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Abstract. In this paper, we present the freight transportation planning
component of the INWEST project. This system utilizes an evolutionary
algorithm with intelligent search operations in order to achieve a high
utilization of resources and a minimization of the distance travelled by
freight carriers in real-world scenarios. We test our planner rigorously
with real-world data and obtain substantial improvements when com-
pared to the original freight plans. Additionally, different settings for the
evolutionary algorithm are studied with further experiments and their
utility is verified with statistical tests.
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1 Introduction

With the steadily increasing freight traffic resulting from trade inside the Eu-
ropean Union and global import and export as well [2], the need for intelligent
solutions for the strategic planning of logistics is growing steadily. Such a plan-
ning process has the goal of

1. increasing the profit by
2. ensuring the on-time collection and delivery of all parcels,
3. utilizing all available means of transportation (rail, trucks) efficiently, i. e.,

reducing the total transportation distances by using the capacity of the ve-
hicles to the full, while

4. reducing the CO2 production in order to become more environment-friendly.

Obviously, the last point is a side-effect of the others. By reducing the total dis-
tance covered and by transporting a larger fraction of the freight by (inexpensive)
trains, not only the hours of work of the drivers and the costs are reduced, but
also the CO2 production.

Additionally, an efficient freight planning process has two other constraints.
First, it must be dynamic and able to react to traffic jams by re-routing freight
vehicles. Second, experience has shown that hiring external carriers for a small



fraction of the freight in local areas can often reduce the number of required own
tours significantly and thus, increase the relative utilization of the own means of
transportation (see, for instance, Fig. 3.2). Therefore, freight planning is a multi-
objective optimization problem and the human operators must also be provided
with partial solutions to select from.

In this paper, we present the freight transportation planning component of
INWEST, a joint project funded by the German Federal Ministry of Economics
and Technology, which fulfills all these requirements. In the following section, we
discuss the general requirements of the logistics departments of the project part-
ners which specify the framework for our freight planning component.4 These
specific conditions ruled the related approaches outlined in Section 3 infeasi-
ble. In Section 4, we present freight planning as a multi-objective evolutionary
optimization [3] problem. The problem-specific representation of the solution
candidates and the intelligent search operators working on them are introduced,
as well as the objective functions derived from the requirements already stated
in this section. Our approach has been tested in many different scenarios and
the experimental results are summarized in Section 5. The paper concludes with
a discussion of the results and future work in Section 6.

2 Model based on the Real-World Situation

The basic unit of freight considered in this work is a swap body b, a standardized
container (C 745, EN 284 [4]) with an extent of roughly 7.5m× 2.6m× 2.7m and
special appliances for easy exchange between transportation vehicles or railway
carriages. Logistics companies like the DHL own thousands of such swap bodies
and we refer to their union as set B.

The set of all possible means of transportation will be referred to as F in
the following. All trucks tr ∈ F can carry v̂(tr) = 2 such swap bodies at once
whereas the capacity limits of trains z ∈ F are usually somewhere between 30
and 60 (v̂(z) ∈ [30..60]). Trains have fixed routes, departure, and arrival times.
Freight trucks can move freely on the map, but must usually perform cyclic
tours, i.e., return to their point of departure by the end of the day, so that the
human drivers are able to return home.

The clients and the depots of the logistics companies together form roughly
1000 locations from which freight may be collect or to which it may be delivered.
We will refer to the set of all these locations as L. Each transportation order
has a fixed time window [

̂

ts, t̂s] in which it must be collected from its source

ls ∈ L and a destination location and time window [

̂

td, t̂d] in which it must be
delivered to its destination ld ∈ L. It furthermore has a volume v which is an
integer multiple of the capacity of a swap body. Hence, a transportation order o

can fully be described by the tuple o =
〈
ls, ld, [

̂

ts, t̂s], [

̂

td, t̂d], v
〉
. Depending on

4 That partners in the project INWEST (Intelligente Wechselbrücksteuerung, funded
by the German Federation) are the Deutsche Post AG, DHL, the Micromata GmbH,
BIBA, and OHB Teledata GmbH ; see http://www.inwest.org/ [accessed 2008-10-29].



the day of week and national holidays etc., between 100 and 3000 such orders
have to be processed per day. In the following, all orders which require more
than one (v > 1) swap body will be split up into multiple orders requiring one
swap body (v = 1) each.

The result of the planning process is a set R of tours. Each single tour r

is described by a tuple r =
〈
ls, ld, f, ť, t̂, b, o

〉
where ls and ld are the start and

destination locations, ť and t̂ are the departure and arrival time, b = {b1, b2, . . . }
is a set of swap bodies which are carried by the vehicle f ∈ F and contain the
goods assigned to the orders o = {o1, o2, . . . }.

Additional to the constraints mentioned in the introduction, a freight plan-
ning system must ensure that the tours computed are physically sound. Neither
freight vehicles nor orders or swap bodies can be part of more than one tour at
a time and the capacity limits of all involved means of transportation must be
respected. If some of the freight is carried by trains, the fixed halting locations
of the trains as well as their assigned departure and arrival times must be con-
sidered. Of same importance are the restrictions imposed on the runtime of the
optimization process which must not exceed one day.

3 Related Work

The approaches discussed in the literature on freight transportation planning
can roughly be divided into two basic families: deterministic and stochastic or
metaheuristic methods. Especially the metaheuristic optimization methods re-
ceived more and more attention during the past years. The quality of solutions
produced by them is often much higher than that obtained by classical heuristics.

Well-known approaches for different types of vehicle routing problems and
freight transportation planning are Tabu Search [5–8], Simulated Annealing [9,
10], ant systems [11, 12], and especially evolutionary algorithms [13–16]. Most
of these publications outline special types of vehicle routing problems (e.g.,
the vehicle routing with time windows or vehicle routing with back hauls).
Usually, these problems are solved with single-objective optimization enriched
with problem-specific constraints. The size of such problems is typically roughly
around 100 customers or orders, as is the case in most of the example data sets
in [17, 18].

The authors of the publications mentioned in the text above often indicate
that metaheuristics succeed only when a good deal of domain knowledge is in-
corporated. This holds not only for vehicle routing, but is the case in virtually
every application of global optimization [19, 20]. Nevertheless, such knowledge
is generally used as an extension, as a method to tweak generic operators and
methods. In this work, we have placed problem-specific knowledge in the center
of the approach.



4 Evolutionary Approach

Evolutionary algorithms are a family of nature-inspired optimization algorithms
which utilize natural processes such as selection and reproduction in order to
refine a set (population) of solution candidates iteratively [21, 22]. This cycle
starts with the evaluation of the objective values of the solution candidates.
Based on these results, a relative fitness is assigned to each solution candidate in
the population. These fitness values are the criteria on which selection algorithms
operate that pick the most promising individuals for further investigation while
discarding the lesser successful ones. The solution candidates which managed to
enter the so-called mating pool are then reproduced, i. e., combined via crossover
or slightly changed by mutation operations. After this is done, the cycle starts
again in the next generation.

4.1 Search Space

When analyzing the problem structure outlined in Section 2, it becomes very
obvious that standard encodings such as binary [23] or integer strings, matrixes,
or real vectors cannot be used in the context of this special logistics planning
task. Although it might be possible to create a genotype-phenotype mapping
capable of translating an integer string into a tuple r representing a valid tour,
trying to encode a set R of a variable number of such tours in an integer string
is not feasible. First, there are many substructures of variable length such as the
sets of orders o and swap bodies b involved in a tour. Also, it would practically
be impossible to ensure the required physical soundness of the tours given that
the reproduction operations would randomly modify the integer strings.

In our work, we adhered to the premise that all solution candidates must
represent correct, i. e., physically sound, solutions and none of the search opera-
tions is allowed to violate this correctness. A solution candidate R not necessarily
contains a complete plan which manages to deliver every order. Instead, partial
solutions (as demanded in Section 1) are admitted, too. However, all individuals
in the populations not only respect the laws of physics but also requirements
such as cyclic routes for trucks.

In order to achieve such a behavior, it is clear that all reproduction opera-
tions of our evolutionary algorithm must have access to the complete tuples r.
Therefore, the phenotypes are not encoded at all but instead, the plan objects
in their native representations as illustrated in Figure 1.

4.2 Search Operations

By using this explicit representation, the search operations have full access to
all information in the freight plans. Standard crossover and mutation operators
are, however, no longer applicable. Instead, intelligent operators have to be in-
troduced which respect the correctness of the solution candidates. In total, three
crossover and sixteen mutation operations have been defined, each dealing with
a specific constellation in the phenotypes and performing one distinct type of
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Fig. 1: The structure of the phenotypes R.
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Fig. 2: Some mutation operators from the freight planning EA.

modification. During the evolution, individuals to be mutated are processed by a
randomly picked operator. If the operator is not applicable because the individ-
ual does not exhibit the corresponding constellation, another operator is tried
and so on. Two individuals to be combined with crossover are processed by a
randomly selected operator as well.

Obviously, we cannot give detailed specifications on all twenty genetic oper-
ations [24] (including the initial individual creation) in this paper. Instead, we
will outline the four mutation operators sketched in Figure 2 exemplarily.

The first operator (Fig. 2.1) is applicable if there at least one order o which is
not delivered if the plan in the input phenotype R was carried out. This operator
chooses randomly from all available means of transportation. Available in this
context means not involved in another tour for the time between the start and
end time of the order. The freight transporters closer to the source of the order
are picked with higher probability. Then, a swap body is allocated in the same



manner. This process leads to between one and three new tours which are added
to the phenotype. If the transportation vehicle is a truck, a fourth tour is added
which travels back to the origin.

Fig. 2.2 illustrates one operator which extends a given set of tours by in-
cluding a new order in the route of a vehicle. The mutator sketched in Fig. 2.3
does the same if an additional order can be included in already existing tours.
For all operators which add new orders, swap bodies, or tours to the solution
candidates, similar operations which remove these elements are provided.

Especially interesting is the “truck-meets-truck” mechanism. Often, two
trucks are carrying out deliveries in opposite directions (B → D and D → B

in Fig. 2.4). If the time windows of the orders allow it, the two involved trucks
can meet at a halting point somewhere in the near of their routes and exchange
their freight. This way, the total distance that they have to drive can almost be
halved.

The crossover operators combine two phenotypes by intermixing their tours.
In this process, tours which belong together such as those created in the first
mutator are kept together.

4.3 Objective Functions

The freight transportation planning process run by the evolutionary algorithm is
driven by three objective functions. These functions, all subject to minimization,
are based on the requirements stated in Section 1 and are combined via Pareto
comparisons [3, 21] in the subsequent fitness assignment processes.

f1: Order Completion One of the most important aspects of freight planning
is to deliver as many of the orders as possible. Human operators would
need to hire external carriers for orders which cannot be delivered (due to
insufficient resources, for instance). Therefore, the first objective function
returns the number of orders not considered in a freight plan.

f2: Kilometers Driven By using a distance matrix kept in memory, the sec-
ond objective function determines the total distance covered by all vehicles
involved. Minimizing this number will lead to less fuel consumption and thus,
lower costs and lesser CO2 production.

f3: Full Utilization of the Capacities The third objective function mini-
mizes the spare capacities of the vehicles involved in tours. In other words,
it counts the total volume left empty in the swap bodies on the road and the
unused swap body slots of the trucks and trains.

5 Experiments

We have evaluated our freight planning system rigorously. Therefore, we have
carried out a series of tests according to the full factorial design of experiments
paradigm [25, 26]. These experiments (which we will discuss in Section 5.1) are
based on a single real-world set of orders. The results of additional experiments



performed with different datasets are outlined in Section 5.2. All data used has
been reconstructed from the actual order database of the project partner DHL,
one of the largest logistics companies worldwide.

The experiments were carried out using a simplified distance matrix for both,
the EA and the original plans. Furthermore, legal aspects like statutory idle
periods of the truck drivers have not been incorporated. However, an analysis
of the results showed that these were not violated by the plans. The EA is able
to utilize trains, but since the original plans did not do this, we turned off this
feature in the experiments too, in order to keep the results comparable.

5.1 Full Factorial Tests

The full factorial test series is based on a set of 183 orders reconstructed from
one day in December 2007. The original freight plan for these orders contained
159 tours which covered a total distance of d = 19 109 km. The capacity of the
vehicles involved was used to 65.5%.

ss The parent individuals in the population are either discarded (generational,
ss = 0) or compete with their offspring (steady-state, ss = 1).

el The best solution candidates were either preserved (elitism, el = 1) or not
(no elitism, el = 0).

ps Three different population sizes were tested: ps ∈ {200, 500, 1000}
fa Either simple Pareto-Ranking [3] (fa = 0) or an extended assignment process

with sharing (fa = 1, called variety preserving in [21]) were applied.
cp The simple convergence prevention (SCP) method proposed in [21] was either

used (cp = 1) or not (cp = 0).
mr/cr Different settings for the mutation rate mr ∈ {0.6, 0.8} and the crossover

rate cr ∈ {0.2, 0.4} were tested.

These settings were varied in the experiments and each one of the 192 possible
configurations was tested ten times. All runs utilized a tournament selection
scheme with five parents and were granted 10 000 generations. The following
measurements were collected:

ar The number of runs which found plans that completely covered all orders.
at The median number of generations needed by the runs succeeding in this to

find such plans.
gr The number of runs which managed to find such plans which additionally

were at least as good as the original freight plans.
gt The median number of generations needed by the runs succeeding in this to

find such plans.
et The median number of generations after which f2 did not improve by more

than 1%, i. e., the point where the experiments could have been stopped
without significant loss in the quality of the results.

eτ The median number of individual evaluations until this point.
d The median value of f2, i. e., the median distance covered.



# mr cr cp el ps ss fa ar at gr gt et eτ d

1. 0.8 0.4 1 1 1000 1 1 10/10 341 10/10 609 3078 3 078 500 15 883 km
2. 0.6 0.2 1 0 1000 1 1 10/10 502 10/10 770 5746 5 746 500 15 908 km
3. 0.8 0.2 1 1 1000 1 1 10/10 360 10/10 626 4831 4 831 000 15 929 km
4. 0.6 0.4 1 0 1000 1 1 10/10 468 10/10 736 5934 5 934 000 15 970 km
5. 0.6 0.2 1 1 1000 1 1 10/10 429 10/10 713 6236 6 236 500 15 971 km
6. 0.8 0.2 1 0 1000 1 1 10/10 375 10/10 674 5466 5 466 000 16 003 km
7. 0.8 0.4 1 1 1000 1 0 10/10 370 10/10 610 5691 5 691 500 16 008 km
8. 0.8 0.2 1 0 1000 0 1 10/10 222 10/10 450 6186 6 186 500 16 018 km
9. 0.8 0.4 0 0 1000 0 1 10/10 220 10/10 463 4880 4 880 000 16 060 km
10. 0.8 0.2 0 1 1000 0 0 10/10 277 10/10 506 2862 2 862 500 16 071 km

Table 1: The top-ten evaluation results.

Table 1 contains the best ten configurations, sorted according to gr, d, and
eτ . The best configuration managed to reduce the distance covered by over
3000 km (17%) on a constant basis. Even the configuration at rank 170 (not in
Table 1) saved almost 1100 km in median. 172 out of the 192 test series managed
to surpass the original plans for the orders in the data set in ten out of ten runs
and only ten configurations were unable to achieve this goal at all.

We furthermore applied significance tests (sign and Wilcoxon’s signed rank
test [27, 21]) in order to test which parameter settings have significant positive
influence. On a significance level of α = 0.02, we considered a tendency only if
both tests agreed. Applying the convergence prevention mechanism (SCP) [21],
larger population sizes, variety preserving fitness assignment [21], elitism, and
higher mutation and lower crossover rates have all significantly positive influence
in general.

One run of the algorithm (prototypically implemented in Java) for this data
set takes around three hours, for 1000 orders it still fulfills the requirement of
delivering result in 24 hours. Runs with 3000 orders, however, take much longer.
These measurements were taken on a single dual-core 2.6GHz machine, which
is only a fraction of the capacity available in the dedicated data centers of the
project partners. It is well known that EAs can be efficiently distributed and
thus, the final implementation will be able to deliver results in time for all
situations.

5.2 Tests with Multiple Datasets

We have run experiments with many other real-world order datasets for which
the actual freight plans used by the project partners were available. In all scenar-
ios, our approach yielded an improvement which was never below 2.3%, usually
above 7%, and for some days even reaching areas above 15%.

Figure 3 illustrates the best f2-values (the total kilometers) of the individ-
uals with the most orders satisfied in the population for two typical example



40e3

45e3

50e3

55e3

60e3

f2

70e3

4000 80000

generations
order satisfaction
goal reached

original plan
performance

100% order satisfaction

1200

Fig. 3.1: For 642 orders (14% better).

20e3

40e3

0 4000 8000

60e3

f2

100e3

20e316e312e3

generations
order satisfaction
goal reached

original plan
performance

100% order satisfaction
99% order satisfaction

Fig. 3.2: For 1016 orders (3/10% better).

Fig. 3: Two examples for the freight plan evolution.

evolutions. In the two diagrams, the total distance first increases as the num-
ber of orders satisfied by the solution candidates increases. At some point, all
orders are satisfied and now, the optimization of f2 begins to kick in fully. Soon
afterwards, the efficiency of the original plans is surpassed.

6 Conclusions

In this paper we presented the INWEST freight planning component which
utilized an evolutionary algorithm with intelligent reproduction operations. Al-
though this issue has not been elaborated on, the system returns a full Pareto
frontier of the planning problem to the human operator, who can then make her
choice according to the given circumstances. Our approach was tested rigorously
on real-world data from the INWEST partners and achieved excellent results.

In the current phase, the component was implemented rather prototypically.
A re-implementation in a more efficient manner will most likely lead to speed-
up of a few percent. Additionally, features like online updates of the distance
matrix which is used to compute f2 and by the genetic operators for determining
the time a truck needs to travel from one location to another, are planned. The
system will then be capable to a) perform planning for the whole orders of one
day in advance and b) update smaller portions of the plans online if traffic jams
occur. Then, the system will be deployed in the computer centers of the project
partners.
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