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Job Shop Scheduling Problem (JSSP)

• The JSSP is an NP-hard3 4 scheduling task.

• A JSSP instance defined by n jobs with operations that need to be
processed by each of the m machines in a job-specific order.

• Each such operation of each job needs a specific time.

• The goal is to find the assignment of jobs to machines with the
smallest possible makespan, i.e., schedule that finishes fastest.
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Encoding and Solutions

• We encode solutions as permutations with repetitions, i.e., where
each of the n job IDs appears m times in a linear string5–7.

• The strings are processed from front to end to obtain a Gantt chart.

• Unary search operator move picks two random indices in the string
with different job IDs and swaps these IDs.

• All of this is fairly standard (≥ 27 year old stuff).
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Solving Optimization Problems

• Input: objective function f : X 7→ Y that maps the elements of a
solution space X to a subset Y ⊆ R of the real numbers R.

• How do we find good solution?

• Start at a random solution, remember best-so-far solution, and
iteratively create modified copies of it using move.

• Most fundamental concept in optimization: Better solutions are
preferred.

• Some techniques like Simulated Annealing, Tabu Search, or GAs with
Sharing and Niching have methods to prevent premature convergence
by sometimes accepting worse solutions . . . but in the core, they
almost all of the time apply this bias towards better solutions.

• Only random sampling, random walks, and exhaustive enumeration
are free of this bias. . . and they are not good optimization methods.
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Frequency Fitness Assignment (FFA)

• FFA is an algorithm module that can be plugged into arbitrary
optimization methods.

• It is a fitness assignment process that translates objective
values y ∈ Y to fitness values H[y] that are used in comparisons.

• Idea: The fitness H[y] corresponding to an objective value y ∈ Y is
the number of times that y has been seen during the search so far.

• This mapping is dynamic, as the encounter frequencies obviously
increase over time.

• The frequency fitness only depends on the identity of the objective
values.

• We are not looking for better solutions anymore.

• We are looking for solutions with harder-to-find objective values.

• =⇒ Algorithms basing all decisions on FFA are not biased towards
better solutions.

• Can optimization without bias for better solutions even work?
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• We plug FFA into the simplest possible evolutionary algorithm, the
(1+1)-EA and we get the (1+1)-FEA.

• Search is driven entirely by frequency H.

• Whether a solution is better or worse plays no role in the algorithm’s
decisions.

• Can (1+1)-FEA even work on a hard problem like the JSSP?
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Experiment

• We use the 8 most common sets: abz8, dmu9, ft10, la11, orb12, swv13,
ta14, and yn15.

• We do 5 runs for each algorithm on each of these 242 instances.

• Runtime limit: 230 FEs (≈ 109 FEs)
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Results

inst EA FEA FEA vs. EA

best mean conv best mean conv best mean conv

abz 1 0 5 5 5 0 -0.3% -1.2% 22.0
dmu 65 60 79 20 23 1 3.8% 3.4% 4.0
ft 2 1 2 3 3 1 -0.2% -1.3% 5.0
la 32 23 38 35 37 2 -0.1% -0.5% 32.0
orb 2 0 8 10 10 2 -1.5% -3.6% 13.0
swv 12 10 19 13 15 1 0.1% -0.6% 8.6
ta 59 52 80 29 33 0 1.1% 1.0% 20.0
yn 1 0 4 3 4 0 -0.5% -0.6% 4.0

best (mean): number of instances algorithm reached the best (best average) solution

conv : number of instances algorithm reached end solution (stopped improving) fastest

• (1+1)-FEA is at least as good and sometimes better than all mean
and best results in 16 (2010), aLSGA 17 (2015), the EAS in 18 (2013),
all GAs in 19 (2014), the GWO in 20 (2018), SAFA 21 (2018),
HBFO22 (2012), and all algorithms in23 (2018).
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• The performance observed on some (benchmark) problems should
carry over to other (real-world) problems.

• The algorithm should be invariant under transformations of the
original problem.
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• The algorithm should behave the same if we add an offset to the
objective values.

• Then, we cannot use proportions of objective values in the decisions.
• The Genetic Algorithm with Roulette Wheel Selection is not
translation invariant.

translation

original problem



How should a good optimization algorithm behave?

• The algorithm should behave the same if we multiply the objective
values by a positive number.

scaling translation

original problem



How should a good optimization algorithm behave?

• The algorithm should behave the same if we multiply the objective
values by a positive number.

• Then, we cannot use absolute differences of objective values in the
decisions.

scaling translation

original problem



How should a good optimization algorithm behave?
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• Then, we cannot use absolute differences of objective values in the
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• Simulated Annealing is not scale invariant.
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How should a good optimization algorithm behave?

• Is it possible for algorithms to behave the same on all bijective
transformations of the objective values?

• Then, we can only compare if two solutions have same objective value
and nothing else.

• The only algorithms with this feature are random walks, random
sampling, and exhaustive enumeration.

• . . . and all algorithms using FFA!24

• To give you a taste: encryption is a bijection, too. . .
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Conclusions

• We have plugged FFA into the simplest possible EA and applied it to
the JSSP.

• (1+1)-FEA is an algorithm that does not prefer better solutions over
worse ones.

• It performs surprisingly well on this NP-hard optimization problem.

• On Max-Sat, (1+1)-FEA is very significantly faster than (1+1)-EA24.

• So there are now two classical NP-hard problems where optimization
without bias for good solutions works!

• Interesting: All algorithms using FFA are invariant under all bijections
of the objective function value.
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