
Solving Job Shop Scheduling Problems
Without Using a Bias for Good Solutions

Thomas Weise · 汤卫思

tweise@hfuu.edu.cn · http://iao.hfuu.edu.cn/5

Institute of Applied Optimization (IAO) 应用优化研究所

School of Artificial Intelligence and Big Data 人工智能与大数据学院

Hefei University 合肥学院

Hefei, Anhui, China 中国安徽省合肥市

mailto:tweise@hfuu.edu.cn
http://iao.hfuu.edu.cn/5


Outline

1. Job Shop Scheduling Problem (JSSP)

2. Frequency Fitness Assignment (FFA)

3. Experiment and Results

4. Invariances

5. Conclusions



Job Shop Scheduling Problem (JSSP)



Job Shop Scheduling Problem (JSSP)

• The JSSP is an NP-hard3 4 scheduling task.



Job Shop Scheduling Problem (JSSP)

• The JSSP is an NP-hard3 4 scheduling task.

• A JSSP instance defined by n jobs with operations that need to be
processed by each of the m machines in a job-specific order.



Job Shop Scheduling Problem (JSSP)

• The JSSP is an NP-hard3 4 scheduling task.

• A JSSP instance defined by n jobs with operations that need to be
processed by each of the m machines in a job-specific order.

• Each such operation of each job needs a specific time.



Job Shop Scheduling Problem (JSSP)

• The JSSP is an NP-hard3 4 scheduling task.

• A JSSP instance defined by n jobs with operations that need to be
processed by each of the m machines in a job-specific order.

• Each such operation of each job needs a specific time.

job 3

job 2

job 1

job 0

n

m



Job Shop Scheduling Problem (JSSP)

• The JSSP is an NP-hard3 4 scheduling task.

• A JSSP instance defined by n jobs with operations that need to be
processed by each of the m machines in a job-specific order.

• Each such operation of each job needs a specific time.

• The goal is to find the assignment of jobs to machines with the
smallest possible makespan, i.e., schedule that finishes fastest.



Encoding and Solutions

• We encode solutions as permutations with repetitions, i.e., where
each of the n job IDs appears m times in a linear string5–7.



Encoding and Solutions

• We encode solutions as permutations with repetitions, i.e., where
each of the n job IDs appears m times in a linear string5–7.

• The strings are processed from front to end to obtain a Gantt chart.



Encoding and Solutions

job 3

job 2

job 1

job 0

n

m



Encoding and Solutions

example point in the search space:

permutation with repetitions:

job 3

job 2

job 1

job 0

n

m



Encoding and Solutions

m
a
c
h
in

e

example point in the search space:

permutation with repetitions:

job 3

job 2

job 1

job 0

n

m



Encoding and Solutions

m
a
c
h
in

e

example point in the search space:

permutation with repetitions:

job 3

job 2

job 1

job 0

n

m



Encoding and Solutions

m
a
c
h
in

e

example point in the search space:

permutation with repetitions:

job 3

job 2

job 1

job 0

n

m



Encoding and Solutions

m
a
c
h
in

e

example point in the search space:

permutation with repetitions:

job 3

job 2

job 1

job 0

n

m



Encoding and Solutions

m
a
c
h
in

e

example point in the search space:

permutation with repetitions:

job 3

job 2

job 1

job 0

n

m



Encoding and Solutions

m
a
c
h
in

e

example point in the search space:

permutation with repetitions:

job 3

job 2

job 1

job 0

n

m



Encoding and Solutions

m
a
c
h
in

e

example point in the search space:

permutation with repetitions:

job 3

job 2

job 1

job 0

n

m



Encoding and Solutions

m
a
c
h
in

e

example point in the search space:

permutation with repetitions:

job 3

job 2

job 1

job 0

n

m



Encoding and Solutions

m
a
c
h
in

e

example point in the search space:

permutation with repetitions:

job 3

job 2

job 1

job 0

n

m



Encoding and Solutions

m
a
c
h
in

e

example point in the search space:

permutation with repetitions:

job 3

job 2

job 1

job 0

n

m



Encoding and Solutions

m
a
c
h
in

e

example point in the search space:

permutation with repetitions:

job 3

job 2

job 1

job 0

n

m



Encoding and Solutions

m
a
c
h
in

e

example point in the search space:

permutation with repetitions:

job 3

job 2

job 1

job 0

n

m



Encoding and Solutions

m
a
c
h
in

e

example point in the search space:

permutation with repetitions:

job 3

job 2

job 1

job 0

n

m



Encoding and Solutions

m
a
c
h
in

e

example point in the search space:

permutation with repetitions:

job 3

job 2

job 1

job 0

n

m



Encoding and Solutions

m
a
c
h
in

e

example point in the search space:

permutation with repetitions:

job 3

job 2

job 1

job 0

n

m



Encoding and Solutions

m
a
c
h
in

e

example point in the search space:

permutation with repetitions:

job 3

job 2

job 1

job 0

n

m



Encoding and Solutions

m
a
c
h
in

e

example point in the search space:

permutation with repetitions:

job 3

job 2

job 1

job 0

n

m



Encoding and Solutions

m
a
c
h
in

e

example point in the search space:

permutation with repetitions:

job 3

job 2

job 1

job 0

n

m



Encoding and Solutions

m
a
c
h
in

e

example point in the search space:

permutation with repetitions:

job 3

job 2

job 1

job 0

n

m



Encoding and Solutions

m
a
c
h
in

e

example point in the search space:

permutation with repetitions:

job 3

job 2

job 1

job 0

n

m



Encoding and Solutions

m
a
c
h
in

e

example point in the search space:

permutation with repetitions:

m
a
k
e
s
p
a
n
: 

ti
m

e
 w

h
e
n
 a

ll
 j
o
b
s
 a

re
 fi

n
is

h
e
d

job 3

job 2

job 1

job 0

n

m



Encoding and Solutions

m
a
c
h
in

e

example point in the search space:

permutation with repetitions:

m
a
k
e
s
p
a
n
: 

ti
m

e
 w

h
e
n
 a

ll
 j
o
b
s
 a

re
 fi

n
is

h
e
d

job 3

job 2

job 1

job 0

n

m



Encoding and Solutions

• We encode solutions as permutations with repetitions, i.e., where
each of the n job IDs appears m times in a linear string5–7.

• The strings are processed from front to end to obtain a Gantt chart.



Encoding and Solutions

• We encode solutions as permutations with repetitions, i.e., where
each of the n job IDs appears m times in a linear string5–7.

• The strings are processed from front to end to obtain a Gantt chart.

• Unary search operator move picks two random indices in the string
with different job IDs and swaps these IDs.



Encoding and Solutions

• We encode solutions as permutations with repetitions, i.e., where
each of the n job IDs appears m times in a linear string5–7.

• The strings are processed from front to end to obtain a Gantt chart.

• Unary search operator move picks two random indices in the string
with different job IDs and swaps these IDs.

• All of this is fairly standard (≥ 27 year old stuff).



Frequency Fitness Assignment (FFA)



Solving Optimization Problems

• Input: objective function f : X 7→ Y that maps the elements of a
solution space X to a subset Y ⊆ R of the real numbers R.



Solving Optimization Problems

• Input: objective function f : X 7→ Y that maps the elements of a
solution space X to a subset Y ⊆ R of the real numbers R.

• How do we find good solution?



Solving Optimization Problems

• Input: objective function f : X 7→ Y that maps the elements of a
solution space X to a subset Y ⊆ R of the real numbers R.

• How do we find good solution?

• Start at a random solution.



Solving Optimization Problems

• Input: objective function f : X 7→ Y that maps the elements of a
solution space X to a subset Y ⊆ R of the real numbers R.

• How do we find good solution?

• Start at a random solution, remember best-so-far solution.



Solving Optimization Problems

• Input: objective function f : X 7→ Y that maps the elements of a
solution space X to a subset Y ⊆ R of the real numbers R.

• How do we find good solution?

• Start at a random solution, remember best-so-far solution, and
iteratively create modified copies of it using move.



Solving Optimization Problems

• Input: objective function f : X 7→ Y that maps the elements of a
solution space X to a subset Y ⊆ R of the real numbers R.

• How do we find good solution?

• Start at a random solution, remember best-so-far solution, and
iteratively create modified copies of it using move.

• Most fundamental concept in optimization: Better solutions are
preferred.



Solving Optimization Problems

• Input: objective function f : X 7→ Y that maps the elements of a
solution space X to a subset Y ⊆ R of the real numbers R.

• How do we find good solution?

• Start at a random solution, remember best-so-far solution, and
iteratively create modified copies of it using move.

• Most fundamental concept in optimization: Better solutions are
preferred.

• Some techniques like Simulated Annealing, Tabu Search, or GAs with
Sharing and Niching have methods to prevent premature convergence
by sometimes accepting worse solutions.



Solving Optimization Problems

• Input: objective function f : X 7→ Y that maps the elements of a
solution space X to a subset Y ⊆ R of the real numbers R.

• How do we find good solution?

• Start at a random solution, remember best-so-far solution, and
iteratively create modified copies of it using move.

• Most fundamental concept in optimization: Better solutions are
preferred.

• Some techniques like Simulated Annealing, Tabu Search, or GAs with
Sharing and Niching have methods to prevent premature convergence
by sometimes accepting worse solutions . . . but in the core, they
almost all of the time apply this bias towards better solutions.



Solving Optimization Problems

• Input: objective function f : X 7→ Y that maps the elements of a
solution space X to a subset Y ⊆ R of the real numbers R.

• How do we find good solution?

• Start at a random solution, remember best-so-far solution, and
iteratively create modified copies of it using move.

• Most fundamental concept in optimization: Better solutions are
preferred.

• Some techniques like Simulated Annealing, Tabu Search, or GAs with
Sharing and Niching have methods to prevent premature convergence
by sometimes accepting worse solutions . . . but in the core, they
almost all of the time apply this bias towards better solutions.

• Only random sampling, random walks, and exhaustive enumeration
are free of this bias.



Solving Optimization Problems

• Input: objective function f : X 7→ Y that maps the elements of a
solution space X to a subset Y ⊆ R of the real numbers R.

• How do we find good solution?

• Start at a random solution, remember best-so-far solution, and
iteratively create modified copies of it using move.

• Most fundamental concept in optimization: Better solutions are
preferred.

• Some techniques like Simulated Annealing, Tabu Search, or GAs with
Sharing and Niching have methods to prevent premature convergence
by sometimes accepting worse solutions . . . but in the core, they
almost all of the time apply this bias towards better solutions.

• Only random sampling, random walks, and exhaustive enumeration
are free of this bias. . . and they are not good optimization methods.



Frequency Fitness Assignment (FFA)

• FFA is an algorithm module that can be plugged into arbitrary
optimization methods.



Frequency Fitness Assignment (FFA)

• FFA is an algorithm module that can be plugged into arbitrary
optimization methods.

• It is a fitness assignment process that translates objective
values y ∈ Y to fitness values H[y] that are used in comparisons.



Frequency Fitness Assignment (FFA)

• FFA is an algorithm module that can be plugged into arbitrary
optimization methods.

• It is a fitness assignment process that translates objective
values y ∈ Y to fitness values H[y] that are used in comparisons.

• Idea: The fitness H[y] corresponding to an objective value y ∈ Y is
the number of times that y has been seen during the search so far.



Frequency Fitness Assignment (FFA)

• FFA is an algorithm module that can be plugged into arbitrary
optimization methods.

• It is a fitness assignment process that translates objective
values y ∈ Y to fitness values H[y] that are used in comparisons.

• Idea: The fitness H[y] corresponding to an objective value y ∈ Y is
the number of times that y has been seen during the search so far.

• This mapping is dynamic, as the encounter frequencies obviously
increase over time.



Frequency Fitness Assignment (FFA)

• FFA is an algorithm module that can be plugged into arbitrary
optimization methods.

• It is a fitness assignment process that translates objective
values y ∈ Y to fitness values H[y] that are used in comparisons.

• Idea: The fitness H[y] corresponding to an objective value y ∈ Y is
the number of times that y has been seen during the search so far.

• This mapping is dynamic, as the encounter frequencies obviously
increase over time.

• The frequency fitness only depends on the identity of the objective
values.



Frequency Fitness Assignment (FFA)

• FFA is an algorithm module that can be plugged into arbitrary
optimization methods.

• It is a fitness assignment process that translates objective
values y ∈ Y to fitness values H[y] that are used in comparisons.

• Idea: The fitness H[y] corresponding to an objective value y ∈ Y is
the number of times that y has been seen during the search so far.

• This mapping is dynamic, as the encounter frequencies obviously
increase over time.

• The frequency fitness only depends on the identity of the objective
values.

• We are not looking for better solutions anymore.



Frequency Fitness Assignment (FFA)

• FFA is an algorithm module that can be plugged into arbitrary
optimization methods.

• It is a fitness assignment process that translates objective
values y ∈ Y to fitness values H[y] that are used in comparisons.

• Idea: The fitness H[y] corresponding to an objective value y ∈ Y is
the number of times that y has been seen during the search so far.

• This mapping is dynamic, as the encounter frequencies obviously
increase over time.

• The frequency fitness only depends on the identity of the objective
values.

• We are not looking for better solutions anymore.

• We are looking for solutions with harder-to-find objective values.



Frequency Fitness Assignment (FFA)

• FFA is an algorithm module that can be plugged into arbitrary
optimization methods.

• It is a fitness assignment process that translates objective
values y ∈ Y to fitness values H[y] that are used in comparisons.

• Idea: The fitness H[y] corresponding to an objective value y ∈ Y is
the number of times that y has been seen during the search so far.

• This mapping is dynamic, as the encounter frequencies obviously
increase over time.

• The frequency fitness only depends on the identity of the objective
values.

• We are not looking for better solutions anymore.

• We are looking for solutions with harder-to-find objective values.

• =⇒ Algorithms basing all decisions on FFA are not biased towards
better solutions.



Frequency Fitness Assignment (FFA)

• FFA is an algorithm module that can be plugged into arbitrary
optimization methods.

• It is a fitness assignment process that translates objective
values y ∈ Y to fitness values H[y] that are used in comparisons.

• Idea: The fitness H[y] corresponding to an objective value y ∈ Y is
the number of times that y has been seen during the search so far.

• This mapping is dynamic, as the encounter frequencies obviously
increase over time.

• The frequency fitness only depends on the identity of the objective
values.

• We are not looking for better solutions anymore.

• We are looking for solutions with harder-to-find objective values.

• =⇒ Algorithms basing all decisions on FFA are not biased towards
better solutions.

• Can optimization without bias for better solutions even work?



(1+1)-EA and (1+1)-FEA

• We plug FFA into the simplest possible evolutionary algorithm, the
(1+1)-EA and we get the (1+1)-FEA.



(1+1)-EA and (1+1)-FEA

• We plug FFA into the simplest possible evolutionary algorithm, the
(1+1)-EA and we get the (1+1)-FEA.



(1+1)-EA and (1+1)-FEA

• We plug FFA into the simplest possible evolutionary algorithm, the
(1+1)-EA and we get the (1+1)-FEA.



(1+1)-EA and (1+1)-FEA

• We plug FFA into the simplest possible evolutionary algorithm, the
(1+1)-EA and we get the (1+1)-FEA.



(1+1)-EA and (1+1)-FEA

• We plug FFA into the simplest possible evolutionary algorithm, the
(1+1)-EA and we get the (1+1)-FEA.



(1+1)-EA and (1+1)-FEA

• We plug FFA into the simplest possible evolutionary algorithm, the
(1+1)-EA and we get the (1+1)-FEA.



(1+1)-EA and (1+1)-FEA

• We plug FFA into the simplest possible evolutionary algorithm, the
(1+1)-EA and we get the (1+1)-FEA.



(1+1)-EA and (1+1)-FEA

• We plug FFA into the simplest possible evolutionary algorithm, the
(1+1)-EA and we get the (1+1)-FEA.



(1+1)-EA and (1+1)-FEA

• We plug FFA into the simplest possible evolutionary algorithm, the
(1+1)-EA and we get the (1+1)-FEA.



(1+1)-EA and (1+1)-FEA

• We plug FFA into the simplest possible evolutionary algorithm, the
(1+1)-EA and we get the (1+1)-FEA.



(1+1)-EA and (1+1)-FEA

• We plug FFA into the simplest possible evolutionary algorithm, the
(1+1)-EA and we get the (1+1)-FEA.



(1+1)-EA and (1+1)-FEA

• We plug FFA into the simplest possible evolutionary algorithm, the
(1+1)-EA and we get the (1+1)-FEA.



(1+1)-EA and (1+1)-FEA

• We plug FFA into the simplest possible evolutionary algorithm, the
(1+1)-EA and we get the (1+1)-FEA.



(1+1)-EA and (1+1)-FEA

• We plug FFA into the simplest possible evolutionary algorithm, the
(1+1)-EA and we get the (1+1)-FEA.



(1+1)-EA and (1+1)-FEA

• We plug FFA into the simplest possible evolutionary algorithm, the
(1+1)-EA and we get the (1+1)-FEA.



(1+1)-EA and (1+1)-FEA

• We plug FFA into the simplest possible evolutionary algorithm, the
(1+1)-EA and we get the (1+1)-FEA.



(1+1)-EA and (1+1)-FEA

• We plug FFA into the simplest possible evolutionary algorithm, the
(1+1)-EA and we get the (1+1)-FEA.



(1+1)-EA and (1+1)-FEA

• We plug FFA into the simplest possible evolutionary algorithm, the
(1+1)-EA and we get the (1+1)-FEA.



(1+1)-EA and (1+1)-FEA

• We plug FFA into the simplest possible evolutionary algorithm, the
(1+1)-EA and we get the (1+1)-FEA.



(1+1)-EA and (1+1)-FEA

• We plug FFA into the simplest possible evolutionary algorithm, the
(1+1)-EA and we get the (1+1)-FEA.



(1+1)-EA and (1+1)-FEA

• We plug FFA into the simplest possible evolutionary algorithm, the
(1+1)-EA and we get the (1+1)-FEA.



(1+1)-EA and (1+1)-FEA

• We plug FFA into the simplest possible evolutionary algorithm, the
(1+1)-EA and we get the (1+1)-FEA.



(1+1)-EA and (1+1)-FEA

• We plug FFA into the simplest possible evolutionary algorithm, the
(1+1)-EA and we get the (1+1)-FEA.



(1+1)-EA and (1+1)-FEA

• We plug FFA into the simplest possible evolutionary algorithm, the
(1+1)-EA and we get the (1+1)-FEA.



(1+1)-EA and (1+1)-FEA

• We plug FFA into the simplest possible evolutionary algorithm, the
(1+1)-EA and we get the (1+1)-FEA.



(1+1)-EA and (1+1)-FEA

• We plug FFA into the simplest possible evolutionary algorithm, the
(1+1)-EA and we get the (1+1)-FEA.



(1+1)-EA and (1+1)-FEA

• We plug FFA into the simplest possible evolutionary algorithm, the
(1+1)-EA and we get the (1+1)-FEA.



(1+1)-EA and (1+1)-FEA

• We plug FFA into the simplest possible evolutionary algorithm, the
(1+1)-EA and we get the (1+1)-FEA.



(1+1)-EA and (1+1)-FEA

• We plug FFA into the simplest possible evolutionary algorithm, the
(1+1)-EA and we get the (1+1)-FEA.



(1+1)-EA and (1+1)-FEA

• We plug FFA into the simplest possible evolutionary algorithm, the
(1+1)-EA and we get the (1+1)-FEA.

• Search is driven entirely by frequency H.



(1+1)-EA and (1+1)-FEA

• We plug FFA into the simplest possible evolutionary algorithm, the
(1+1)-EA and we get the (1+1)-FEA.

• Search is driven entirely by frequency H.

• Whether a solution is better or worse plays no role in the algorithm’s
decisions.



(1+1)-EA and (1+1)-FEA

• We plug FFA into the simplest possible evolutionary algorithm, the
(1+1)-EA and we get the (1+1)-FEA.

• Search is driven entirely by frequency H.

• Whether a solution is better or worse plays no role in the algorithm’s
decisions.

• Can (1+1)-FEA even work?



(1+1)-EA and (1+1)-FEA

• We plug FFA into the simplest possible evolutionary algorithm, the
(1+1)-EA and we get the (1+1)-FEA.

• Search is driven entirely by frequency H.

• Whether a solution is better or worse plays no role in the algorithm’s
decisions.

• Can (1+1)-FEA even work on a hard problem like the JSSP?



Experiment and Results



Experiment

• We use the 8 most common sets: abz8, dmu9, ft10, la11, orb12, swv13,
ta14, and yn15.



Experiment

• We use the 8 most common sets: abz8, dmu9, ft10, la11, orb12, swv13,
ta14, and yn15.

• We do 5 runs for each algorithm on each of these 242 instances.



Experiment

• We use the 8 most common sets: abz8, dmu9, ft10, la11, orb12, swv13,
ta14, and yn15.

• We do 5 runs for each algorithm on each of these 242 instances.

• Runtime limit: 230 FEs (≈ 109 FEs)



Results

inst EA FEA FEA vs. EA

best mean conv best mean conv best mean conv

abz 1 0 5 5 5 0 -0.3% -1.2% 22.0
dmu 65 60 79 20 23 1 3.8% 3.4% 4.0
ft 2 1 2 3 3 1 -0.2% -1.3% 5.0
la 32 23 38 35 37 2 -0.1% -0.5% 32.0
orb 2 0 8 10 10 2 -1.5% -3.6% 13.0
swv 12 10 19 13 15 1 0.1% -0.6% 8.6
ta 59 52 80 29 33 0 1.1% 1.0% 20.0
yn 1 0 4 3 4 0 -0.5% -0.6% 4.0

best (mean): number of instances algorithm reached the best (best average) solution

conv : number of instances algorithm reached end solution (stopped improving) fastest



Results

inst EA FEA FEA vs. EA

best mean conv best mean conv best mean conv

abz 1 0 5 5 5 0 -0.3% -1.2% 22.0
dmu 65 60 79 20 23 1 3.8% 3.4% 4.0
ft 2 1 2 3 3 1 -0.2% -1.3% 5.0
la 32 23 38 35 37 2 -0.1% -0.5% 32.0
orb 2 0 8 10 10 2 -1.5% -3.6% 13.0
swv 12 10 19 13 15 1 0.1% -0.6% 8.6
ta 59 52 80 29 33 0 1.1% 1.0% 20.0
yn 1 0 4 3 4 0 -0.5% -0.6% 4.0

best (mean): number of instances algorithm reached the best (best average) solution

conv : number of instances algorithm reached end solution (stopped improving) fastest

• (1+1)-FEA reaches best mean results in 6/8 benchmark sets and best
results in 5/8.



Results

inst EA FEA FEA vs. EA

best mean conv best mean conv best mean conv

abz 1 0 5 5 5 0 -0.3% -1.2% 22.0
dmu 65 60 79 20 23 1 3.8% 3.4% 4.0
ft 2 1 2 3 3 1 -0.2% -1.3% 5.0
la 32 23 38 35 37 2 -0.1% -0.5% 32.0
orb 2 0 8 10 10 2 -1.5% -3.6% 13.0
swv 12 10 19 13 15 1 0.1% -0.6% 8.6
ta 59 52 80 29 33 0 1.1% 1.0% 20.0
yn 1 0 4 3 4 0 -0.5% -0.6% 4.0

best (mean): number of instances algorithm reached the best (best average) solution

conv : number of instances algorithm reached end solution (stopped improving) fastest

• (1+1)-FEA reaches best mean results in 6/8 benchmark sets and best
results in 5/8.

• (1+1)-FEA always converge slower.



Results

inst EA FEA FEA vs. EA

best mean conv best mean conv best mean conv

abz 1 0 5 5 5 0 -0.3% -1.2% 22.0
dmu 65 60 79 20 23 1 3.8% 3.4% 4.0
ft 2 1 2 3 3 1 -0.2% -1.3% 5.0
la 32 23 38 35 37 2 -0.1% -0.5% 32.0
orb 2 0 8 10 10 2 -1.5% -3.6% 13.0
swv 12 10 19 13 15 1 0.1% -0.6% 8.6
ta 59 52 80 29 33 0 1.1% 1.0% 20.0
yn 1 0 4 3 4 0 -0.5% -0.6% 4.0

best (mean): number of instances algorithm reached the best (best average) solution

conv : number of instances algorithm reached end solution (stopped improving) fastest

• (1+1)-FEA is at least as good and sometimes better than all mean
and best results in 16 (2010), aLSGA 17 (2015), the EAS in 18 (2013),
all GAs in 19 (2014), the GWO in 20 (2018), SAFA 21 (2018),
HBFO22 (2012), and all algorithms in23 (2018).



Invariances



How should a good optimization algorithm behave?

• It should perform well.

original problem



How should a good optimization algorithm behave?

• It should perform well.
• The performance observed on some problems should carry over to
other problems.

other problems

original problem



How should a good optimization algorithm behave?

• It should perform well on benchmarks.
• The performance observed on some (benchmark) problems should
carry over to other (real-world) problems.

other problems

original problem



How should a good optimization algorithm behave?

• It should perform well on benchmarks.
• The performance observed on some (benchmark) problems should
carry over to other (real-world) problems.

• The algorithm should be invariant under transformations of the
original problem.

other problems

original problem



How should a good optimization algorithm behave?

• The algorithm should behave the same if we add an offset to the
objective values.

translation

original problem



How should a good optimization algorithm behave?

• The algorithm should behave the same if we add an offset to the
objective values.

• Then, we cannot use proportions of objective values in the decisions.

translation

original problem



How should a good optimization algorithm behave?

• The algorithm should behave the same if we add an offset to the
objective values.

• Then, we cannot use proportions of objective values in the decisions.
• The Genetic Algorithm with Roulette Wheel Selection is not
translation invariant.

translation

original problem



How should a good optimization algorithm behave?

• The algorithm should behave the same if we multiply the objective
values by a positive number.

scaling translation

original problem



How should a good optimization algorithm behave?

• The algorithm should behave the same if we multiply the objective
values by a positive number.

• Then, we cannot use absolute differences of objective values in the
decisions.

scaling translation

original problem



How should a good optimization algorithm behave?

• The algorithm should behave the same if we multiply the objective
values by a positive number.

• Then, we cannot use absolute differences of objective values in the
decisions.

• Simulated Annealing is not scale invariant.

scaling translation

original problem



How should a good optimization algorithm behave?

• The algorithm should behave the same on problems where the order
of the objective values is the same.

order-preserving

transformations

scaling translation

original problem



How should a good optimization algorithm behave?

• The algorithm should behave the same on problems where the order
of the objective values is the same.

• Then, we can only compare whether solutions are better, worse, or as
same as good.

order-preserving

transformations

scaling translation

original problem



How should a good optimization algorithm behave?

• The algorithm should behave the same on problems where the order
of the objective values is the same.

• Then, we can only compare whether solutions are better, worse, or as
same as good.

• The (1+1)-EA is invariant under order-preserving transformations.

order-preserving

transformations

scaling translation

original problem



How should a good optimization algorithm behave?

• Is it possible for algorithms to behave the same on all bijective
transformations of the objective values?

bijections

order-preserving

transformations

scaling translation

original problem



How should a good optimization algorithm behave?

• Is it possible for algorithms to behave the same on all bijective
transformations of the objective values?

• Then, we can only compare if two solutions have same objective value
and nothing else.

bijections

order-preserving

transformations

scaling translation

original problem



How should a good optimization algorithm behave?

• Is it possible for algorithms to behave the same on all bijective
transformations of the objective values?

• Then, we can only compare if two solutions have same objective value
and nothing else.

• The only algorithms with this feature are random walks, random
sampling, and exhaustive enumeration.

bijections

order-preserving

transformations

scaling translation

original problem



How should a good optimization algorithm behave?

• Is it possible for algorithms to behave the same on all bijective
transformations of the objective values?

• Then, we can only compare if two solutions have same objective value
and nothing else.

• The only algorithms with this feature are random walks, random
sampling, and exhaustive enumeration.

• . . . and all algorithms using FFA!24

bijections

order-preserving

transformations

scaling translation

original problem



How should a good optimization algorithm behave?

• Is it possible for algorithms to behave the same on all bijective
transformations of the objective values?

• Then, we can only compare if two solutions have same objective value
and nothing else.

• The only algorithms with this feature are random walks, random
sampling, and exhaustive enumeration.

• . . . and all algorithms using FFA!24

• To give you a taste: encryption is a bijection, too. . .



Conclusions



Conclusions

• We have plugged FFA into the simplest possible EA and applied it to
the JSSP.



Conclusions

• We have plugged FFA into the simplest possible EA and applied it to
the JSSP.

• (1+1)-FEA is an algorithm that does not prefer better solutions over
worse ones.



Conclusions

• We have plugged FFA into the simplest possible EA and applied it to
the JSSP.

• (1+1)-FEA is an algorithm that does not prefer better solutions over
worse ones.

• It performs surprisingly well on this NP-hard optimization problem.



Conclusions

• We have plugged FFA into the simplest possible EA and applied it to
the JSSP.

• (1+1)-FEA is an algorithm that does not prefer better solutions over
worse ones.

• It performs surprisingly well on this NP-hard optimization problem.

• On Max-Sat, (1+1)-FEA is very significantly faster than (1+1)-EA24.



Conclusions

• We have plugged FFA into the simplest possible EA and applied it to
the JSSP.

• (1+1)-FEA is an algorithm that does not prefer better solutions over
worse ones.

• It performs surprisingly well on this NP-hard optimization problem.

• On Max-Sat, (1+1)-FEA is very significantly faster than (1+1)-EA24.

• So there are now two classical NP-hard problems where optimization
without bias for good solutions works!



Conclusions

• We have plugged FFA into the simplest possible EA and applied it to
the JSSP.

• (1+1)-FEA is an algorithm that does not prefer better solutions over
worse ones.

• It performs surprisingly well on this NP-hard optimization problem.

• On Max-Sat, (1+1)-FEA is very significantly faster than (1+1)-EA24.

• So there are now two classical NP-hard problems where optimization
without bias for good solutions works!

• Interesting: All algorithms using FFA are invariant under all bijections
of the objective function value.



谢谢
Thank you



References I

1. Thomas Weise. An Introduction to Optimization Algorithms. Institute of Applied Optimization (IAO) [应用优化研究所] of
the School of Artificial Intelligence and Big Data [人工智能与大数据学院] of Hefei University [合肥学院], Hefei [合肥市],
Anhui [安徽省], China [中国], 2018–2020. URL http://thomasweise.github.io/aitoa/.

2. Thomas Weise. Global Optimization Algorithms – Theory and Application. it-weise.de (self-published), Germany, 2009.
URL http://www.it-weise.de/projects/book.pdf.

3. Eugene Leighton Lawler, Jan Karel Lenstra, Alexander Hendrik George Rinnooy Kan, and David B. Shmoys. Sequencing
and scheduling: Algorithms and complexity. In Stephen C. Graves, Alexander Hendrik George Rinnooy Kan, and Paul H.
Zipkin, editors, Handbook of Operations Research and Management Science, volume IV: Production Planning and
Inventory, chapter 9, pages 445–522. North-Holland Scientific Publishers Ltd., Amsterdam, The Netherlands, 1993.
doi:10.1016/S0927-0507(05)80189-6.

4. Bo Chen, Chris N. Potts, and Gerhard J. Woeginger. A review of machine scheduling: Complexity, algorithms and
approximability. In Ding-Zhu Du and Panos M. Pardalos, editors, Handbook of Combinatorial Optimization, pages
1493–1641. Springer-Verlag US, Boston, MA, USA, 1998. ISBN 978-1-4613-7987-4. doi:10.1007/978-1-4613-0303-9 25.
also pages 21–169 in volume 3/3 by Kluwer Academic Publishers.

5. Mitsuo Gen, Yasuhiro Tsujimura, and Erika Kubota. Solving job-shop scheduling problems by genetic algorithm. In
Humans, Information and Technology: Proceedings of the 1994 IEEE International Conference on Systems, Man and
Cybernetics, October 2–5, 1994, San Antonio, TX, USA, volume 2. IEEE, 1994. ISBN 0-7803-2129-4.
doi:10.1109/ICSMC.1994.400072. URL http://read.pudn.com/downloads151/doc/658565/00400072.pdf.

6. Christian Bierwirth. A generalized permutation approach to job shop scheduling with genetic algorithms.
Operations-Research-Spektrum (OR Spectrum), 17:87–92, June 1995. doi:10.1007/BF01719250. URL
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.52.7392&type=pdf.

7. Guoyong Shi, Hitoshi Iima, and Nobuo Sannomiya. New encoding scheme for solving job shop problems by genetic
algorithm. In Proceedings of the 35th IEEE Conference on Decision and Control (CDC’96), December 11–13, 1996, Kobe,
Japan, volume 4, pages 4395–4400. IEEE, 1997. ISBN 0-7803-3590-2. doi:10.1109/CDC.1996.577484.

8. Joseph Adams, Egon Balas, and Daniel Zawack. The shifting bottleneck procedure for job shop scheduling. Management
Science, 34(3):391–401, 1988. doi:10.1287/mnsc.34.3.391.

9. Ebru Demirkol, Sanjay V. Mehta, and Reha Uzsoy. Benchmarks for shop scheduling problems. European Journal of
Operational Research (EJOR), 109(1):137–141, August 1998. doi:10.1016/S0377-2217(97)00019-2.

10. Henry Fisher and Gerald L. Thompson. Probabilistic learning combinations of local job-shop scheduling rules. In John F.
Muth and Gerald L. Thompson, editors, Industrial Scheduling, chapter 3.2, pages 225–251. Prentice-Hall, Englewood Cliffs,
NJ, USA, 1963.

http://thomasweise.github.io/aitoa/
http://www.it-weise.de/projects/book.pdf
https://doi.org/10.1016/S0927-0507(05)80189-6
https://doi.org/10.1007/978-1-4613-0303-9_25
https://doi.org/10.1109/ICSMC.1994.400072
http://read.pudn.com/downloads151/doc/658565/00400072.pdf
https://doi.org/10.1007/BF01719250
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.52.7392&type=pdf
https://doi.org/10.1109/CDC.1996.577484
https://doi.org/10.1287/mnsc.34.3.391
https://doi.org/10.1016/S0377-2217(97)00019-2


References II

11. Stephen R. Lawrence. Resource Constrained Project Scheduling: An Experimental Investigation of Heuristic Scheduling
Techniques (Supplement). PhD thesis, Graduate School of Industrial Administration (GSIA), Carnegie-Mellon University,
Pittsburgh, PA, USA, 1984.

12. David Lee Applegate and William John Cook. A computational study of the job-shop scheduling problem. ORSA Journal on
Computing, 3(2):149–156, May 1991. doi:10.1287/ijoc.3.2.149. the JSSP instances used were generated in Bonn in 1986.

13. Robert H. Storer, S. David Wu, and Renzo Vaccari. New search spaces for sequencing problems with application to job
shop scheduling. Management Science, 38(10):1495–1509, 1992. doi:10.1287/mnsc.38.10.1495.

14. Éric D. Taillard. Benchmarks for basic scheduling problems. European Journal of Operational Research (EJOR), 64(2):
278–285, January 1993. doi:10.1016/0377-2217(93)90182-M.

15. Takeshi Yamada and Ryohei Nakano. A genetic algorithm applicable to large-scale job-shop instances. In Reinhard Männer
and Bernard Manderick, editors, Proceedings of Parallel Problem Solving from Nature 2 (PPSN II), September 28–30,
1992, Brussels, Belgium, pages 281–290, Amsterdam, The Netherlands, 1992. Elsevier.

16. Tamer F. Abdelmaguid. Representations in genetic algorithm for the job shop scheduling problem: A computational study.
Journal of Software Engineering and Applications (JSEA), 3(12):1155–1162, December 2010.
doi:10.4236/jsea.2010.312135. URL http://www.scirp.org/journal/paperinformation.aspx?paperid=3561.

17. Leila Asadzadeh. A local search genetic algorithm for the job shop scheduling problem with intelligent agents. Computers
& Industrial Engineering, 85:376–383, July 2015. doi:10.1016/j.cie.2015.04.006.

18. Edson Flórez, Wilfredo Gómez, and Lola Bautista. An ant colony optimization algorithm for job shop scheduling problem.
Computing Research Repository (CoRR) abs/1309.5110, arxiv, 2013. URL https://arxiv.org/pdf/1309.5110.pdf.

19. Vedavyasrao Jorapur, V. S. Puranik, A. S. Deshpande, and M. R. Sharma. Comparative study of different representations
in genetic algorithms for job shop scheduling problem. Journal of Software Engineering and Applications (JSEA), 7(7):
571–580, June 2014. doi:10.4236/jsea.2014.77053. URL
http://www.scirp.org/journal/paperinformation.aspx?paperid=46670.

20. Tianhua Jiang and Chao Zhang. Application of grey wolf optimization for solving combinatorial problems: Job shop and
flexible job shop scheduling cases. IEEE Access, 6:26231–26240, May 2018. doi:10.1109/ACCESS.2018.2833552. URL
http://ieeexplore.ieee.org/document/8355479.

21. Joss Miller-Todd, Kathleen Steinhöfel, and Patrick Veenstra. Firefly-inspired algorithm for job shop scheduling. In
Hans-Joachim Böckenhauer, Dennis Komm, and Walter Unger, editors, Adventures Between Lower Bounds and Higher

Altitudes – Essays Dedicated to Juraj Hromkovič on the Occasion of His 60th Birthday, pages 423–433. Springer, 2018.
doi:10.1007/978-3-319-98355-4 24.

https://doi.org/10.1287/ijoc.3.2.149
https://doi.org/10.1287/mnsc.38.10.1495
https://doi.org/10.1016/0377-2217(93)90182-M
https://doi.org/10.4236/jsea.2010.312135
http://www.scirp.org/journal/paperinformation.aspx?paperid=3561
https://doi.org/10.1016/j.cie.2015.04.006
https://arxiv.org/pdf/1309.5110.pdf
https://doi.org/10.4236/jsea.2014.77053
http://www.scirp.org/journal/paperinformation.aspx?paperid=46670
https://doi.org/10.1109/ACCESS.2018.2833552
http://ieeexplore.ieee.org/document/8355479
https://doi.org/10.1007/978-3-319-98355-4_24


References III

22. S. Narendhar and T. Amudha. A hybrid bacterial foraging algorithm for solving job shop scheduling problems. Intl. Journal
of Programming Languages and Applications, 2(4):1–11, 2012. doi:10.5121/ijpla.2012.2401.

23. Shao-Juan Wang, Chun-Wei Tsai, and Ming-Chao Chiang. A high performance search algorithm for job-shop scheduling

problem. In 9th Intl. Conf. on Emerging Ubiquitous Systems and Pervasive Networks (EUSPN’18) / 8th Intl. Conf. on
Current and Future Trends of Information and Communication Technologies in Healthcare (ICTH’18) / Affiliated
Workshops, November 5–8, 2018, Leuven, Belgium, pages 119–126. Elsevier, 2018. doi:10.1016/j.procs.2018.10.157.

24. Thomas Weise, Zhize Wu, Xinlu Li, and Yan Chen. Frequency fitness assignment: Making optimization algorithms
invariant under bijective transformations of the objective function value. IEEE Transactions on Evolutionary Computation,
25:307–319, April 2021. doi:10.1109/TEVC.2020.3032090.

https://doi.org/10.5121/ijpla.2012.2401
https://doi.org/10.1016/j.procs.2018.10.157
https://doi.org/10.1109/TEVC.2020.3032090

	Outline
	Job Shop Scheduling Problem (JSSP)
	Job Shop Scheduling Problem (JSSP)
	Encoding and Solutions

	Frequency Fitness Assignment (FFA)
	Solving Optimization Problems
	Frequency Fitness Assignment (FFA)
	 and 

	Experiment and Results
	Experiment
	Results

	Invariances
	How should a good optimization algorithm behave?

	Conclusions
	Conclusions

	Presentation End
	References


