s of

the past century [19], they have successfully been applied

to an incredibly wide range of problem domains. The set
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Fig. 1. Evolving distributed algorithms with Genetic Programming [22].

of Evolutionary Algorithms for deriving programs is called

Genetic Programming (GP) [18, 20, 21]. In this article, we

outline our results on utilizing GP in order to automate the

transformation from global to local behavior of distributed

systems, i. e., the design of distributed algorithms [22]. We

specifically describe the synthesis of algorithms for systems

with asynchronous computation and heterogeneous processing

speeds of the nodes and aim for non-approximative, discrete

computations.

Fig. 1 illustrates this new design process. It starts with a

specification of the desired (global) system behavior. Objective

functions, i. e., optimization criteria, which rate “how close”

the behavior of an evolved program comes to the target be-

havior are derived manually from the specification. They fuel

the Genetic Programming process which begins with an initial

population consisting of randomly created programs. These

programs are refined iteratively. In every iteration (generation),

each program is executed on all nodes of a simulated dis-

tributed system. The objective functions access the simulations

and evaluate the observed behaviors. Their results are then the

basis of a subsequent selection step during which only best

candidate programs are preserved. These programs become

subject to the reproduction operations (mutation and crossover)

and with their offspring, the cycle starts again. Step by step,

distributed algorithms emerge which fulfill the initial behavior

specification. Finally, the software engineer receives the set of

candidate solutions which satisfy the objective functions best.

C. Contribution

With this article, we make the following contributions to

the area of applying Genetic Programming to distributed

computing.

1) By thoroughly evaluating the approach proposed in

the previous section and based on our preliminary

work [23–26], we answer the question whether Genetic

Programming is an appropriate method for synthesizing

distributed algorithms positively.

2) We define a model for distributed systems in which phe-

nomena such as parallelism, messages which take over

each other, and asynchrony occur with high probability.

We implement this model in a high-speed simulation

environment suitable for Genetic Programming and use

this environment to

3) extend our previous work [23] with a large-scale exper-

imental study by tackling three well-known problems

from distributed systems with multi-objective Genetic

Programming using six different program representa-

tions. Our work is the first application of GP to two of

the three problems (the distributed GCD and the critical

section problem). Also, as far as we know, no study

has yet been performed which involves multiple differ-

ent program representations for synthesizing distributed

algorithms by other researchers. As we will show in

Section II, only very little work has been contributed to

this area by the evolutionary computation community in

general. This holds especially for close-to-reality scenar-

ios with, for instance, realistic parallelism and message

latency assumptions, as used in our experiments.

4) Two of the test program representations combine a rule-

based syntax with an implicit form of “transactional”

memory. They have been developed by us especially

with the characteristic difficulties of the problem area

in mind [24]. We show that one of them, the Extended

Rule-based Genetic Programming method, exhibits su-

perior performance in comparison with the other ap-

proaches which makes it interesting for other application

areas as well.

5) We furthermore define extensions to three of the other

representations (two standard GP and one linear GP ap-

proach) which make them useful for evolving distributed

algorithms, such as two forms of memory and a support

for concurrency.

The remainder of this article is structured as follows. First,

we provide a discussion of work related to our approach

in Section II. In Section III, a clear definition of both, the

model of the distributed systems we wish to evolve programs

for and the simulations in which we test them is given.

The idea of synthesizing distributed algorithms with GP is

very intriguing. Yet, there is a set of features which make

actual success in this class of optimization problems less

likely. We investigate these features in Section IV, where

we also propose countermeasures against them. Our novel

program representations, developed especially with respect to

this difficulty analysis, are introduced in Section V. Generally,

programs can be defined in a variety of different ways and

in Section VI, we also introduce adaptations of four other,

well-known concepts to our problem domain. In this section

we describe the results of three large-scale experiment series:

evolving leader election algorithms (Section VI-C), distributed

mutual exclusion methods (Section VI-D), and algorithms for

computing the greatest common divisor of a set of numbers

(Section VI-E). We draw conclusions from the gathered expe-

riences, summarize our findings, and give pointers for future

work in Section VII.

II. RELATED WORK

Many aspects of distributed systems are configurable or de-

pend on parameter settings, such as the topology, security,

and routing. Using metaheuristic optimization algorithms for

this purpose has huge potential.
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A. Metaheuristics for Distributed Computing

And indeed, this potential is widely utilized. The study by

Sinclair [27] from 1999 reported that more than 120 papers

had been published on work which employed Evolutionary

Computation for routing, optimizing network topologies, di-

mensioning, node placement, and other system design deci-

sions. The comprehensive master’s thesis by Kampstra [28]

from 2005 builds on this study, classifies over 400 papers,

and identifies the area as the most active research field in

Evolutionary Computation at that time. In the year 2000

alone, two books ([29] and [30]) have been published on the

topic of evolutionary telecommunications and further summary

papers appeared [31, 32]. The recent studies [33–36] as well

as the special journal issue [37] and the high number of

papers published every year show that the interest in applying

metaheuristic optimization techniques in this problem domain

has by no means decreased.

Most of the research on the application of optimization

methods to distributed systems focuses on routing (with, for

instance, Ant Colony Optimization [15] or Genetic Algorithms

(GAs) [38] or offline GP [39]), network design problems (with

GAs [40, 41], GP [42], Estimation of Distribution Algorithms

(EDAs) [43], or Tabu Search [44], for example), security issues

(e.g., with linear GP [45]), or system configuration [46] (using,

for instance, Hill Climbing and Simulated Annealing [46],

EAs [47], or GP [48]).

An especially interesting application in this field is the

optimal configuration of software parameters of protocols.

Here, the work by Tate et al. [47] on the sensor network tuning

problem may serve as a notable example: The parameters of a

TTL-bounded gossiping protocol are optimized with respect to

five criteria concerning performance, reliability, and efficiency.

Tate et al. [47] carried out experiments with both, traditional

design of experiment (DoE) methods and an EA to solve this

multi-objective problem. They showed that both methods have

specific merits and that EAs can outperform DoE in some

quality objectives while losing in others.

Regardless of the success in the area of algorithm parameter

adaptation, only few researchers have considered the synthesis

of distributed algorithms and even less work has been con-

tributed to this domain under close-to-reality conditions such

as asynchronous communication and asynchronous process

execution on the nodes of the distributed systems.

B. Evolving Protocols and Algorithms

The transition between distributed algorithms and protocols

is seamless. Both require information exchange following

specific patterns, but algorithms additionally involve some

computation on the nodes of the networks.

In [49], Yamaguchi et al. define the problem of transforming

a service specification given as a Petri Net with registers

to a protocol specification in the same format. The service

specification is structured like a program for a centralized

system and hence, does not detail any message exchange [50].

The protocol specification defines how the different entities

involved in the computation communicate with each other.

El-Fakihy et al. [50] show how to synthesize such protocol

specifications with 0-1 integer linear programming and a

hybrid Genetic Algorithm under the objective of minimizing

communication costs.

An especially interesting approach to protocol synthesis

has been contributed by de Araújo et al. [51]. The starting

point of their process is a finite state machine describing the

interaction of a sender and a receiver – again as it would

happen on a local system. Transitions between the states of

the FSM are triggered by output and input events to and from

both user processes. This specification is then transformed

with a Genetic Algorithm to FSMs describing the protocol

interactions locally for the sender or receiver.

El-Fakihy et al. [50] and de Araújo et al. [51] hence describe

methods to automate the design of data and protocol flows.

Their starting point is a localized view on the system behavior

which is then completed to a global specification with the syn-

thesized interactions between system entities. Our goal, on the

other hand, is to translate given global behaviors to local rules.

Furthermore, we do not solely wish to find communication

sequences and message structures, but complete algorithms

for distributed computations (which subsume both).

During the advent of distributed multi-agent systems in the

mid to late 1990s, various researchers considered the automatic

generation of communication patterns [52–54]. Most of them

used Genetic Programming approaches to evolve coopera-

tion based on information exchange but only concerned syn-

chronous systems or control tasks. A popular example is the

pursuit scenario [53], where two or more predator agents have

to exchange information about their prey and use this infor-

mation efficiently in order to capture it. Communication in the

agent-centric related works is usually instantaneous [52, 53]

and the simulations are synchronous [52, 53]. Our goal is

to evolve algorithms for asynchronous systems, which poses

different requirements onto the program representation (see

Section VI-A5). Furthermore, the tasks in this kind of related

work are rather fuzzy – agent movements which roughly go

into the right direction for most of the time e.g., will lead to

success in predator/prey scenarios. In our work, we investigate

whether it is possible to evolve algorithms like computing

the distributed greatest common divisor which do not permit

approximate results or wrong intermediate results.

Tschudin [55] contributed a new way for representing

protocols in 2003: Fraglets. We considered the Fraglets repre-

sentation as one approach for evolving distributed algorithms

in our experiments too and therefore, discuss it in more detail

in Section VI-A4. One aspect of the structure of Fraglets

is that the language is simple and all constructs are always

syntactically correct. Tschudin [55] therefore anticipated that

it would be suitable for evolving protocols. In his initial

experiments where he aimed to create a confirmed message

delivery protocol, no satisfying results could be reported.

As reason for these problems, he identified the needle-in-a-

haystack (NIAH) nature of the evolution of algorithms which

is also one of the problems discussed in our analysis (see

Section IV-C).

Tschudin’s research group then shifted its focus from the

offline evolution of protocols (which is the subject of this

article) to their online adaption in running systems. Yamamoto
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and Tschudin [56, 57] create populations containing a mix

of different confirmed delivery and reliable delivery protocols

for messages. These populations were then confronted with

either reliable or unreliable transmission channels and were

able to adapt to these conditions quickly. Re-adaptation in a

later stage, however, proved again to be harder.

The experiments on protocol evolution and adaptation by

Tschudin alone and in cooperation with Yamamoto both focus

mainly on protocols, on the way information is delivered from

one node to another in a distributed system. They do not

involve additional computations on the nodes.

Artificial life approaches have been applied to the evolu-

tion of communication patterns as well. First results in this

area have been reported by Werner and Dyer [58] in the

early 1990s. Amongst the ALife methods, the recent Digital

Evolution approach by McKinley et al. [59–61] based on

the Avida platform [62] deserves most attention here. In our

algorithm synthesis approach, Genetic Programming evolves a

population of programs, each evaluated in separate simulations

and well-known reproduction operators are used to explore the

search space. In Avida, on the other hand, programs are self-

reproducing organisms which co-exists in the same (simulated)

distributed system. Apart from these conceptual differences,

both concepts also exhibit an interesting duality. The first

experiments with them were on distributed leader election [26,

63] and were conducted independently at around the same

time. Again independently and simultaneously, different forms

of interaction with Model-Driven Development environments

and UML model generating facilities were developed [25, 60].

A general weakness common to all the related work listed

in this section is the lack of comparisons with different

Genetic Programming techniques. In the Digital Evolution, for

instance, the instruction set and virtual CPUs of the programs

may change, the linear Genetic Programming-like structure of

the programs, however, remains the same. The research papers

mentioned above rarely raise the question whether there may

exist different forms of program representations exhibiting

more favorable traits. In the case that a new representation has

been developed, the direct comparison with other methods is

usually omitted. Furthermore, experiments tend to be limited

to simple tasks such as leader election.

While the first problem results from the architectural chal-

lenge and the high effort that cross-representation comparisons

require, the second one is the result of the hardness of Genetic

Programming of distributed algorithms. Indeed, the problem

difficulty rises quickly with the complexity of the global be-

havior to be created, which leads to unsatisfying experimental

results – both issues have been mentioned by Tschudin [55]

and experienced by the authors themselves [22]. Nevertheless,

in this article we provide a comparison of six different program

representations [22] applied to three different problems. We

furthermore propose one possible answer to the question for

better program representations and deliver evidence clearly

supporting this claim.

III. DISTRIBUTED SYSTEMS MODEL

As pointed out in the introduction, there exists a wide variety

of distributed systems, each having their own special features

Fig. 2. A timing diagram annotated with the states of the nodes/processes.

and peculiarities. In this section, we want to detail the class

of distributed systems for which we want to synthesize algo-

rithms.

A distributed system is a set of autonomous systems

(nodes) which are connected by a network and communicate

via the exchange of messages [2, 64–66]. Distributed algo-

rithms [66, 67] are algorithms which are executed by multiple

computers in a distributed system and cooperatively try to

solve a given problem. There usually exists no shared global

state information and each node has only knowledge about

the information locally available on it. Information from other

nodes can only be obtained by communication via message

exchange. Our goal is to evolve algorithms which can become

part of the software controlling all the nodes of a distributed

system, modules which are suitable for specific task.

A. Algorithm Class

Most of the algorithms we want to synthesize are non-

approximative. In other words, they compute distinct results

which are, in our case, integer-valued. In Section VI-E, for

instance, we discuss the evolution of the algorithms for com-

puting the greatest common divisor of n numbers. A result of

such a computation is either right or wrong, and even if it is

only 1% off, it is still wrong. Such algorithms differ greatly

from aggregation protocols [9, 68], for example, where real

approximations of actual values are computed.

B. State Model

One of the key points of our work is that we consider the evo-

lution of distributed algorithms for asynchronous systems [65].

By doing so, the results can clearly be distinguished from,

for instance, the works presented in [52], and also reflect the

applicability of Genetic Programming to distributed systems

in real-world scenarios.

In Fig. 2, we sketch an example of how a distributed al-

gorithm could proceed using a notation similar to Tanenbaum

and van Steen’s in [2]. A node (and the process running on

it) according our network model is always in one of the three

states illustrated in Fig. 31:

1) A node is active if it is currently executing instructions

of the distributed algorithm. An active node may send

or receive messages.

2) A node is passive when it is currently not executing any

instruction but waiting for incoming messages. It cannot

1In [22], we additionally consider explicit termination.
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Fig. 3. The state diagram of the nodes in our simulations (simplified
from [22]).

Fig. 4. Asynchronous parallelism in a model of a network of five nodes.

send messages in this state but may become active again

and perform some computations when receiving one.

3) A node is erroneous if it has performed an erroneous

or forbidden action.

C. Parallelism Model

One feature of the systems we consider is that their nodes

proceed asynchronously. This means that the local progresses

of the processes running on them may differ greatly and that

the processors on the nodes may run at different speeds.

For evaluating the evolved programs, we use a network

simulation in which time proceeds in discrete steps. In each

time step, one active node is picked randomly according to

the uniform distribution to perform one execution step. On

average over infinite time, all nodes will perform the same

amount of algorithm steps. For a given time period however,

it is possible that one node can execute five steps while another

one just proceeds by two, for example, as sketched in Fig. 4.

The network simulations run for a fixed number of time

steps and are terminated thereafter. Partly because of this

runtime limitation, in two of the performed experiments,

programs evolved that iteratively approximate and refine the

computation results. They store their best-guess of the result

in a certain memory cell and update it during their run.

D. Network Model

A message in our system is a fixed-length sequence of integers

(except for the Frag program representation discussed in Sec-

tion VI-A4 where it corresponds to a Fraglet). For each node

n in a network N, the neighbor set neighbors(n) ⊆ N\n is the

set of all other nodes to which n can send messages. Whenever

a node n transmits a message, it is treated as a multicast to

all the nodes in neighbors(n). This scenario basically holds

for many wireless and wired distributed systems alike. Like

in many real systems, unicasts could be emulated by message

filtering methods and it lies in the responsibility of Genetic

Programming to evolve such behavior if needed.

In our simulations, we also consider transmission latencies

since we aim for asynchronous systems. We simulate this

by splitting each single message into |neighbors(n)| identical

transmissions, each targeting exactly one node and having its

own latency. In the experimental settings of each of the three

analyzed problems, we will choose a different topology for

investigation.

The communication latency in a real network depends on

many factors [65, 69] and it is hard to estimate it correctly with

any probability distribution. We therefore decided to randomly

pick message delays according to the uniform distribution.

With this distribution, the probability of phenomena such as

messages taking over each other is very high. Thus, sim-

ulations based on this model are more challenging for the

algorithms being evaluated and the chances of discovering

errors or deficiencies is the highest.

Although our system can simulate packet loss, in the

experiments presented here we assumed a reliable commu-

nication medium. Yet, long message delays are possible in

the simulation and such delays come, to a certain degree,

close to the loss of a message. Interestingly, many of the

synthesized algorithms turned out to be invulnerable to the

loss of certain messages, see, for instance, the evolved mutual

exclusion algorithms presented in Section VI-D3.

In the simulations, there is a limit to the maximum number

of messages a node can send in order to prevent memory

overflows in the simulator. It is usually set to values in

O
(
n2.5

)
or O

(
n3

)
where n is the number of nodes in the

network. If a node exceeds this limit, it is terminated as

erroneous.

IV. DIFFICULTIES IN EVOLVING ALGORITHMS

As outlined in our related work study given in Sec-

tion II-B, there apparently are only few contributions to the

area of evolving distributed algorithms which perform non-

approximative computations in asynchronous systems. The

reason for this absence of research is that the associated

optimization problems are very difficult [55]. Hard enough

that the optimization process may degenerate to a random

walk if no measures are taken. For this difficulty, there are

several reasons [22, 70, 71] which we will shortly outline in

this section.

A. Ruggedness and Weak Causality

Optimization algorithms generally depend on some form of

gradient in the objective space. The objective functions should

be continuous and exhibit low total variation. If they are

unsteady or fluctuating, i. e., rugged, optimization becomes

more complicated.

Strong causality means that small changes in the properties

of an object also lead to small changes in its behavior [72]. In

fitness landscapes with weak causality, small modifications of

the individuals instead lead to large changes in the objective

values and make the fitness landscape rugged.
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Fig. 5. Example for weak causality in Genetic Programming.

Exactly this is the case in algorithm synthesis problems. In

Fig. 5, we sketch a program for computing the factorial p = a!
of a natural number a ∈ N1 in Java or C notation on the left

hand side. Such a program could have evolved with Genetic

Programming in a tree or a linear representation. Assume that

the program illustrated on top of the right hand side, where the

- in line 6 is replaced by a +, was the result of the application

of a search operation to the left program. This modification

then clearly constitutes a violation of causality, since its result

is a program behaving very differently and hence, induces a

jump in the objective functions. Notice that such phenomena

are especially intense in the problem class we envisaged in

Section III-A.

B. Epistasis

This lack of causality is rooted in the high epistasis inherent

to most of the program representations applied in Genetic

Programming. In biology, epistasis is defined as a form

of interaction between different genes [73]. In optimization,

epistasis is the dependency of the contribution of one gene

(an instruction of a program in our case) to the value of the

objective functions on the allelic state of other genes [18].

In a conventional computer program, not only the presence

of an instruction and its semantics are important, but also its

position. Strong positional epistasis exists in both, linear and

tree-based forms of Genetic Programming which have been

designed with conventional program structures in mind [24].

This issue is illustrated at the bottom right of Fig. 5.

Let us consider a program P as a function P : I 7→ O
that connects the possible inputs I of a system to its possible

outputs O [24]. Two programs P1 and P2 can be considered as

equivalent if P1(i) = P2(i) ∀i ∈ I . For the sake of simplicity,

we further define a program as a sequence of n statements

P = (s1, s2, . . . , sn). There are n! possible permutations of

these statements. We define ξ(P ) as the fraction ξ(P ) = v
n!

of v permutations that lead to programs equivalent to P . If we

assume that recombination operators often effectively permu-

tate instructions, the probability of creating highly-fit offspring

from highly-fit parents in program representations where ξ is

usually low will be low too. Thus, exhibiting high values of

ξ for many programs, i. e., having low positional epistasis, is

a beneficial feature of a program representation [24].

Avoiding epistatic effects should be a major concern of the

design of program representations [24] which, unfortunately,

has been neglected in the past. Besides the rule-based ap-

proaches presented in this paper, the authors have knowledge

of only two other methods which reduce epistasis in GP on

representation/execution model-level:

1) Algorithmic Chemistries: Lasarczyk and Banzhaf [74–

76] developed a Genetic Programming approach called Al-

gorithmic Chemistry where positional epistasis is circum-

vented. It basically is a variant of linear Genetic Programming

(see Section VI-A3 on page 9) where the execution order of

the single instructions is defined by some random distribution

instead of being fixed as in normal programs. Of course, if

the instructions of a program are always executed in a random

order, there can be no positional dependencies between them

(ξ → 1) and they can freely be permutated. The drawback of

this approach is that the programs are no longer deterministic

and their behavior and results may vary between two consec-

utive executions. Therefore, this method does not lend itself

to the evolution of deterministic distributed algorithms.

2) Soft Assignment: Another approach for reducing the

epistasis is the soft assignment method (memory with mem-

ory) by McPhee and Poli [77]. It implicitly targets epistasis

by weakening the way values are assigned to variables. In

traditional programs, instructions like x=y or mov x, y will

completely overwrite the value of x with the value of y.

McPhee and Poli replace this strict assignment semantic with

xt+1 = yt ≡ xt+1 ←− γyt + (1 − γ)xt where xt+1

is the value that the variable x will have after and xt its

value before the assignment. yt is the value of an arbitrary

expression which is to be stored in x. The parameter γ is “a

constant that indicates the assignment hardness” [77].

For mathematical or approximation problems, this approach

is very beneficial. The drawback of programs using soft

assignment is that, although they are deterministic, they are

approximative and cannot compute precise values as required

in some discrete problems. One example for such a problem

where soft assignments cannot be applied is the Greatest

Common Divisor experiment discussed in Section VI-E.

Besides the new rule-based approaches, we furthermore

strengthen the causality in linear program representations

(LGP, Frag) by applying homologous crossover [78].

C. Correctness

The epistasis-induced ruggedness in the fitness landscape of

Genetic Programming of non-approximative, deterministic,

distributed algorithms makes it hard to find good candidate

solutions. Another problem is the definition of good itself.

Determining the correctness of programs in Turing-

complete representations will never be generally possible [79,
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80], although model checking approaches such as SPIN [81,

82] with which asynchronous distributed algorithms can be

processed [83] made large progress in the recent years.

Instead, the only general way to determine a program’s

behavior is by simulating it. In our case, this means executing

the program in a simulated network. Here, a training case is

characterized by the values of all parameters of the network,

including the number of nodes, the network topology, the

message latencies, and the assignments of execution steps to

the nodes. It is easy to see that exhaustive testing of all possible

training cases is not possible. Hence, the program behavior is

approximated instead of determined.

Therefore, we use the notion of functional adequacy as

defined by Gleizes et al. [84] instead of correctness in our

work: When a system has the “right behavior – judged by

an external observer knowing the environment – we say that

it is functionally adequate.” In our GP system, the objective

functions act as external observers.

It should be noticed that an objective function solely rating

the correctness of a program for a given problem – maybe

returning 0 for wrong and 1 for correct – would be of low

utility in any metaheuristic optimization process anyway. It

would lead to a needle-in-a-haystack problem, also known

as the all-or-nothing-feature of Genetic Programming [55],

since it provides no gradient information at all and the

performance of the optimizer degenerates to the one of a

random walk. What is needed instead is a formulation which

allows rewarding also “partial adequacy” which can be done

by evaluating simulations. For our experiments, we define

objective functions with exactly this feature in Section VI-C1,

Section VI-D1, and Section VI-E1.

D. Overfitting

When evolving algorithms by using training cases for the

fitness evaluation, there is a high chance of overfitting [85].

Programs may emerge which have learned the right response

to each scenario instead of being general solutions. Such

programs are not correct and only behave adequately for

exactly the scenarios used for training but will fail in scenarios

with even only slightly changed parameters.

We apply two measures against the problem of overfitting:

First, we introduce a non-functional objective function putting

pressure into the direction of smaller programs. Since overfit-

ted programs often resemble large decision tables, this reduces

the probability of producing them. At the same time, this

measure also reduces bloat (uncontrolled growth in program

size) and introns (program parts which do not contribute to

the functional fitness) [20, 86]. Second, we generate multi-

ple, randomized training cases which are replaced after each

generation of the EA and set the final objective value of a

program to be the arithmetic mean of its scores achieved in

the scenarios. It should be noted that using multiple training

cases leads to more stable objective values and reduces the

probability of outliers, but has to be paid for with an increase

in runtime [47].

V. RULE-BASED REPRESENTATIONS

In Section IV-B we have argued that epistasis is one of the key

problems in Genetic Programming. There exists one class of

Evolutionary Algorithms that elegantly circumvents positional

epistasis: the (Learning) Classifier Systems (LCS) family [87].

In the Pittsburgh LCS approach [88], a population of rule sets

is evolved with a Genetic Algorithm. Each individual in this

population consists of multiple classifiers (the rules) which

transform input signals into output signals. The evaluation

order of the rules in such a classifier system plays no role

except maybe for rules concerning the same output bits,

hence ξ ≈ 1. The idea behind our new GP approaches

described in the following text is to use this knowledge to

create a new program representation that retains high ξ-values

in order to become more robust in terms of reproduction

operations [22, 24].

A. Rule-based Genetic Programming [RBGP]

The first step into this direction is the Rule-based Genetic

Programming (RBGP) method introduced in its original form

in [24]. A RBGP program consists of arbitrary many rules, each

divided into two conditions and an action which is executed

if the conditional part evaluates to true. The conditions each

compare the values of two symbols and are concatenated with

either the ∨ or ∧ operator. In RBGP, each symbol identifies

an integer variable, which is either read-only (r/o) or read-

write (r/w). Some r/o symbols are defined for constants such

as 0 and 1. The r/w symbol start is only 1 during the first

application of the rules and reset to 0 afterwards (it can,

however, be set by the program itself). Furthermore, a program

can be provided with some general-purpose variables (a, b . . . ).

Symbols with special meanings are introduced for evolving

distributed algorithms: input symbols in1, in2, . . . where the

contents of incoming messages will occur and variables out1,

out2, . . . which are mapped to the integer fields of an outgoing

message on transmission are added. A message is sent with a

special send action and a special symbol incomingMessage is

automatically set to 1 whenever a message arrives.

1) Execution of RBGP Programs: The value of symbols

can either change because of data incoming from the outside

when messages are received or by the actions of the program

itself. In RBGP, actions do not directly modify the values of the

symbols but rather write their results to a temporary storage.

After all rules have been processed, the temporary storage is

committed to the actual memory as sketched in Fig. 6. The

symbols in the condition part and in the computation parts of

the actions are annotated with the index t and those in the

assignment part of the actions are marked with t+ 1 in order

to illustrate this issue.

2) Levels of Independence: This approach generates two

levels of independence which are not available in normal

program representations. First, it allows for great amount

of disarray in the rules since the only possible positional

dependencies left are those of rules which write to the same

symbols. All other rules can be freely permutated without

any influence on the behavior of the program. Therefore, the

positional epistasis in RBGP is very low and ξ ≈ 1.

Second, the cardinality of the rules plays no role either. The

evolutionary process may, for instance, duplicate one rule in a
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Fig. 6. A program computing the factorial of a natural number in Java, C,
or C# and RBGP syntax.

Fig. 7. An example for the encoding in RBGP similar to the one used in
the critical section experiments in Section VI-D.

reproduction step without direct influence on the functional

fitness. Subsequent mutations may then specialize the two

rules and lead to the evolution of new functionality. In biology,

similar processes are assumed to significantly contribute to

evolution [89, 90]. RBGP is thus one possible answer to Hu

and Banzhaf’s [91] question for transposing this biological

mechanism to GP.

3) Binary Encoding: The sets of symbols and actions

are specified before the Genetic Programming process starts.

Based on the fixed structure, a straightforward binary encoding

is constructed as sketched in Fig. 7 and the programs can be

evolved with a normal GA [24].

B. Extended Rule-based Genetic Programming [eRBGP]

Rule-based Genetic Programming is designed with the goal to

lower epistasis and hence, to increase the causality which in

turn should lead to a reduction of the ruggedness in the fitness

landscape. If this could be achieved, the Genetic Programming

1 (startt> 0) ∧ true ⇒ at+1 = 0

2 (startt> 0) ∧ true ⇒ bt+1 = 0

3 (at < lt)∧ ([at]t < [bt]t)⇒[at]t+1 = [bt]t
4 (at < lt)∧ ([at]t < [bt]t)⇒[bt]t+1 = [at]t
5 (bt≥ at)∧ (at < lt) ⇒ at+1 =at +1

6 (bt < at)∧ true ⇒ bt+1 =bt +1

7 (bt≥ at)∧ (at < lt) ⇒ bt+1 = 0

Listing 1. A simple selection sort algorithm written in the eRBGP language.

if( (a<b) && (c>d) && (a<d) ) {

a += c;

c--; }

Listing 2. A complex conditional statement in a C-like language.

processes would likely result in better solutions. However,

RBGP is still limited in two aspects: power and expressiveness.

1) Power: The original RBGP method is not Turing-

complete. Teller [92] and Woodward [93] both argued that

this feature is present in program representations with indexed

memory. Hence, we introduced such an extension to RBGP in

order to test whether Turing completeness is helpful for the

evolution of distributed algorithms also in situations where it

is not strictly required. We define the notation [at]t which

stands for the value of the atth symbol at time step t in the

ordered list of all symbols. In this, it is equivalent to a simple

pointer dereferentiation (*a) in the C programming language.

With this extension alone, it now becomes possible to

use the RBGP language for defining list sorting algo-

rithms, for instance. Assume that the following symbols

(i0, i1, .., in−1, l, a, b) have been defined and arranged in that

order (starting with i0 at index 0) in memory. The symbols

i0 to in−1 constitute the field which is used to store the

list elements and l is initialized with the length of the list.

Listing 1 then represents a variant of selection sort.

2) Expressiveness: Another restriction of the initial RBGP

approach is that its rules always consist of exactly two

conditions. Since logical operators and variables for storing

values are available, arbitrarily complex conditions can be

expressed. This expressiveness is, however, achieved by allo-

cating variables for temporary evaluation results and additional

rules. It comes with the trade-off of rising epistasis and

decreasing causality, hence jeopardizing the purpose of Rule-

based Genetic Programming, the reduction of epistasis.

If the statement in Listing 2 was translated to RBGP syntax,

we would need four rules and an additional variable et. The

result presented in Listing 3 clearly shows the increase in

complexity. We therefore extend the expressiveness in eRBGP

by dropping the constraints on the structure of the rules and

allow the formulation of arbitrarily complex expressions [22].

Thus, the eRBGP version of Listing 3 (given in Listing 4)

1 true ∧ true ⇒ et+1 = 0

2 (at <bt)∧ (ct > dt)⇒ et+1 = 1

3 (at <dt)∧ (et = 1) ⇒ at+1 =at + ct
4 (at <dt)∧ (et = 1) ⇒ ct+1 =ct− 1

Listing 3. The RBGP version of Listing 2.
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1 ((at < bt) ∧ ((ct > dt) ∧ (at < dt))) ⇒at+1 = (at + ct)

2 ((at < bt) ∧ ((ct > dt) ∧ (at < dt))) ⇒ct+1 = (ct − 1)

Listing 4. The eRBGP version of Listing 3.

becomes much simpler.

Because of this increase in expressiveness, the eRBGP

programs cannot be encoded in fixed-length binary strings

anymore and we use tree genomes instead.

VI. EXPERIMENTS

We applied a set of six Genetic Programming methods to three

problems from distributed computing in order to obtain a good

understanding of their utility in this domain. Additionally to

our two new rule-based approaches, we test tree-based Stan-

dard Genetic Programming, linear Genetic Programming, and

Fraglets, a programming paradigm inspired by bio-chemical

metabolisms. The three problems to which we will apply

these approaches are the evolution of election algorithms, of

mutual exclusion algorithms, and of algorithms for computing

the greatest common divisor. The problems have characteristic

properties and differ in hardness, the number and structure of

objective functions, and network topologies. In this section,

we will first describe the additional program representations

and then discuss our experiments in depth.

A. Program Representations for Comparison

Besides the two rule-based methods, we tested four other

program representations in order to cover a wide range of

different GP approaches in our experiments. These additional

approaches are based on well-known representations and con-

tributions from related work. Like in the rule-based programs,

data (such as the content of memory cells) is always in

32bit signed integer format in them and similar to the C

programming language, Boolean expressions are also integer-

valued, i. e., false if 0 and true otherwise.

1) Standard Genetic Programming with Memory [SGP]:

The baseline approach for Genetic Programming is to use a

standard, tree-based genome. Koza [21] defined such genomes

back in 1992. In our experiments, we use the tree representa-

tion with some modifications in order to facilitate the require-

ments of cooperative computations based on asynchronous

network communication:

Each program consists of at least two automatically de-

fined functions (ADFs, [21]). The first one is called on the

startup of the program. The second function is invoked as an

asynchronous function call whenever a message is received by

the node, similar to an interrupt service routine (ISR) in the

Intel 80x86 R© architecture [94, 95].

Each node has a global (process-scope) memory that re-

sembles the data segment of a program which is accessible

by from all function scopes. It allows the message handler,

for instance, to store permanent information. Additionally,

there is local memory private to the scope of each function

call. This is essential to allow message handlers which were

asynchronously invoked to process data without interfering

with other procedures or each other [22].

All parameters of a function (such as the incoming message

in case of the second ADF) are stored in its local memory. The

instruction send which causes a message transmission to all

nodes in reach has between one and two parameters which

denote the contents of the message to be sent. Besides normal

arithmetic expressions, the SGP language allows the definition

of alternatives and while loops which take an expression and

two (respectively one) blocks of instructions as parameters.

2) Extended SGP [eSGP]: Like RBGP, the SGP approach

is not Turing-complete. We therefore introduce an extension

similar to the one in Section V-B1. Here we also test another

concept, an additional layer of indirection transparent to the

GP system. With the special instruction decl, memory loca-

tions can be marked “for use”. Instead of accessing memory

directly, programs now use virtual addresses which are indices

into a translation table. This way, they are resolved to real

addresses which are either direct or indirect.

An additional construct in the eSGP language is a for loop

which takes a minimum and a maximum value of the loop

counter as well as a block of instructions as parameter. The

counter variable is automatically declared by the loop.

3) Linear Genetic Programming [LGP]: Trees are not

the only way for representing programs. Indeed, a computer

processes programs as sequences of instructions (which may

contain branches realized by jumps to other places in the

code) instead. The area of Genetic Programming concerned

with such instruction string genomes is called linear Genetic

Programming or LGP for short [96–98].

The advantage of LGP lies in the straightforwardness of

evaluation and the simplicity of limiting the runtime and

simulating parallelism since one instruction can be assigned

to each time step which are distributed as shown in Fig. 4. We

therefore chose such a format with extensions for supporting

ADFs and the memory features of eSGP (but without the

declaration feature and indirection) as the third approach for

comparison. An LGP program is a variable-length list of

integer strings – each list standing for one function.

The nodes executing these programs are three-address ma-

chines, i. e., machines where arithmetic instructions have up

to three parameters: the target address and the addresses of

two operands. In this, our LGP language is very similar to the

one used by Lasarczyk and Banzhaf [74] in the Algorithmic

Chemistries approach discussed in Section IV-B1. Conditional

jumps (jmp) and function calls (call) use an internal flag

register filled by a comparison instruction cmp with exactly

the same semantics as in the Intel architecture [95]. For

sending messages, a buffer similar to a stack is provided whose

contents can be multicasted with a send instruction.

Because of the mentioned positive aspects, executing a LGP

program in a simulation is much easier than doing the same

with a SGP or eSGP program. We therefore automatically

compiled all SGP and eSGP programs to the LGP representa-

tion before executing them in our network simulations. Since

SGP and eSGP programs are practically incomprehensible2,

this has the second advantage that the LGP phenotypes have

2due to the levels of memory indirection and the fact that memory indices
are actually integers which have to be normalized with modulo operations
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a better readability than the SGP and eSGP genotypes. The

third advantage is that LGP, SGP, and eSGP are now directly

comparable.

4) Fraglets [Frag]: The Fraglet language by

Tschudin [55, 99] is an execution model for communication

protocols which resembles the chemical reactions in living

organisms. Fraglets are symbolic strings of the form

[s1 : s2 : . . . : sn]. The symbols si either represent control

information or payload. Each node in the network has

a Fraglet store which corresponds to a reaction vessel

in chemistry. Fraglet stores are implemented as multisets

keeping track on the multiplicity of the Fraglets they contain.

The instruction set defined by Tschudin [55] comprises

transformation and reaction rules for Fraglets. In the former,

the first symbol of a Fraglet issues a change to its tail and

in the latter, two Fraglet strings are combined according to

the operation defined by the first symbol of one of them.

In our experiments, we utilize a subset of the Fraglet lan-

guage as of September 2007 [100] (encompassing point 1,

broadcast, and lt) with problem-specific extensions. For a

discussion of the Fraglets language we refer the interested

reader to [55, 56, 99, 101, 102], or [22].

5) Summary of the Approaches: All in all, we defined six

different representations for Genetic Programming and adapted

them to the evolution of distributed algorithms. The asyn-

chronicity of our system model defined in Section III poses

some specific requirements onto the program representation.

Our system model, for instance, permits messages to arrive at

nodes in short succession. In other words, a node might be

busy processing one message while the next one is already

received.

The Frag approach solves this problem in a very natural

way: messages and the modules of the programs are both

artificial molecules injected into the same “reaction vessel”.

Multiple messages just mean more molecules ready to react. In

the rule-based programs, a symbol signals incoming messages

(and the int-symbols take on non-zero values). Since all rules

are applied at once in each time step, programs may process

one message per iteration and hence, comply with the systems

model per default.

Normal tree-coded or linear programs known from off-the-

shelf SGP or LGP implementations are not suitable for such

a scenario. If messages are simply mapped into memory, they

may be overridden too fast if the process is busy with other

things, say executing a loop. Therefore, we introduced the

concurrency model by defining interrupt-like message handler

ADFs. With the local memory concept, they can handle

messages and perform computations without interfering with

the main routine or concurrently running instances. This work

hence also explores three different mechanisms for message

handling in Genetic Programming.

In Table I we summarize the six program representations

and list their genomes, phenomes (if different from the

genomes), whether they are Turing-complete (TC) or not, and

what their equivalent of one single execution step is. The

basic instruction sets utilized are given in Listing 5. Its full

specification can be found in [22] which will be permanently

online available. Division operations are not protected, a

genome phenome TC 1 step

SGP trees LGP no 1 instruction
eSGP trees LGP yes 1 instruction
LGP genome ≡ phenome, multiple functions

where each function ≡ variable-length
integer list

yes 1 instruction

Frag genome ≡ phenome, multiple fraglets
where each fraglet ≡ variable-length
lists of integer-encoded symbols

? [102] 1 reaction

RBGP variable-length bit strings rule sets no 1 full
evaluation

eRBGP trees yes 1 full
evaluation

Table I
THE SIX GENETIC PROGRAMMING APPROACHES UTILIZED IN THIS WORK.

SGP: function_declaration, call(func,params),

blocks, while, var=<expr>, return(<expr>),

send(<expr>,..), comparison, +, -, *, /, and,

or, not

eSGP: SGP + variable declaration, indirect memory

access, for_loop

LGP: +, -, *, /, %, not, and, or, xor, =, xchg,

jmp, call, send, comparison

Fraglets: dup, exch, fork, nop, null, pop2, split,

lt, max, broadcast, node, id, terminate, match,

matchP

RBGP: +, -, *, /, %, not, terminate, send

eRBGP: direct/indirect memory access, =, +, -, *,

/, and, or, not, comparison, send, terminate

Listing 5. The instruction sets of the applied GP approaches.

division by zero leads to a transition to erroneous of the

issuing node.

B. Experimental Configuration and Evaluation

1) General Configuration: All of our experiments are

based on multi-objective Genetic Programming which we

realize by a plain Pareto-ranking based fitness assignment

procedure [18] which assigns one scalar fitness to each can-

didate solution representing its relative utility in comparison

with the other members of the population. This assignment

process also considers the Euclidean distances of the candidate

solutions in the objective space and punishes individuals

located very close to each other in order to further diversity.

For the same purpose, we delete individuals with exactly the

same objective values with a certain probability from the

population [18, 22]. The utility of these settings were tested

on small-scale GP experiments and on a suitable benchmark

model [103] beforehand.

Generally, we apply all the measures outlined in Section IV

for mitigating the difficulties arising in the area of synthesiz-

ing distributed algorithms. In the EAs, we furthermore used

steady-state populations consisting of 512 individuals and ap-

plied tournament selection with five contestants. The mutation

rate was set to the rather high value of 40% (distributed
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as follows: 45% node/gene modification, 15% deletion, 15%

insertion, 25% re-arranging) and the crossover rate to 70%

(homologous multi-point crossover for integers/bit strings and

sub-tree crossover for trees) as these settings turned out to be

efficient in our previous experiments. Homologous crossover

corresponds to the exchange of sub-routines of a program.

The utility of the evolved distributed algorithms is de-

termined in network simulations which obey the models

introduced in Section III. Random numbers influence many

parameters of our simulations, such as the assignment of

computation time to nodes, the latency of every single mes-

sage, and the number of nodes in the network. We refer to

the set of all random numbers used during a simulation as

one training case. For every generation of the EA, multiple

training cases are newly created and each program in the

population is applied to all of them. By using the same training

cases for each individual, we ensure equal chances for every

candidate solution and also that equal programs receive the

same objective values.

2) General Evaluation: For evaluating the experiments,

we on one hand provide tables denoting the key performance

indicators of each configuration, such as the fraction of runs in

which adequate algorithms evolved and the arithmetic mean

of the best achieved objective values. However, such values

can only provide limited insight into which algorithm is

actually better and may even be deceptive. The same holds

for diagrams illustrating the convergence of the optimization

processes (which have been omitted for space reasons in this

article). If the goal is to make profound statements about

which approach is superior in a given scenario, only statistical

tests [104] provide useful answers. Therefore, we analyze our

results with such tests, choosing non-parametric variants in

order to not make false assumptions about the distribution

of the compared variables. The outcomes of the tests define

partial orders which can easily be visualized with diagrams

(such as Fig. 11).

C. Experiment 1: Election

Election algorithms have many applications in distributed

systems. They are used to determine the coordinators in several

routing [105] or group communication protocols [12], for

instance. According to Le Lann [106], a distributed election

algorithm can be initiated by any number of nodes in the

system and will reach a terminal configuration in which

exactly one node is elected as leader and all nodes agree

to this choice. Many different ways to perform distributed

elections have been developed, such as Le Lann’s original

approach for ring topologies [106], the message extinction

algorithm by Chang and Roberts [107], and special methods

for MANETs [12].

We adapt the assumptions of Le Lann about the network N

of nodes n performing the election as follows: (1) The IDs of

the nodes are unique numbers drawn from N0 and the order

imposed on them is the <-relation. (2) A node does not know

the IDs of the other nodes. (3) At startup, a node n ∈ N

only knows its own ID id(n) (which is stored in a dedicated

variable, symbol, or memory cell). (4) During the election,

each node n1 in N will decide for a node n2 ∈ N which it

thinks has won the election. It will store the ID of this node

in another dedicated memory cell (elected(n1) = id(n2)).
The novelty of the election task defined here and compared

to the “standard election problem” from [106] is Point 2. In

the domain of novel distributed systems as described in the

introduction, a possibly large number of nodes are deployed

and the assumption from [106] that each node knows the IDs

or the number of other nodes in the network will generally

not hold.

In the area of Genetic Programming, a few attempts to

solve the election problem have been recorded [26, 63].

Only in our work, however, a comparison between different

Genetic Programming approaches in the election domain is

performed [23].

1) Objective Functions: In order to derive such algorithms,

we apply an evolutionary process governed by two objective

functions: An objective fel which furthers functional adequacy

and a non-functional criterion fps which minimizes the size of

the synthesized programs. We propose two possible definitions

of functional adequacy for election algorithms: (a) without

restrictions on the node to be elected and (b) the elected node

should either have the maximum or minimum ID, as it is the

case in some well-known election schemes [106, 107].

The programs we want to evolve here converge to the

correct result. The problem definitions are likely to lead to

the emergence of algorithms that keep the application or the

operating system up-to-date about what the current guess about

the leader is. If a node thinks that it is not the leader but

receives messages for the leader, it would simply propagate

them to the node which it assumes to be the elected one.

In Fig. 8, we specified the functional objective function fel.a
for category-a algorithms. This function will always take on

values between zero and one, where 0 is the optimum and 1
is the worst case.

(
max
x∈ids

x = max
n∈N

id(n)

)
∨

(
min
x∈ids

x = min
n∈N

id(n)

)
(1)

The objective function fel.b is computed exactly like fel.a, but

adds a penalty of 1 to r if Equation 1 does not hold. The result

of fel.b is then r/3 so that again 0 ≤ fel.b(x) ≤ 1.

2) Experimental Settings: For each algorithm evaluation,

20 randomized scenarios with networks consisting of between

4 and 20 virtual machines were executed. The networks were

organized in a linear topology where each node can only

communicate with its direct predecessor and successor – the

topology where the highest number of messages for finding

the leader is to be expected. The message sizes were limited

to two memory words except in the Frag approach, where

complete Fraglets are exchanged.

The LGP, SGP, and eSGP programs were provided with two

cells of global and local memory each. Nodes executing RBGP

or eRBGP programs were equipped with two multi-purpose

variables and the length of Fraglets was limited to 15.

The IDs of the nodes were stored in the first global memory

cell (LGP, SGP, eSGP), a dedicated (writable) symbol (RBGP,

eRBGP), or available via a special Fraglet. It is possible that a

node can lose its ID during the execution of a program. Due to
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Fig. 8. fel.a(x)←− fitnessElectionA(x,N)
1: Input: x: the simulated program
2: Input: N: the network after the simulation has ended
3: Output: fel.a(x): the objective value of the algorithm x simulated

in N

4: begin
5: ids←− ∅, valid←− 0
6: for all n1 ∈ N do
7: if (∃n2 ∈ N : id(n2) = elected(n1))∧ (n1.state 6= erroneous)

then
8: valid←− valid+ 1
9: //aggregate all different valid votes

10: ids←− ids ∪ {elected(n1)}
11: end if
12: end for
13: r ←− 0
14: //compute proportion of valid votes

15: if ids 6= ∅ then

16: r ←− r + |ids|−1
numNodes(N)−1

17: end if
18: //punishment in case each valid ID was only voted for once

19: if |ids| = valid then
20: r ←− r + 1
21: end if
22: //punish invalid votes

23: r ←− r + numNodes(N)−valid

numNodes(N)
24: return 0.5r
25: end

the selection pressure during the optimization, however, only

such programs will survive that still function correctly, i. e.,

only lose the IDs that belong to nodes which will not become

the leader, if any. Notice that it is not important that a node

preserves the own ID. The evolved algorithms are assumed to

become a module of a software system and that a copy of the

ID exists outside of their scope. They just need to be able to

name the ID of their best guess on the winner of the election,

the executing process will then know whether it is the leader

or not.

We repeated the experiments with the two functional objec-

tives combined with fps in order to find out about the “GP

hardness” of the different aspects of this problem.

3) Evolved Algorithms: In the problem definition a), the

goal of the evolution was to find an election algorithm which

is able to name a winner after a certain amount of simulated

time steps. All GP approaches were able to solve this problem

driven by fel.a and fps by producing adequate programs, al-

though largely differing in the fraction of successful runs. With

the exception of the Frag3 approach, the obtained programs

most often belonged to the same algorithm classes presented

in Fig. 9 and Fig. 10, which were manually-derived from

the evolved solutions by removing unnecessary instructions

and homologous transformations. Interestingly, the algorithm

given in Fig. 9 behaves similarly to a Moran process [108]

in biology and works in almost all scenarios perfectly well

since it relies on the randomness in the message latencies. All

nodes repeatedly send the IDs they vote for and immediately

change their decision for the IDs they receive. Since the

whole system is asynchronous, votes may be overwritten by

messages before being propagated. Over time, IDs get extinct

3All adequate Frag programs for problem a) belonged to that later class.

Fig. 9. electionA
1: begin
2: Subalgorithm main

3: begin
4: elected(self)←− id(self)
5: sendMessage(elected(self))
6: end

7: Subalgorithm onMessage(message)
8: begin
9: elected(self)←− message[0]

10: sendMessage(elected(self))
11: end
12: end

Fig. 10. electionB
1: begin
2: Subalgorithm main

3: begin
4: elected(self)←− id(self)
5: sendMessage(elected(self))
6: end

7: Subalgorithm onMessagemessage
8: begin
9: if message[0] > elected(self) then

10: elected(self)←− message[0]
11: sendMessage(elected(self))
12: end if
13: end
14: end

and sooner or later, only one prevails. Regardless of the size

of the network N, it will eventually converge to a situation

where elected(n1) = elected(n2) ∀n1, n2 ∈ N. The algorithm

is not correct but works if the delay in the communication is

sufficiently random.

In its behavior, this algorithm is very different from all

traditional approaches to the election problem. In its structure,

it is probably the simplest solution possible, realizable with

only a few machine code instructions, and yet sufficient for

many applications, especially in the novel network types listed

in the introduction.
With the exception of the SGP approach, all Genetic Pro-

gramming methods could also find solutions to the problem
variant b) – again, with largely different success rates. The
evolved programs generally followed the scheme defined in
Fig. 10. An example for this behavior is the RBGP program
specified in Listing 6, where the symbol idt contains the
node’s ID, the result of the election is expected to appear in
at, and the int and outt symbols are used for incoming and
outgoing message content4. The evolved Fraglet algorithm in
Listing 7 is another example for this structure. (Notice that,
because of the different computational properties of Fraglets,
multiple elected Fraglets may occur in one node’s Fraglet
store. In this case, we assume that the id corresponding to the
most frequent elected Fraglets was voted for, i.e., make a
majority decision.)

1 false ∨ true ⇒outt+1 = int
2 (int≥idt)∧ true ⇒ idt+1 = int
3 (int≥idt)∧ true ⇒outt+1 = int
4 true ∨ false ⇒ at+1 = idt
5 true ∧ (idt 6=at)⇒ send

Listing 6. A RBGP program solving case b).

It extends Fig. 9 by imposing a condition on forwarding the

votes, reducing both the number of messages sent as well as

4the int-symbols are non-zero only in case a message was just received
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[broadcast : node : elected] //produce [node : elected]
[broadcast] //useless
[nul] //useless
/* compute maximum of two [elected:NN] fraglets and make a
[match:...] which creates [broadcast:...] fraglets */
[max2 : elected : match : elected : broadcast : elected]

[elected : match : pop2 : pop2 : lt : max2] //useless

Listing 7. A Frag program solving case b) (more information: [22, 100]).

Case #r #s s/r

̂

st st ŝt

̂

fel fel

̂

fps fps T [s]

S
G
P a 37 35 0.95 76 198 782 0.000 0.052 10.0 17.8 316

b 32 0 0.00 – – – 0.216 0.339 10.0 15.6 207

e
S
G
P a 55 43 0.78 114 354 997 0.000 0.147 10.0 17.3 227

b 57 1 0.02 981 981 981 0.000 0.310 10.0 17.2 202

L
G
P a 42 21 0.50 92 325 675 0.000 0.331 10.0 18.5 55

b 39 2 0.05 488 637 786 0.000 0.542 10.0 10.5 67

F
r
a
g a 44 8 0.18 231 362 514 0.000 0.020 15.0 31.1 485

b 23 5 0.22 479 677 958 0.000 0.039 12.0 35.7 413

R
B
G
P a 31 3 0.10 240 397 615 0.000 0.768 8.0 14.2 150

b 54 10 0.19 204 477 648 0.000 0.501 11.0 22.4 142

e
R
B
G
P a 31 31 1.00 30 141 742 0.000 0.000 17.0 24.2 225

b 59 59 1.00 35 197 950 0.000 0.000 18.0 21.6 226

Table II
THE GENETIC PROGRAMMING APPROACHES IN DIRECT COMPARISON IN

THE ELECTION EXPERIMENTS.

the time needed for convergence and removing the dependency

on randomness in the message delays. Its behavior exhibits

a certain resemblance with Chang and Roberts’s message

extinction algorithm [107], with the difference that it does not

terminate. The evolution of near-adequate terminating election

algorithms is discussed in [22].

4) Results: We define a run as successful if it yielded at

least one adequate program, i. e., an individual with optimal

values in the functional criteria. In this evaluation we take all

experimental runs into consideration which completed at least

750 generations or were successful earlier.

In Table II we show the number #s of such successful runs

in relation with the number #r of total runs.5 We furthermore

distinguish the minimum (

̂

st), mean (st), and maximum gen-

eration (ŝt) in which the first adequate program was found in

the successful runs. Additionally, Table II shows the optimal

(minimal,

̂

fel) and mean (fel) values of the functional and the

non-functional objective fps.

For the sake of completeness, the mean T (in seconds) of

the time consumed by all runs of a configuration is also illus-

trated. Although the different GP approaches have significantly

different runtime requirements resulting from the complexity

of simulating the corresponding virtual machines, this only

becomes important when performing many runs. Even the

slowest GP method (Frag) with around eight minutes per

run is feasible for practical purposes from this perspective.

From Table II, it becomes obvious that eRBGP is a very

strong Genetic Programming approach for the election prob-

lem. We used statistical tests in order to verify this hypothesis

5Because of the different runtime of the experiments and the way in which
we utilized the cluster, #r is not the same for all configurations. This plays no
role in the statistical evaluation.

Fig. 11.a: According to fel.a in case
a.

Fig. 11.b: According to fel.b in
case b.

Fig. 11.c: According to s/r in case
a.

Fig. 11.d: According to s/r in case
b.

Fig. 11.e: According to st in case
a.

Fig. 11.f: According to st in case b.

Fig. 11. Partial orders of the GP approaches according to their performance
in the election experiments.

and illustrated the results in Fig. 11. The diagrams there

represent partial orders where an arrow from an approach A to

approach B means that B beats A in the corresponding criterion

with a probability to err of less than 2% in a two-tailed test.

The success rates were compared with Fisher’s exact test and

for comparing st we used the Mann–Whitney U test.

From these diagrams, it becomes obvious that eRBGP is

never beaten by any other approach in terms of the number

of generations st needed to find a solution and the solution

quality in terms of the functional objective values. In three

of the compared criteria, it significantly outperforms all other

approaches.

5) Summary: In this first experiment, all six Genetic

Programming approaches were able to evolve the desired

distributed algorithms. The synthesized programs are fully

adequate and would work perfectly well in practical scenarios.

The experiment also shows that different program represen-

tations lead to different results and success probabilities. The

two standard Genetic Programming methods SGP and eSGP,

for instance, both solved the problem a) with high success rates

but could not deal with b) properly. The additional condition

required for the transition from the solution for a) (Fig. 9) to

the algorithm for the latter task (Fig. 10) leads to an increase

in problem hardness which could not efficiently be dealt with

at the small population size 512. The partial orders of the GP

approaches according to their performance given in Fig. 11

give no clear preference to either SGP or eSGP.

The relation of the two rule-based approaches draws a

very different picture. eRBGP solves all problems in all cases

and practically dominates all other methods which, in turn,

outperform plain RBGP most of the time. The former shows

that the targeted design of representations can indeed lead to

significantly better results. The ability of rule-based GP to

duplicate rules and subsequently specializing them as well

as the robustness against rearrangement of the instructions

clearly pays off. Forcing it into the rigid two-condition rule

structure of RBGP seemingly nullifies these advantages, as we

anticipated in Section V-B2.
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The Frag and the LGP method show moderate success

rates. The reason why the Frag programs never exhibited a

stochastic behavior as described in Fig. 9 is that an adequate

algorithm with such a behavior cannot be expressed with the

instruction set chosen in our experiment. Each adequate pro-

gram must multiply elected Fraglets (at least via communica-

tion) and therefore, must possess a corresponding consuming

rule. The deterministic max Fraglet is the only reaction in the

instruction set which can be used for that purpose and it will

always lead to the node with highest ID being elected.

D. Experiment 2: Critical Section

In the next set of experiments, we tackle a problem where,

on one hand, the corresponding man-made solutions are more

complex than those for the election problem. On the other

hand, these solutions only implicitly involve computing and

ordering of certain numbers, their quality is purely based on

behavioral aspects.

This second problem is the mutual exclusion at the dis-

tributed critical section. The term critical section was coined

by Dijkstra for the program code accessing a shared resource.

He realized that software engineers must ensure mutual exclu-

sion, i. e., guarantee that at most one process may execute

its critical section at a time. Developing mutual exclusion

algorithms for distributed systems is cumbersome since the

processes are running concurrently on different nodes and

have to communicate by the means of message exchange in

order to cooperatively decide which node may enter its critical

section. The first efficient distributed algorithms for mutual

exclusion at a critical section were introduced by Lamport [64]

in 1976 and by Ricart and Agrawala [110] in 1981, followed

by Maekawa’s optimal solution in terms of the number of

exchanged messages in 1985 [111].

A simple way to implement mutual exclusion would be

to first elect a leader node in the network and then let this

node decide who can utilize the critical section. Also, the

network could repeatedly elect nodes which then can enter

the critical section. Evolving such algorithms would mean to

provide functionality surpassing election capability and hence,

be harder than solving a single election problem. Therefore,

one would expect that it should be a harder task than election.

Furthermore, it requires two functional objectives, as we will

show in the following section.

1) Objective Functions: The goal of this experiment is to

evolve algorithms which (a) ensure mutual exclusion of the

access to a shared resource as good as possible and (b) allow

the processes to access this resource as often as possible.

The synthesized programs are to follow the scheme used by

Dijkstra and try to access the critical section in an infinite loop.

Therefore, the program representations listed in Section VI-A

are extended with the instruction enterCS. enterCS places

the invoking node into passive mode for a randomly selected

number w of time steps. This sleeping time is a simulation

for accessing the shared resource and doing something useful

with it. The node cannot be woken up during the w steps by

any other event (such as incoming messages). Afterwards, it

will resume execution normally. Hence, Genetic Programming

Fig. 12. fuse(x)←− csFunctionalObjectiveUse(x,N)
1: Input: x: the simulated program
2: Input: N: the network after the simulation has ended
3: Data: check, k, total: temporary variables
4: Output: fuse(x): the objective value x simulated in N

5: begin
6: total←− 0
7: check ←− (0, 0, 0, 0, 0)
8: //iterate over the nodes in the network

9: for all n ∈ N do
10: //erroneous networks receive worse possible fitness

11: if n.state = erroneous then
12: return +∞
13: end if
14: //extract number of resource accesses

15: k ←− csTimes(n)
16: total←− total+ k
17: //the cs accesses relevant for fairness are limited to 5

18: for k ←− min {k, 5} down to 1 do
19: check[k]←− check[k] + 1
20: end for
21: end for
22: res←− 0
23: for k ←− 5 down to 1 do
24: if check[k] > 1 then
25: res←− res+ check[k]− 1
26: end if
27: end for
28: //compute final objective value

29: return 1−
res+1− 1

total+1

5∗(numNodes(N)−1)+1
30: end

is to find a way to embed calls to enterCS into properly

synchronized loops.

In this experiment, two objectives (fcol and fuse) focus-

ing on functional adequacy are used together with the non-

functional program size criterion fps defined in Section VI-C1.

fcol: A collision has occurred in a time step i when two

processes A and B both have entered the critical section

(by calling enterCS) without leaving it yet. k processes can

cause 0.5 k(k − 1) collisions in each such step. We define the

objective function fcol as the total number of collisions during

the simulated time divided by the maximum possible number

of collision, i. e., normalized into [0, 1]. This function is again

subject to minimization and we added a penalty of 1 before

normalization if the critical section is not utilized during the

simulation.

fuse: Still, an optimal value of fcol may be reached by elect-

ing a leader and only allowing this node to access the shared

resource. A criterion for encouraging frequent usage of the

critical section is required. The algorithm specified in Fig. 12

examines the observed behavior of a program x in a simulated

network N. fuse is a mapping of a m-dimensional space to the

real interval [0, 1] (where m = numNodes(N) is the number

of nodes in N). fuse, subject to minimization, penalizes exactly

the two non-solutions mentioned above. Trivial programs

only achieve objective values very close to 1. Assume that

total→ +∞ in Fig. 12 but check[k] = 1 ∀k ∈ 1..5, then fuse
evaluates to 5m−5

5m−4 . For a network size m = 4, fuse becomes
15
16 = 0.9375 and for m = 23, fuse =

110
111 = 0.990. The worst

possible fitness value in cases where at least two nodes enter
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function_0: //invoked on startup

push 0 //push parameter for function 3

call 3 //call function 3

l[2] = pop //obtain return value of funct. 3

push 0 //push parameter for function 3

call 3 //call function 3

l[0] = pop //obtain return value of funct. 3

l[4] = 1 or l[0] //waste time computing something

l[3] = not l[4] //waste time computing something

l[1] = l[2] - l[3]//waste time computing something

// pattern repeated multiple times: push something,

// call 3, pop something, compute something

l[1] = pop //obtain return value of

function 3

push l[0] * l[1] //push data to be sent

send //send message

enterCS //enter critical section

push l[0] //push return value

function_1: //invoked when a message comes in

// 43 lines of useless computation for delaying

// the execution

function_2: //invoked when cs is left,

//postponed if message is pending

enterCS //enter critical section (1)

enterCS //enter critical section (2)

enterCS //enter critical section (3)

enterCS //enter critical section (4)

push l[0] //push return value

function_3: //no ADF, added by GP

push -1 //push value to be sent

send //send message

push 0 //push value to be sent

send //send message

push l[0] //push return value

Listing 8. The LGP phenotype of the eSGP genotype:
(fcol = 0.0, fuse = 0.1529, fps = 98).

the critical section (total = 2, res = 1) is 5m−5.5
5m−4 which is

29
32 = 0.906 25 for a network consisting of m = 4 nodes and
73
74 = 0.9864 for m = 23 nodes.

2) Experimental Settings: The six Genetic Programming

approaches defined in Section VI-A were applied to the

critical section problem under the three objective functions
~f = {fcol, fuse, fps}. The SGP, eSGP, and LGP approaches

were provided with an additional automatically defined func-

tion which is asynchronously called after enterCS returns.

RBGP and eRBGP received a csLeft symbol set to 1 when

the critical section was left and in the Fraglet stores of the

Frag approach, a symbol [csLeft] was injected in this case.

For each algorithm evaluation, twenty scenarios with net-

works consisting of between four and 23 virtual machines

were executed. We define a program x as marginally fair

if it reaches fuse(x) ≤ 0.906 25. This threshold is the lowest

boundary for a network with four nodes where at least two

nodes have accessed the critical section, as previously shown.

We structured the networks in the simulations in a fully-

meshed topology where each node can directly communicate

with every other one.

3) Evolved Algorithms: In Listing 8 we specify the fairest

program which evolved from all experimental runs. In the

syntax used, access to the ith cell in local memory is denoted

by l[i] and to global memory as g[i]. Like virtually all

evolved adequate solutions for this problem, it follows the

scheme of mutual stalling and delaying given in Fig. 13. Here,

Fig. 13. criticalSectionProtect
1: begin
2: Subalgorithm main

3: begin
4: //stall other nodes by sending lots of messages

5: enterCS()
6: end

7: Subalgorithm onMessage(message)
8: begin
9: //perform length computation

10: //maybe send messages

11: //invoke procedures which either do “enterCS” or call main

12: end
13: end

the communication medium is used as signaling device for

synchronization. A node only enters the critical section if it

did not receive any message for some time. The other nodes try

to prevent this by frequently broadcasting messages. Whether

a node can access the “shared resource” therefore again at least

partly depends on the randomness of the message latency and

parallelism.

At first glance, the evolved algorithms do not equal any

other common method for protecting the critical section in

distributed systems. This, however, is not true: They are

Carrier Sense Multiple Access (CSMA, [65, 112]) protocols

where the message sending in case of a free communication

medium has been replaced with entering the critical section

and listening whether the channel is busy is exchanged with

checking whether messages were received.

One of the interesting features of the evolved algorithms

in the SGP and eSGP representation is that they do not

involve explicit loops although special language constructs for

such structures were available. Even more interesting is that

SGP and eSGP most often use code without any conditional

branches. This trend, which similarly has been reported by

Paterson [113] and Wàn et al. [114], leads to the impression

that these programs seem to be trivial or overfitted.

Yet, they are not. Despite never making use of any sophis-

ticated feature, they achieve full functional adequacy in more

than twenty randomly created scenarios, usually over many

generations in the EA, and perform adequately if tested in

scenarios (with a similar framework of parameters) not used

for training. Functional adequacy here involves both, proper

protection of the critical section and a fair resource utilization

– the value fuse = 0.1529 for Listing 8 is indeed very good.

Still, these programs are not correct solutions in the Dijkstra-

sense, although – if configured properly – they would lead to

satisfactory results if the application scenario allows a certain,

low degree of uncertainty.

4) Results: A run of the critical section experiment was

considered as successful if it yielded at least one individual

x with the optimal value in the collision-minimizing objective

function and which is at least marginally fair. Here we take all

runs into consideration which have finished 700 generations.

In Table III, #r is again the number of total runs for each

configuration. We further list the number #p (and proportion

p/r) of runs which achieved to evolve individuals which could

protect the critical section although not necessarily in a fair
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Case #r #p p/r #s s/r [fcol]z [

̂

fuse]z [fuse]z T [s]

SGP 38 38 1.00 37 0.97 3 · 10−10 0.185 0.364 286

eSGP 46 46 1.00 45 0.98 1 · 10−7 0.153 0.367 299

LGP 32 29 0.91 8 0.25 4 · 10−4 0.478 0.811 75
Frag 27 14 0.52 0 0.00 0.002 0.884 0.899 446
RBGP 23 6 0.26 0 0.00 0.004 0.742 0.870 424
eRBGP 37 5 0.14 0 0.00 0.004 0.807 0.893 321

Table III
THE GENETIC PROGRAMMING APPROACHES IN DIRECT COMPARISON IN

THE CRITICAL SECTION EXPERIMENTS.

Fig. 14. Partial order of the GP approaches according to [

̂

fcol]z .

way. T is again the mean runtime.The two Standard Genetic

Programming approaches achieved this in all experiments

and LGP has a very high p/r rate. Both Rule-based Genetic

Programming methods fall behind the Frag approach in this

measure.
#s is the number and s/r is the proportion of successful runs,

i. e., runs where at least one individual evolved for which p
holds and where the critical section was accessed by more than

one node. Such programs were only found with SGP, eSGP,

and LGP.

We use the subscript z to annotate values belonging to

individuals which possess at least marginal fairness. We de-

termined the minimally-fair individuals with the best values

of fcol for every single run and listed their mean value in the

collision objective functions [fcol]z and the minimum [

̂

fuse]z
and mean [fuse]z of the fairness-of-use criterion. Again, SGP,

eSGP, and LGP perform best in these measures.

We checked the significance of the trends reported above

using a two-tailed Mann–Whitney U test with 2% significance

level and illustrated them in Fig. 14. Here, the Standard

Genetic Programming approaches dominate LGP which, in

turn, dominates the other approaches.

5) Summary: The outcomes of the critical section experi-

ments were surprising at the first glance, especially in the light

of the results of the election experiments.

SGP and eSGP have effectively changed places with eRBGP

and RBGP and now perform significantly better. The cause

for these overtakes is the ability of SGP, eSGP, and LGP

to create long sequences of instructions for slowing down

the execution. Twelve out of the 15 instructions of the LGP

language (in which the phenotypes of SGP and eSGP are

specified) can be randomly inserted into the code in order

to do this. Therefore, the Genetic Programming process, once

it has identified the CSMA communication scheme, only has

to adjust their number to the right amount in order to achieve

good fitness. RBGP, eRBGP, and to a lesser amount, the Frag

method, cannot do this. There is no such thing as sequential

instruction processing in these approaches. Rules in Rule-

based Genetic Programming are triggered by conditions and

Fraglets react with each other. Thus, stalling and delaying

as used by the algorithm defined in Fig. 13 becomes much

more complicated. The experiment also provided the second

indicator that tree-based SGP methods outperform pure linear

Genetic Programming in this problem domain.

This experiment has also shown that Genetic Program-

ming can evolve distributed algorithms in a multi-objective

scenario. It is well known that the Pareto front may grow

exponentially [115] with the number of objectives. We already

considered the critical section task itself to be harder than

the election problem. Additional to this basic complexity,

the number of functional objectives has increased to two

while the non-functional criterion fps was retained. A general

requirement for evolving programs for sensor networks, for

instance, would be to also minimize the energy consumption of

the nodes. With solving the critical section, it became apparent

that Genetic Programming is able to handle more than two

objective functions.

This experiment is the second account for the evolution of

algorithms which are adequate and may even work sufficiently

well in practical scenarios. It is, however, also the second

account for the evolution of algorithms which are not correct

and differ much from what an engineering approach would

yield.

E. Experiment 3: DGCD

For both, the election and the critical section problem, man-

ually derived solutions exhibit a certain complexity. They

involve iterative, distributed computations which come to

precise results. Yet, Genetic Programming has dodged this

complexity by evolving behaviors which – although being

robust and functioning adequately – have simpler structure.

On one hand, this showed that it is possible to solve common

tasks in distributed systems. On the other hand, it did not lead

to results anticipated from an engineering perspective (which

is not necessarily bad). With the third series of experiments,

we want to find whether problems can be solved where the

actual computation cannot be simplified, emulated, or mocked-

up with simplified behavior. We therefore picked the problem

of the distributed computation of the greatest common divisor.

For two integer numbers a, b ∈ N1, the greatest common

divisor (GCD) is the largest number c ∈ N1 that divides both,

a and b. The GCD of two numbers can be computed with the

Euclidian algorithm [116]. Mattern used a distributed version

of this procedure (specified in Fig. 15) as an example in his

foundational book [66]. Here, each node n of the network

N starts with an own number n.num which will be its first

guess about what the GCD of all numbers distributed over the

network is. Step by step, the gcdVal(n) values of all nodes

n ∈ N will converge to the real GCD.

1) Objective Functions: The initial situation of a network

N be that each of its nodes n ∈ N knows exactly one

number n.num ∈ N1. We wish to evolve programs which, if

executed on these nodes, compute the greatest common divisor

corr = gcd∀n∈N n.num of all the numbers distributed over the

network. This number should be stored in a special variable or

symbol gcdVal(n) on each of the nodes n. The non-continuous

nature of the GCD problem prevents any approximative results

and strictly limits the set of possible solutions. We therefore
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Fig. 15. gcdVal(self)←− distributedGCD
1: Input: self .num ∈ N1: the own number
2: Output: gcdVal(self) ∈ N1: the result of the GCD computation

3: begin
4: Subalgorithm main

5: begin
6: gcdVal(self)←− self .num
7: sendMessage(gcdVal(self))
8: end

9: Subalgorithm onMessage(message)
10: begin
11: gcdVal(self)←− ((gcdVal(self)− 1) mod message[0]) + 1
12: sendMessage(gcdVal(self))
13: end
14: end

can expect that it will be the hardest one amongst the three

tasks presented in this article.

Another aspect of GP is that we generally can derive

multiple objective functions for the same behavior specifi-

cation. In the critical section experiment, for instance, we

could have replaced fuse with a function which returns the

arithmetic mean of the number csTimes(n) of times the nodes

n ∈ N have executed their critical sections. In the distributed

greatest common divisor experiments, we want to also test how

different functional criteria for the same behavior influence

the results of the evolution, whether effort put into defining a

criterion which also rewards partial solutions actually pays off

or not. We therefore define two functional objective functions

gcd.1 and gcd.2:

gcd.1 (specified in Fig. 16) rewards programs which decide

for return values “gcdVal” divisible by the correct result corr.

This reward increases when the algorithms get closer to the

real result. All values greater or equal to the minimum initial

number min∀n∈N n.num receive the same default fitness in

order to prevent the evolution of algorithms which simply

converge to this number.

gcd.2 (specified in Fig. 17) provokes the all-or-nothing

problem by only giving rewards if a node has found the

correct GCD. fgcd.2 provides little more information than a

Boolean decision criterion about the correctness of a program.

Although it can take on more than two values since all nodes

in the simulated networks are considered separately, it can be

assumed that only correct (or close-to-adequate) algorithms

can score results lower than 1. Hence, fps should be the driving

force of the evolution and many very small programs are

likely to occur. Since all programs solving the GCD problem

adequately have a certain minimum size, we set a lowest

boundary of 25 for fps under which it cannot drop.6

2) Experimental Settings: We used the same settings as

for the election experiment (see Section VI-C2) except that

we evolved the algorithms in a rectangular topology where

each node had up to four neighbors to communicate with and

provided four variables to the RBGP and eRBGP approaches

and four global and local memory cells to the SGP, eSGP,

and LGP Genetic Programming methods.

6This boundary was determined in the first experimental series with 1)

where it was not yet applied.

Fig. 16. fgcd.1(x)←− gcdFunctionalObjective1(x,N)
1: Input: x: the simulated program
2: Input: N: the network after the simulation has ended
3: Output: fgcd(x): the objective value x simulated in N

4: begin
5: values←− ()
6: ownNum←− 0
7: minNum←− +∞
8: corr ←− 0
9: for all n ∈ N do

10: if n.num < minNum then
11: minNum←− n.num
12: end if
13: if n.state 6= erroneous then
14: //store gcd value

15: values←− addListItem(values, gcdVal(n))
16: //count nodes which think gcd = own number

17: if gcdVal(n) = n.num then
18: ownNum←− ownNum + 1
19: end if
20: else
21: //errors are treated like gcd=own number

22: ownNum←− ownNum + 1
23: end if
24: if corr = 0 then
25: corr ←− n.num
26: else
27: corr ←− gcd (corr, n.num)
28: end if
29: end for
30: div ←− 1

2
∗ 1

minNum−1−corr

31: tv ←− 1
2
∗ numNodes(N)−ownNum+1

numNodes(N)+1
32: r ←− 0
33: for i←− len(values)− 1 down to 0 do
34: //if the value could be some sort of correct interim result. . .

35: if (values[i] > 0) ∧ (values[i] mod corr = 0) then
36: if values[i] ≥ minNum then
37: r ←− r + tv
38: else
39: r ←− r + 1− (div ∗ values[i]− corr)
40: end if
41: end if
42: end for
43: return 1− r

numNodes(N)

44: end

Fig. 17. fgcd.2(x)←− gcdFunctionalObjective2(x,N)
1: Input: x: the simulated program
2: Input: N: the network after the simulation has ended
3: Output: fgcd(x): the objective value x simulated in N

4: begin
5: corr ←− 0
6: for all n ∈ N do
7: if corr = 0 then
8: corr ←− n.num
9: else

10: corr ←− gcd (corr, n.num)
11: end if
12: end for
13: r ←− 0
14: for all n ∈ N do
15: if (n.state 6= erroneous) ∧ (gcdVal(n) = corr) then
16: r ←− r + 1
17: end if
18: end for
19: return

numNodes(N)−r

numNodes(N)

20: end
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1 (startt + (16 ∗ in2)) ⇒ send

2 out2t ⇒ at+1 = ((-4≥ in2t)+ out2t)

3 idt ⇒out2t+1 = (in2t + (in2t + idt))

4 at ⇒out2t+1 = (in2t % at)

Listing 9. One evolved eRBGP program for problem case 1) in the 512
individual population

(
fgcd.1 = 0, fps = 30

)
.

Fig. 18. gcdVal(self)←− distributedGCDEvolved
1: Input: self .num ∈ N0: the own number
2: Output: gcdVal(self) ∈ N0: the result of the GCD computation

3: begin
4: Subalgorithm main

5: begin
6: gcdVal(self)←− self .num
7: sendMessage(gcdVal(self))
8: end

9: Subalgorithm onMessage(message)
10: begin
11: tmp←− gcdVal(self) mod message[0]
12: if tmp 6= 0 then
13: gcdVal(self)←− tmp
14: sendMessage(gcdVal(self))
15: end if
16: end
17: end

We repeated the experiments for the different functional

optimization criteria gcd.1 and gcd.2. While ensuring that in

each simulated scenario, the correct result of the GCD was

different from one. We did not include the Frag approach in

our experiments because this would have required too much

of a deviation from the instruction set given in Listing 5 and

in [100] used until now.

3) Evolved Programs: eRBGP solved the distributed GCD

problem most often. One of the adequate programs it was

able to synthesize is shown in Listing 9, where the initial

number of a node is its ID idt and the result of the distributed

computation is expected to occur in variable at. int and outt

are again symbols where incoming and outgoing message

content will be put in.

In Mattern’s method, the values of gcdVal(n) were pre-

vented from becoming zero by adding one to the result of the

modulo division used to compute the GCD step by step (line

11 in Fig. 15). Like the program in Listing 9, most of the

algorithms evolved with eRBGP follow a different approach

given as Fig. 18. They store the modulo of the current estimate

of the GCD and the received value in a temporary variable.

This variable is then written back to the estimate if it is not

zero.

Listing 10 reveals a problem with which a reader may

find herself confronted when analyzing an evolved program.

Even with a simple syntax, Genetic Programming may produce

incomprehensible code because of the lack of targeted design

and intention. For the SGP, eSGP, larger RBGP/eRBGP, and

Frag programs, this is even much worse which is also the

reason why we stated the evolved results in form of algorithms

and only gave a few, obvious examples for the original code.

Although being a valid solution, the inner workings of

Listing 10 are camouflaged by the way in which variables

function_0: //called at startup

g[1] = g[0] //g[1]=own number given in g[1]

call 2 //this call+pop instruction is

l[0] = pop //for stalling, so g[1]=g[0]

push not l[0] //push -1

send //send -1

push l[0] //useless

function_1: //invoked when message comes in

l[2] = 0 + g[1] //l[2]=own number g[1]

l[1] = l[0] - g[1] //l[1]=received-own number

l[0] = not l[1] //l[0]=ones complement of l[1]

l[1] = g[1] * 1 //l[1]=own number g[1]

l[3] = l[0] mod l[1]//l[3]=l[0] mod own number g[1]

g[1] = l[2] - l[3] //own number=own number-l[3]

call 2 //useless

l[3] = pop //useless: result of func_2=0

l[2] = l[0] + l[3] //useless

push not l[2] //useless

call 2 //useless

l[3] = pop //useless

l[2] = l[0] + l[3] //useless

push not l[2] //push ones compl. of l[2]

send //send ones compl. of l[2]

push l[0] //useless

function_2: //additional function

l[0] = not l[0] // <delaying code>

l[1] = g[1] * 1 //this function is basically

l[3] = l[0] mod l[1]//used for stalling the

l[2] = not l[3] //execution of the program

l[1] = 3 * g[1] //in order to ensure that

l[0] = l[1] mod l[1]//g[1]=g[0] in function_0 for

l[3] = l[0] * l[0] //all nodes of the network

l[1] = l[2] + l[3] // </delaying code>

push l[0] //return the input or 0

//if no parameter was supplied

Listing 10. The LGP phenotype of an evolved eSGP solution(
fgcd.1 = 0, fps = 31

)
.

and modules are utilized. In the LGP/SGP/eSGP approaches

to the GCD problem, the own number of a node is supplied

to the program in the first cell g[0] of global memory and

the result is expected in the second cell g[1]. The evolved

program connects all four local and the relevant two global

variables with none-obvious calculations. Finding out which

of the instructions in Listing 10 are useful and which are not

is actually complicated.

At first glance, function_2, for instance, seems to play an

important role in the GCD computation since it is invoked

from multiple locations, receives values extracted from the re-

ceived messages as parameters, and contains modulo division

operations. It possibly was important during the early phase

of the evolution and became degraded as more efficient code

evolved. Now, it is just used to delay the execution in order

to ensure that the first instruction of function_0 (g[1]=g[0])

has taken place before the real distributed computation begins,

which is performed by the first six lines of function_1.

Furthermore, the GCD estimates are exchanged between the

nodes in their ones complements for no particular reason.

Because of the vulnerability of the first value assignment, this

program (unlike Listing 9) is not correct but only adequate.

4) Results: In Table IV, we have noted the same measure-

ments as provided for the election experiment in Table II. The

number #s and proportion s/r of successful runs in relation with

the number #r of total runs is very low in all configurations.
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Case #r #s s/r

̂

st st ŝt

̂

fgcd fgcd T [s]

S
G
P 1 30 0 0.00 - - - 0.496 0.500 117

2 153 0 0.00 - - - 0.630 0.997 18

e
S
G
P 1 53 1 0.02 912 912 912 0.000 0.483 160

2 153 0 0.00 - - - 1.000 1.000 17

L
G
P 1 41 0 0.00 - - - 0.445 0.499 36

2 161 0 0.00 - - - 0.986 1.000 1

R
B
G
P 1 54 0 0.00 - - - 0.500 0.500 129

2 149 0 0.00 - - - 0.990 1.000 37

e
R
B
G
P 1 74 5 0.07 236 406 649 0.000 0.440 57

2 147 1 0.01 880 880 880 0.000 0.985 20

Table IV
THE GENETIC PROGRAMMING APPROACHES IN DIRECT COMPARISON IN

THE GCD EXPERIMENTS.

Fig. 19. Partial orders of the GP approaches according to

̂

fgcd.1 for case 1).

Only eSGP and eRBGP have a non-zero success ratio and only

eRBGP finds an adequate program more than once. For the

second way of expressing the functional optimization criterion

(fgcd.2), only eRBGP – seemingly accidentally – finds one

single solution.

In terms of the minimum (

̂
st), mean (st), and maximum

generation (ŝt) in which the first adequate program was found

in the successful runs, eRBGP is therefore again best. The

same goes for the minimum and mean functional objective

values (

̂

fgcd, fgcd) of the individuals with the best functional

objective values of each run. Generally, these values are much

better for case 1 than for case 2 of the GCD problem.

Like in the election experiment, we have compared the

success rates of the different Genetic Programming approaches

with Fisher’s exact test and the best values

̂

fgcd.1 of the

functional objective functions with the Mann–Whitney U test.

For both tests, we again used the two-tailed variants with a

significance level of 2%. Because of the low success rates

of the experiments, most trends turned out to be insignificant

and only few, strong relations (illustrated in Fig. 19) could be

confirmed.

In order to clarify the question whether Genetic Program-

ming indeed utilizes the information gained from sampling

the search space efficiently, we specified the second functional

criterion fgcd.2. Since the value of fps was bounded below, we

would expect the search to behave like parallel random walks

in the space of programs which are not much longer than the

specified minimum size and to find solutions only very rarely.

The result of the experiments with fgcd.2 fully meet this

expectation. Only one solution was found in more than 760

runs. We compared the success rates for fgcd.1 and fgcd.2 and

found that there only was a significant difference for eRBGP.

This does not necessarily mean that the other approaches not

perform any better than (bounded) random walks – with more

runs, the differences may become significant – but it means

that eRBGP definitely does.

5) Summary: Our experiments targeting the evolution of

algorithms for computing the greatest common divisor in a

distributed way led us to two conclusions. First, the GCD task

seems to be the most complicated one of all the problems

which we have tested. Although two GP approaches found

solutions for it, the success rates of the experiments are

very low. Second, only eRBGP is significantly better than

a (bounded) random walk in this domain. Here, it is not

sufficient to combine random instructions in a way similar

to the CSMA method created by eSGP in Section VI-D3.

Instead, a well defined computation has to be assembled.

Similar to the second election experiment where clear criteria

for the computation result existed, eRBGP dominated the other

approaches, although it still had a low success rate.

On one hand, these results reveal the hardness of needle-

in-a-haystack problems which we anticipated in Section IV-C

and to which the GCD task seems to belong for the traditional

GP representations. On the other hand, it is a further indicator

for the strength of eRBGP and justifies its design outlined

in Section V. Whether a problem has or has not NIAH

characteristics depends on the program representation to a

large degree and, for the rule-based program structure, the

GCD problem is indeed easier to tackle. Furthermore, the

results evolved by eRBGP, such as the program illustrated

in Listing 9, this time not only are adequate but correct.

VII. CONCLUSIONS AND FUTURE WORK

In the introduction, we motivated that Genetic Programming

could be used as a foundation for a new design approach for

distributed algorithms. We analyzed the possible difficulties of

this problem domain and developed two program representa-

tions from which we expected that they may have beneficial

features in this context. We applied these representations

to three example problems from distributed computing and

compared their performance to four other GP approaches.

A. Choice of Scenarios

The reasons for applying our method to three different prob-

lems were twofold. First, when evaluating new techniques –

be it for software design or in any other area – testing them on

one or two scenarios only cannot be considered a significant

sample and only provides weak indications for their utility. By

presenting three test problems, we aimed at striking a balance

between providing more evidence for the utility of GP and

retaining a suitable length for an article. Second, the three

scenarios each have characteristic features and pose different

problems.

The election task outlined in Section VI-C is a problem

of moderate hardness which has already been tackled in the

past [26, 63]. Yet, this is the first study which compares the

performance of different GP approaches in this domain. The

second advantage of this problem is that the spectrum of

achieved success rates is wide enough to allow fine-grained

and yet statistically significant comparisons amongst them (see

Fig. 11 as opposed to Fig. 19).
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Of all three problems, the critical section task is the only

one which does not necessarily involve computing numerical

values, although all practical solutions for fully-meshed net-

works do this. Also, in this scenario we tested the influence

of multiple functional criteria on the optimization process.

The results of this experiment were surprising at first glance,

since only here the Standard Genetic Programming approaches

outperformed Rule-based Genetic Programming significantly.

Analyzing it revealed that the strength of rule-based programs

in some cases can also be their weakness: They do not have

explicit execution sequences.

Finally, in the distributed GCD experiment, we had a very

tight specification of what adequate means. Simple solution

structures circumventing the complexity of man-made solu-

tions here cannot achieve adequacy which turns the problem

into a needle-in-a-haystack setting. In this scenario, we also

introduced an all-or-nothing objective which allowed us to

check whether GP actually can beat random walks in such

scenarios.

The focus of our work presented here was on running large-

scale experiments with significant outcomes. Even though

using large populations is quite common in Genetic Pro-

gramming [117–120], we intentionally utilized relatively small

populations of 512 individuals. This makes our results highly

relevant, because even better outcomes can be expected if

bigger populations are used for actual applications.

B. Experimental Results

At the end of each experiment section, we provided a summary

of conclusions drawn from it. Here, we present five general

and important lessons learned.

First, with the work outlined here we have shown that ade-

quate algorithms for distributed computations can be evolved

with Genetic Programming. This is true despite the fact that

such optimization tasks exhibit a variety of problematic facets

discussed in Section IV and are certainly amongst the most

difficult ones.

Second, our study is the only one which compares the

performance of diverse GP approaches in the area of evolving

distributed algorithms. Based on our experiments, we found

that the choice of Genetic Programming approach has a

tremendous influence on the chance of success. Different pro-

gram representations can lead to different results, to different

chances of success, and may need different numbers of gener-

ations to converge. Also, there likely is no single best program

representation [121]. While our eRBGP was very powerful in

the tasks where algorithms computing single numbers were to

be evolved, it failed in the critical section domain. Here, SGP,

eSGP, and LGP performed much better since they, unlike the

rule-based or Fraglets approaches, are based on the concept

of sequential instruction processing established in virtually

all of today’s computers. Yet, such structures have a high

positional epistasis which renders them less efficient or even

infeasible in situations where more complex algorithms are to

be synthesized.

This leads over to the third lesson, to the targeted design of

program representations. We designed the two new represen-

tations RBGP and eRBGP especially with this goal in mind,

as described in Section V. RBGP has a well-defined structure

which allows us to encode the programs in binary form which

can be evolved with a normal GA. However, in Section V-B

we pointed out that well-defined can also mean rigid and may

restrict the freedom of the evolution. And indeed, lifting the

structural limitations and using a tree genome for encoding

the programs was extremely beneficial, even though the search

space was further increased by introducing indexed memory

– a feature which turned out to be only rarely used by the

evolution in our experiments7. Still, eRBGP was the most

successful approach (except in the critical section experiment)

and is likely to perform well in many other problem domains

whereas the performance of RBGP was sub-par.

Fourth, especially the DGCD experiment in Section VI-E

substantiates the assumption that the choice of the objective

functions has an extreme impact on the chance of success. All-

or-nothing criteria should be avoided by all means and instead,

objectives which reward partial solutions should be developed.

Hence, before starting large-scale experiments, some small-

scale runs should be performed for testing different criteria.

Finally, there is the question of whether indexed memory,

used to achieve Turing completeness in some of the program

representations, is beneficial or not. eRBGP often achieved

much better results than RBGP. This may have either been

rooted in its Turing completeness or in the higher degrees of

freedom for constructing complex expressions. We also tested

two other GP approaches which are similar and between which

the main distinction is the availability of indexed memory

respectively the lack of it: eSGP and SGP. Between these

two methods, no significant difference in performance could

be detected in most of the experiments. Therefore, we believe

that the versatility provided by the tree genome is the decisive

difference between RBGP and eRBGP. From this perspective,

our results do not allow us to decide whether the usage

of indexed memory is beneficial (in cases where it is not

necessarily needed, such as in our experiments). However,

we could not detect any disadvantage either – although the

presence of indexed memory leads to more degrees of freedom

and thus, enlarges the search space. More experiments on this

issue would thus be interesting.

It should further be noted that runtime is also a concern

when evolving distributed algorithms. In the work presented

here, we focused on carrying out a large-scale experimen-

tal study which provides conclusive results. Therefore, we

performed more experiments than what would actually be

needed in a real application. This led to a runtime of over

1280 processor days distributed over a cluster in the election

experiment, for instance. Time consumptions of six to ten

minutes per generation for a population consisting of 512

individuals would, however, also be expected in practical

scenarios.

C. Criticism of the Idea

In Section IV-C, we raised the most severe objection against

the idea of evolving (distributed) algorithms: the results are

7when comparing eSGP (with indexed memory) and SGP (without), the
differences are marginal
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not necessarily correct. However, some of the larger-scale

distributed system types named in the motivation of our

approach tolerate a certain amount of malfunction. In sensor

networks, for instance, some of the nodes will inevitably fail

due to depleted batteries. In MANETs, temporary network

partitions may occur. Especially for networks of these kinds,

evolving algorithms may indeed be a useful software design

approach. When a critical section protection scheme can fail

due to network partitions, an additional small chance of failure

of a CSMA-scheme due to the structure of the algorithm may

not be a big problem.

For other scenarios where correctness is required, applying

a subsequent model checking step after the evolutionary algo-

rithm synthesis in order to weed out incorrect solutions would

be a viable way to make use of our method. Generally, GP

can help to open our eyes for strange but effective solutions:

In the literature known to the authors, CSMA has not been

considered for critical sections.

With the work presented in this article, we made a first

step towards a new algorithm design method for distributed

systems. We do not aim at replacing the existing approaches,

but believe that we will be able to complement them. In order

to achieve this goal, we openly discussed both the strengths

and the weaknesses of our idea and hope that this way, an

open and fruitful debate can be started.

D. Future Work

Although we provided the necessary optimization and Genetic

Programming frameworks, a certain learning curve is still

unavoidable. In [25, 122], we already discussed the integration

of the results of Genetic Programming into a model-driven

development (MDD) process. However, we would like to use

MDD tools not only as backend for GP but also as frontend.

The utility of our method will increase very much if it becomes

possible to model the behavior of the anticipated system

by defining and combining optimization criteria in a more

graphical and straightforward way.

Another point worthy of further investigation is the design

of low-epistatic program representations. Our Rule-based Ge-

netic Programming method is different from Standard Genetic

Programming in two aspects: 1) Its execution model is based

on rules evaluated in parallel and not on instruction sequences

and 2) it uses a temporary storage committed after all rule eval-

uations instead of “normal” memory. With our experiments,

we cannot be sure which of these two points contributed most

to the dominance of eRBGP in many of the experiments or

whether it was their combination.
Especially with regard to the results of the critical section

experiment, we therefore plan to introduce “transactional”
memory into SGP, maybe with a special commit instruction.
By allowing the Genetic Programming process to decide when
to commit the changes to the variables, we would reduce
the positional epistasis of the Standard Genetic Programming
approaches. An alternative would be to introduce an automatic
variable commit at the end of instruction groups (such as at
the bottoms of loops). Both methods could then enable GP to
produce solutions for this problem which comply better with
the engineering perspective. With the presented work, we also
have plenty of data to compare the performance of such new
“transacted” SGP or eSGP methods with.
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Michalewicz, and Xı̄n Yáo, editors, IEEE International Conference on

Evolutionary Computation (CEC’97), pages 297–302. IEEE Computer
Society: Piscataway, NJ, USA, 1997. doi: 10.1109/ICEC.1997.592321.

[54] Kenneth J. Mackin and Eiichiro Tazaki. Emergent Agent Communi-
cation in Multi-Agent Systems using Automatically Defined Function
Genetic Programming (ADF-GP). In IEEE International Conference on

Systems, Man, and Cybernetics – Human Communication and Cyber-

netics (SMC’99), volume 5, pages 138–142. IEEE Computer Society:
Piscataway, NJ, USA, 1999. doi: 10.1109/ICSMC.1999.815536.

[55] Christian F. Tschudin. Fraglets – A Metabolistic Execution Model
for Communication Protocols. In The Second Annual Symposium
on Autonomous Intelligent Networks and Systems (AINS’03). Center
for Autonomous Intelligent Networks and Systems (CAINS), Uni-
versity of California (UCLA): Los Angeles, CA, USA, 2003. URL
http://cn.cs.unibas.ch/pub/doc/2003-ains.pdf.

[56] Lidia A. R. Yamamoto and Christian F. Tschudin. Experiments
on the Automatic Evolution of Protocols Using Genetic Program-
ming. In Ioannis Stavrakakis and Mikhail I. Smirnov, editors,
Revised and Selected Papers from the Second IFIP Workshop on

Autonomic Communication (WAC’05), volume 3854/2006 of Lecture

Notes in Computer Science (LNCS), pages 13–28. Springer-Verlag
GmbH: Berlin, Germany, 2005. doi: 10.1007/11687818 2. URL
http://cn.cs.unibas.ch/people/ly/doc/wac2005-lyct.pdf.

[57] Lidia A. R. Yamamoto and Christian F. Tschudin. Experiments on
the Automatic Evolution of Protocols Using Genetic Programming.
Technical Report CS-2005-002, University of Basel, Computer Science
Department, Computer Networks Group: Basel, Switzerland, April 21,
2005. URL http://cn.cs.unibas.ch/people/ly/doc/wac2005tr-lyct.pdf.

[58] Gregory M. Werner and Michael G. Dyer. Evolution of Communication
in Artificial Organisms. In Christopher Gale Langdon, Charles E.
Taylor, Doyne J. Farmer, and Steen Rasmussen, editors, Proceedings

of the Workshop on Artificial Life (Artificial Life II), volume X
of Santa Fe Institue Studies in the Sciences of Complexity, pages
659–687. Addison-Wesley Longman Publishing Co., Inc.: Boston,
MA, USA and Westview Press: Boulder, CO, USA, 1990. URL
http://www.isrl.uiuc.edu/∼amag/langev/paper/werner92evolutionOf.html.

[59] Philip K. McKinley, Betty H. C. Cheng, Charles A. Ofria,
David B. Knoester, Benjamin Beckmann, and Heather J.
Goldsby. Harnessing Digital Evolution. Computer, 41(1):
54–63, January 2008. doi: 10.1109/MC.2008.17. URL
http://www.cse.msu.edu/∼mckinley/digital-evolution.pdf.

[60] Philip K. McKinley, Betty H. C. Cheng, and Charles A. Ofria.
Applying Digital Evolution to the Development of Self-Adaptive
ULS Systems (Position Paper). In Proceedings of the In-

ternational Workshop on Software Technologies for Ultra-Large-

Scale Systems (ULS’07), pages 3–3. IEEE Computer Society: Pis-
cataway, NJ, USA, 2007. doi: 10.1109/ULS.2007.1. URL
http://www.cs.virginia.edu/∼sullivan/ULS1/ULS07/mckinley.pdf.

[61] Heather J. Goldsby, Betty H. C. Cheng, Philip K. McKinley, David B.
Knoester, and Charles A. Ofria. Digital Evolution of Behavioral
Models for Autonomic Systems. In Proceedings of the 5th In-

ternational Conference on Autonomic Computing (ICAC’08), pages
87–96. IEEE Computer Society: Piscataway, NJ, USA, 2008. doi:
10.1109/ICAC.2008.26.

[62] Charles A. Ofria and Claus O. Wilke. Avida: A Software Platform
for Research in Computational Evolutionary Biology. Artificial Life,
10(2):191–229, 2004. doi: 10.1162/106454604773563612. URL
http://www.cs.bham.ac.uk/∼wbl/biblio/gp-html/ofria 2004 AL.html.

[63] David B. Knoester, Philip K. McKinley, Benjamin Beckmann, and
Charles A. Ofria. Evolution of Leader Election in Populations of
Self-Replicating Digital Organisms. Technical Report MSU-CSE-06-
35, Michigan State University, Department of Computer Science: East
Lansing, MI, USA, December 2006.

[64] Leslie Lamport. Time, Clocks, and the Ordering of Events in
a Distributed System. Communications of the ACM (CACM),
21(7):558–565, July 1978. doi: 10.1145/359545.359563. URL
http://research.microsoft.com/users/lamport/pubs/time-clocks.pdf.
Also: Report CA-7603-2911, Massachusetts Comptuter Association,
Wakefield, Massachusetts, USA, March 1976.

[65] George F. Coulouris, Jean Dollimore, and Tim Kindberg. Distributed

Systems: Concepts and Design. Pearson Education: Upper Saddle
River, NJ, USA and Addison-Wesley Longman Publishing Co., Inc.:
Boston, MA, USA, 4th rev. edition, June 2005. ISBN 0201180596

and 0321263545.
[66] Friedemann Mattern. Verteilte Basisalgorithmen, volume 226 of

Informatik-Fachberichte (IFB). Springer-Verlag GmbH: Berlin, Ger-
many, October 1989. ISBN 0-387-51835-5 and 3540518355.
Based on his dissertation at Prof. Dr. J. Nehmer’s group / Sonder-
forschungsbereich “VLSI-Entwurf und Parallelität” at the computer
science department of the University of Kaiserslautern.

[67] Valmir C. Barbosa. An Introduction to Distributed Algorithms. MIT
Press: Cambridge, MA, USA, October 1996. ISBN 0262024128.

[68] Thomas Weise, Michael Zapf, and Kurt Geihs. Evolving Proactive
Aggregation Protocols. In Michael O’Neill, Leonardo Vanneschi,

http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/sinclair_1999_OMNTDNEGP.html
http://users.cs.dal.ca/~mheywood/X-files/Publications/27242325.pdf
ftp://ftp.cs.york.ac.uk/papers/rtspapers/R:Tate:2009a.pdf
http://www.lancs.ac.uk/postgrad/gracep/msc.pdf
http://www-higashi.ist.osaka-u.ac.jp/~h-yamagu/resource/pdcs99.pdf
http://www.gta.ufrj.br/ftp/gta/TechReports/AMP03a.pdf
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/AQ.gp96.ps.gz
http://cn.cs.unibas.ch/pub/doc/2003-ains.pdf
http://cn.cs.unibas.ch/people/ly/doc/wac2005-lyct.pdf
http://cn.cs.unibas.ch/people/ly/doc/wac2005tr-lyct.pdf
http://www.isrl.uiuc.edu/~amag/langev/paper/werner92evolutionOf.html
http://www.cse.msu.edu/~mckinley/digital-evolution.pdf
http://www.cs.virginia.edu/~sullivan/ULS1/ULS07/mckinley.pdf
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/ofria_2004_AL.html
http://research.microsoft.com/users/lamport/pubs/time-clocks.pdf
http://books.google.de/books?as_isbn=0201180596
http://books.google.de/books?as_isbn=0321263545
http://books.google.de/books?as_isbn=0-387-51835-5
http://books.google.de/books?as_isbn=3540518355
http://books.google.de/books?as_isbn=0262024128


IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 12(2):242–265, APRIL 2012 24

Steven Matt Gustafson, Anna Isabel Esparcia-Alcázar, Ivanoe de
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