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Abstract. Estimation of Distribution Algorithms (EDAs) are evolu-
tionary optimization methods that build models which estimate the dis-
tribution of promising regions in the search space. Conventional EDAs
use only one single model at a time. One way to efficiently explore multi-
ple areas of the search space is to use multiple models in parallel. In this
paper, we present a general framework for both single- and multi-model
EDAs. We propose the use of clustering to divide selected individuals into
different groups, which are then utilized to build separate models. For
the multi-model case, we introduce the concept of model recombination.
This novel framework has great generality, encompassing the traditional
Evolutionary Algorithm and the EDA as its extreme cases. We instanti-
ate our framework in the form of a real-valued algorithm and apply this
algorithm to some well-known benchmark functions. Numerical results
show that both single- and multi-model EDAs have their own strengths
and weaknesses, and that the multi-model EDA is able to prevent pre-
mature convergence.

1 Introduction

Traditional Evolutionary Algorithms (EAs) are based directly on the idea of
survival of the fittest [25]. Only the strongest candidate solutions of each gen-
eration survive and become the parents for the next generations. Estimation of
Distribution Algorithms (EDAs) work in a different way. These algorithms do
not optimize candidate solutions, but learn how to create good solutions [16].
Instead of applying the conventional mutation and crossover operators, EDAs
typically use selected candidate solutions to build a statistical model which is
then sampled in order to create new points in the search space.
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The models used in EDAs usually have a univariate probability distribu-
tion and, in the continuous case a unimodal one. Such a distribution can only
represent one single basin of attraction for one optimum. Sooner or later, the al-
gorithm has to abandon investigating all but one interesting region in the search
space and converges. EDAs using multimodal distribution models, on the other
hand, are often very complicated and thus, brittle.

In this paper, we present a framework that enables us to generate multiple
(univariate/unimodal) probability models to explore different areas of the search
space in parallel while, at the same time, maintain the simplicity and generality
of the approach. Via this framework, we introduce a new real-valued EDA and
evaluate its performance in both single- and multi-model cases. We show that
the multi-model version has the ability to prevent premature convergence. The
trade-off, however, is the slower convergence speed when it comes close to the
global optimum.

The rest of this paper is organized as follows: in Section 2, we discuss some
related work in detail. The proposed framework is presented in Section 3. We
then report the numerical experiments carried out and highlight some of the
main results obtained in Section 4. Finally, we draw conclusions in Section 5
and outline possible future works.

2 Related Work

Although being part of the EA family, EDAs are largely different from the tra-
ditional EAs (see [9, 12, 16, 17, 19, 25]). Instead of improving possible solutions
step by step, EDAs try to evolve a model that describes how a perfect solution
should look like. The central idea is that such a model is defined by several
parameters which will converge during the optimization process. The span of
possible values which can be sampled from it will become smaller and smaller
over time. Eventually, the model should turn out to be so specific that only
the global optimum can be sampled. However, many real-world problems are
multimodal in nature and have many local or global optima.

One of the main challenges in EDAs is that the algorithms may lose diversity
too quickly [23] and thus converge towards a local optimum. A simple way to
increase diversity in EDAs is by mutating the model itself, leading to shifts in the
sampled region. If the newly explored parts of the search space are inferior, the
algorithms are likely to find a way back to the previous parameters. Otherwise,
they escape the local optimum. This approach is relatively old and has already
been applied in previous studies [2, 20].

Diversity can also be created without permanently mutating the model. In-
stead, a model mutation may be applied which only affects the sampling of
one single genotype and is reverted thereafter. This way, the risk that a good
model may get lost is circumvented. Such an operator is called the sampling
mutation [23, 24].

These mechanisms, however, cannot prevent convergence to a single opti-
mum. They are good mostly for unimodal optimization. Our approach, on the
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other hand, does not only maintain a diverse population; it is suitable for mul-
timodal optimization without needing any further modification.

Other methods for improving diversity include those that make use of clus-
tering techniques. One such example is the Evolutionary Bayesian Classifier-
based Optimization Algorithm (EBCOA) proposed by Miquélez et al. [11]. In
the EBCOA, the population is divided into a fixed number |K| of classes before
the model building phase. This is achieved by splitting the population pop into
equal-sized groups of individuals from the fittest to the least fit one and assign-
ing a label k(p) to each individual p ∈ pop. Eventually, only a subset C of the
|K| classes are selected to facilitate learning. This can be justified because it em-
phasizes the differences between the classes and reduces noise [11, 23]. However,
if the problem is multimodal, clusters limited by iso-fitness planes will span a
wide area and be ill-shaped.

Lu and Yao [10] introduced a basic multi-model EDA scheme for real-valued
optimization. This scheme utilizes clustering in a way similar to our work pre-
sented here. However, they focused mainly on numerical optimization whereas
our aim is to have a general framework with possible instantiations of different
algorithms for numerical optimization. Platel et al. [18] proposed a quantum-
inspired EA, which is an EDA for bit-string based search spaces. This rather
complicated algorithm utilizes a structured population similar to the use of
demes in EAs, making it a multi-model EDA. Gallagher et al. [7] extended
the Population-Based Incremental Learning (PBIL) algorithm [2] to real-valued
optimization by using an Adaptive Gaussian mixture model density estimator.
This approach can deal with multimodal problems too but, in our opinion, is
more complex than multi-model algorithms that utilize clustering.

Our framework is general and does not bound to numerical or binary opti-
mization. Also, the idea of model recombination has not been used in [7, 10, 18].
More EDA approaches that utilize clustering in different ways can be found
in [1, 6, 14, 21]. Similar to the related work already discussed, they lack the
generality and features of the approach presented here.

3 The Framework

In the optimization domain, it is generally not possible to determine whether
the best solution currently known is situated on a local or a global optimum and
thus, if the convergence is acceptable.

As aforementioned, single-model EDAs may run the risk of premature con-
vergence to a local optimum. Finding a general mechanism for utilizing multiple
models which repel each other may thus be a more efficient way to prevent
premature convergence. Our framework provides an easy blueprint for creating
EDAs that can use an arbitrary number of simple, unimodal models.

We present an idea of uniting classical EAs which utilize mutation and
crossover with EDAs which consist of model construction and sampling steps.
This framework uses multiple models at the same time – on one hand, these
models correspond to the stochastic models in EDAs that represent good re-
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gions in the search space (that are used to sample new candidate solutions too);
on the other hand, each of the models is also treated like a single individual in a
classical EA, can be recombined with other individuals (models) and/or mutated
(which equals the model sampling step).

The major contribution here is the introduction of the recombination op-
eration into EDAs. Crossover operators are one of the main reasons why EAs
excel in many domains. The typical types of crossover from Genetic Algorithms,
the ternary crossover from Differential Evolution, the ρ-ary recombination from

(µ/ρ+, λ) Evolution Strategies [3, 25], or the sub-tree crossover of Genetic Pro-

gramming (to even the population dynamics of Particle Swarm Optimization),
can easily be applied within our framework. It thus becomes possible to utilize
the well-known strengths of these operations which, so far, were not available in
EDAs.

3.1 The Multi-Model EDA

The multi-model EDA is achieved in a very simple way: by building and op-
timizing n different models simultaneously. The flow of the algorithm can be
described in eight steps as follows:

1. The first generation will be generated by sampling n∗m random new points
uniformly distributed over the whole search space (Figure 1a).

2. The fitness of each candidate solution is evaluated.
3. After all candidate solutions have been evaluated, the best s individuals are

selected by truncation selection (Figure 1b).
4. The selected points are clustered in c clusters (Figure 1c). It is important to

note that c may be 1) a fixed parameter, 2) subject to self-adaption, or 3)
determined by the clustering algorithm itself on the fly.

5. One model is computed for each cloud of points (Figure 1d).
6. n− c additional models are generated by model recombination (Figure 1e).
7. From each of the n models, m new points are sampled (i.e., n∗m new points

in total, see Figure 1f).
8. If the termination criterion is not met, the algorithm continues at step 2.

By using multiple models created from point sets resulting from clustering the
candidate solutions, we assume it is likely that some of the clusters do not reside
on local optima. Furthermore, and perhaps more importantly, clusters located
closely together in the search space may repel each other, thus increasing the
chance of the search to escape local optima.

Assume, for instance, a one-dimensional real search space and normal distri-
butions characterized by expected values µ and standard deviations σ as models,
as sketched in Figure 2. If two clusters border to each other, the resulting models
will significantly intersect (line z in Figure 2). Sampling model 2 may result in
individuals occurring on the left of z, in the shaded region marked with L. After
the next clustering step, the surviving individuals in L will likely be assigned
to a cluster 1′ (replacing 1), regardless of whether they stem from 1 or 2. The
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(a) the first generation (b) selection of s solu-
tions

(c) clustering of selected
solutions in c clusters

(d) the model building
phase

(e) recombine two mod-
els to a new one

(f) a new generation is
sampled

Fig. 1: Visualization of the steps of a search run of one particular real-valued
instance (RVMMEDA) of our framework. The circles are candidate solutions,
the × are cluster centroids and the square is the global optimum.

samples left of z are thus (likely) “lost” for model 2. Since this happens only on
the left, the mean µ2 will shift towards the right (µ′

2). The same will happen
for model 1 with all samples right of z. Model 1 and 2 will not converge but
be forced to move away from each other. This force works against a selection
pressure that would cause a conventional EDA to converge. If a local optimum
would be located at z, there is a good chance that the algorithm can escape. Pre-
mature convergence hence becomes less likely and the chance to find the basin
of attraction of the global optimum increases.

3.2 The Real-Valued Multi-Model EDA (RVMMEDA)

The RVMMEDA is a trivial real-valued implementation of our new multi-model
EDA and follows exactly the eight steps given before. A model is determined by
the mean vector and the covariance matrix of a cluster of points. As in [4, 5, 15],
we use the k-means [8] algorithm and a model representing a multi-dimensional
normal distribution defined by the mean vector µ and the covariance matrix Σ
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Fig. 2: Models repelling each other in a multi-model EDA.

of the candidate solutions in a cluster. Sampling new points from such a model
is performed as follows:

1. Draw a standard normally-distributed random value for each dimension.
2. Scale these values with the square root of the Eigen value belonging to the

corresponding dimension of Σ.
3. Rotate the point by multiplying and adding up the values for each dimension

with the values of the Eigen vector belonging to the corresponding dimension
of Σ, i.e., the iso-probability ellipsoids are rotated to the correct alignment.

4. Move the point by adding µ in order to ensure that the expected value of
the samples equals the arithmetic mean of the points used for constructing
the model.

Besides building a model from a cluster of points, new models can be created by
recombining the existing ones. Here, we use a simple approach where two mean
vectors are selected and a dominant crossover operation is applied similar to the
one used in Evolution Strategies (see [3]). After this, a new covariance matrix
will be computed from the two parent mean vectors and the newly generated
vector.

3.3 A Framework Unifying EAs and EDAs

By introducing model recombination we create a framework that unifies EAs
and EDAs. EAs are population-based optimization algorithms. Assume that the
population of an EA applied to a real-valued optimization problem consists of
ps individuals and that the complete population is replaced by its offspring in
each iteration. In this case, the EA will create ps new candidate solutions in each
generation by either mutating one parent individual or recombining two existing
candidate solutions.

In the proposed multi-model EDA, n models exist in parallel and each of
them is sampled exactly m times, hence resulting in m ∗ n = ps new points
in every generation. If n = ps and m = 1, each model corresponds to exactly
one candidate solution. The model sampling process then avails to a mutation
operation and the model recombination would equal a crossover operator in an
EA. In this case, the multi-model EDA becomes a basic EA. In the other extreme
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end where n = 1 and m = ps, the multi-model EDA then proceeds in exactly
the same way as an ordinary, single-model EDA.

Our multi-model EDAs thus bridge the gap between conventional EAs and
EDAs, enabling the possibility to define intermediate forms between the two.
An optimizer based on this may self-adapt and decide whether it would prefer
to act more as an EA or EDA, depending on the current situation.

It should be noted that, although we instantiate our framework in the form
of a real-valued algorithm for continuous search spaces, the fundamental idea
is by no means limited to that. The algorithm could easily be applied to bit-
string based search spaces, for example, by imposing it on top of the hBOA
[17, 21] algorithm. Alternatively, we could also use it for Genetic Programming
by building and sampling models according to [20].

4 Experiments and Results

4.1 Experimental Settings

To analyze the performance of both single- and multi-model EDAs in our frame-
work, we performed experiments with five well-known numerical benchmarks
[25]: the Griewank, the Michalewicz, the Rosenbrock, the Summation Cancel-
lation, and the Stair functions for two different search space dimensions d ∈
{5, 25}. The population size ps was fixed to 1000 and no more than 10000 gener-
ations were performed. For the number of models n and the number of clusters c
we tested all values in 1..10 while keeping c ≤ n. In addition, we tried all mating
pool sizes s from {200, 300, 400, 500, 600}. For each configuration, at least 10 to
a maximum of 30 independent runs were performed.

4.2 Experimental Results

Due to the resulting massive amount of experiments, we can only outline the
main findings and trends that are of interest. A full report is provided in [13].

For the Griewank function, the minimum was found by the single-model
EDA in every run. When more than one model was used, the global optimum
was not found. The results became worse with increasing number of models and
applications of the recombination operator. Here, we observed that the clus-
ters have come very close to the global optimum and virtually surrounded it.
However, the model-repelling mechanism worked so well that the clusters did
not converge (see the left side of Figure 3). In practice, this would lead to the
discovery of robust near-optimal solutions that, even with slight perturbations,
retain their good features.

The Michalewicz function was hard for both single- and multi-model EDAs
to solve. None of the approaches could fully solve it. They were only able to
approach the global optimum with a precision of 10−4.

Neither the single- nor the multi-model EDA found the global optimum of
the Rosenbrock function more than five times in 30 runs. The RVMMEDA has
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(a) generation g = 0

(b) single-model,
g = 5

(c) multi-model,
g = 5

(d) single-model,
g = 10

(e) multi-model,
g = 10

Applied to the Griewank function.

(f) single-model,
a few generations

(g) multi-model,
a few generations

(h) single-model,
g ∈ 10..20

(i) multi-model,
g ∈ 10..20

(j) single-model,
many generations

(k) multi-model,
many generations

Applied to the Rosenbrock function.

Fig. 3: The progress of single- and multi-model EDAs (the little square is the
optimum).

been more efficient in terms of the mean of the achieved fitness, especially in the
settings of a low crossover rate. As the Rosenbrock function has a long curved
channel, most of the points were sampled in this channel by both EDAs after a
few generations. The single-model EDA converged to a local optimum at xi = 0
after the channel was reached. The RVMMEDA, however, was able to explore
multiple optima at once, as shown in (the right side of) Figure 3. It can therefore
escape the local optimum. After several additional generations, it sampled all
points in the area around the global optimum. This clearly shows the strength
of the proposed approach and the cluster repelling mechanism.

For the Summation Cancelation function, similar behavior as in the Griewank
function was observed. The single-model EDA performed well with a high degree
of successful runs and the multi-model EDA, for some settings, found the opti-



mum only in 1 out of 30 runs. Here, we observed a higher average fitness when
at least one model is created with crossover. However, if the number of models
created this way in each generation is too high, the average fitness decreases
again.

On the Stair function, the single-model EDA was unable to find the global
optimum in any single run, whereas the RVMMEDA easily located it in all 30
runs across many configurations. From the results, we observed that for all con-
figurations solving this problem more than one time, there was at least one model
created with recombination. Together with the results from the Summation Can-
celation function, this strongly indicates that the utility of model crossover is
favorable. The Stair function is known to be a hard problem for a conventional
EDA which usually converges after climbing only a few steps, misled by the
neutrality on the stairs. The RVMMEDA, on the other hand, uses its crossover
operator to jump onto other stairs.

In a nutshell, the single-model EDA has performed better on the Griewank
and Summation Cancelation functions, while the multi-model EDA has done
better on the Stair and (partially on) Rosenbrock functions. In addition, the
multi-model EDA has demonstrated great potential in preventing premature
convergence.

5 Conclusions and Future Work

In this paper, we have introduced a general and versatile framework for single-
and multi-model EDAs. Our multi-model EDA is a new paradigm that aims to
prevent the search process from getting stuck at local optima. Instead of just
one area, it can explore different interesting regions of the search space at once.

By using the RVMMEDA, a specific algorithm derived from this framework,
we studied the performance of single- and multi-model EDAs. Five different
benchmark functions were used in the evaluation. Numerical experiments on
these functions showed that the RVMMEDA variant is extremely good at pre-
venting premature convergence. The Rosenbrock function serves as a good ex-
ample of this, where the RVMMEDA has outperformed the single-model EDA.
The Stair function is another such example which additionally shows that model
recombination can be highly effective. However, the strength of the RVMMEDA
could also be its drawback: it can quickly detect the basin of attraction of the
global optimum, but convergence to the optimum itself is very slow. This draw-
back can also be its strength though, as the optima discovered tend to be robust
(i.e., will retain their good characteristics even when perturbed).

In future work, we will test our framework on bit-string based search spaces
by applying it to the benchmark given in [22]. We will further extend the frame-
work with self-adaptation capabilities: when the clusters remain close to each
other for some time, their numbers should automatically and slowly be reduced
towards one in order to benefit from the better convergence behavior of a single-
model EDA. We will introduce this method for general search spaces and also
provide specific instantiations.
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