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ABSTRACT

A developmental, ontogenic approach to Capacitated Arc
Routing Problems (CARPs) is introduced. The genotypes
of this method are constructive heuristics specified as trees
of mathematical functions which are evolved with Genetic
Programming (GP). In a genotype-phenotype mapping,
they guide a virtual vehicle which starts at the depot. The
genotype is used to compute a heuristic value for each edge
with unsatisfied demands. Local information such as the
visiting costs from the current position, the remaining load
of the vehicle, and the edge demands are available to the
heuristic. The virtual vehicle then serves the edge with the
lowest heuristic value and is located at its end. This
process is repeated until all requirements have been
satisfied. The resulting phenotypes are sets of tours which,
in turn, are sequences of edges. We show that our method
has three advantages: 1) The genotypes can be reused to
seed the population in new GP runs. 2) The size of the
genotypes is independent from the problem scale. 3) The
evolved heuristics even work well in modified or dynamic
scenarios and are robust in the presence of noise.
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1. INTRODUCTION

Arc Routing Problems (ARPs) are logistic planning prob-
lems where the goal is to find optimal routes for vehicles
that need to visit certain streets which require some treat-
ment |10]. Classical examples for ARPs are road gritting and
salting [18, [19] and the Chinese Postman Problem [13, [17].
In Capacitated Arc Routing Problems (CARPs), the vehi-
cles are initially located at a single depot and have to deliver
some product (such as salt or mail) to the roads. This prod-
uct is available at the depot at a sufficient amount. The
vehicles are limited in their capacity, i.e., the amount of
product that they can transport. Traversing any road takes
a certain time (cost) and the goal is to find tours of minimum
cost that satisfy all requirements [21, (28, 133, 136].

CARPs are usually tackled with an optimization algo-
rithm that produces a solution for one specific, static prob-
lem instance. Currently, the algorithms obtaining the best
results are Memetic Algorithms (MAs) working on a permu-
tation-based search space |28,133] that directly represents the
sequence of edges to be visited by a vehicle. They generate
new candidate solutions by, e.g., swapping two edges in such
a sequential schedule and use global information about the
impact of these operations on the solution utility.

In this paper, we present a new method for solving CARPs.
We deviate from the traditional approaches in two ways.
1) We utilize an indirect representation. The genotypes
in our approach are heuristic functions, encoded as trees
of mathematical functions in the style well-known from Ge-
netic Programming (GP) [23]. In a developmental genotype-
phenotype mapping (GPM), the genotypes drive a greedy
construction process. This process starts with an empty
schedule and iteratively adds the edge which is rated with
the lowest heuristic value until all tasks are satisfied.

2) The genotypes, i.e., the evolved heuristic functions,
represent the perspective of a truck driver or the Chinese
postman — they access local information such as the demand
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of the prospective edges and the costs of serving them from
the current location of the vehicle on the road. Decisions
therefore do not take into account the global structure of
a solution. During the GPM, the overall objective value is
not yet known while the edges are added to the solution
in a forward-only fashion. The developmental process still
results in a phenotype that is a permutation of edges, i.e., a
sequential schedule of tasks to perform.

The new approach has three advantages. 1) Existing
genotypes from previous runs can be reused to seed new
runs, as they are heuristics to generate solutions. This can
lead to faster optimization with better overall results.

2) The size of genotypes is independent of the size of the
phenotypes. It is known that the quality of the results ob-
tained by optimization algorithms tends to decrease with
a rising number of decision variables. In the context of
CARPs, the performance of the solutions obtained through
direct encodings will deteriorate with an increasing number
nr of edges to serve. In an indirect representation like ours,
however, the size of the genotypes (the function trees) is de-
coupled from the size of the phenotypes (the schedules) and
therefore, independent of the problem scale.

3) The genotypes — although evolved for a specific scenario
— can also be applied without further optimization runs to
slightly modified scenarios or even different situations. Com-
bined with the truck driver perspective, our method hence
is especially suitable for dynamic scenarios. In road salting,
e.g., one or two roads on a map may become blocked but
the overall situation does not change too much. When fac-
ing alteration of the scenario used for the optimization, an
evolved specialized heuristic therefore will exhibit a graceful
performance degradation.

In the next section, we will first give a formal definition
of static CARPs. In [Section 3] we discuss related work on
CARPs, developmental genotype-phenotype mappings, and
hyper-heuristics. Our own ontogenic method, based on Ge-
netic Programming, is introduced in [Section 4 We then
provide the first experimental results achieved with this new
method for both static and dynamic CARPs in [Section 5l
concludes the paper with a summary on the cur-
rent state of our work and our plans for future work.

2. FORMAL PROBLEM DEFINITION

2.1 Problem Instance
Each CARP instance can be fully described by

1. a graph G = (V, E) describing the road network, de-
fined as a tuple of

(a) a set of vertices V and

(b) alist E CV x V of (directed) edges e = (Ui,'l/j;
that can be traversed only in one direction, from
their starting node head(e) = v; to their ending
node tail(e) = vj.

2. a cost function C : E — RT denoting the costs of
traversing a road (edge) with a vehicle,

3. a demand function R : E — Ny which assigns the
required amount of product to each edge, and

4. the capacity limit L € N; of the vehicle(s) with e €
E=L>Rf(e).

In many scenarios, there are also undirected edges with re-
quirements. For instance, the direction of the traversal is
unimportant when salting a small road. This can be mod-
eled by representing an undirected edge u = (v, v;) as two

directed edges ('l)i71}j5 and (Uj71}ij in opposite directions. A
scenario with ng directed edges and n,, undirected edges will
thus result in an edge list of length n. = n4+2n., where the
first ng, i.e., e1 to en,, correspond to the existing directed
edges. These are followed by the n, pairs of new directed
edges representing the undirected ones, i.e., u; corresponds
to eny+2i—1 and eny42i, each having the same costs and de-
mands associated as the original undirected edge.

2.2 Solution Space

In CARPs, all edge demands are atomic and cannot be
split. This means that the demand of each of the nq original
directed edges must be satisfied during exactly one traversal.
Also, for each of the n, original undirected edges, the de-
mand of exactly one of the two corresponding directed edges
must be satisfied in one single step.

As the capacity L of the vehicle is limited and the total
demand sum maybe larger than L, this can result in multiple
tours, each starting and ending at the depot note v; € VE|
Each tour T corresponds to a list of len(7T") edges whose
demands should be satisfied.

If two subsequent edges T'[¢] and T'[¢ + 1] of a tour are not
connected, i.e., tail(T[i]) # head(T[i 4+ 1]), the vehicle is as-
sumed to take least-cost route route(T[i],T[i + 1]) between
tail(T[:]) and head(T'[i + 1]). The same holds if the starting
node of the first edge or the end node of the last edge in a
tour, respectively, are not the depot node v;. In this case,
routing costs from/to the depot are added.

A candidate solution x is a set of such tours T' and the
solution space X is the set of all possible such candidate
solutions. A tour is a permutation of a subset of E. The set
of all subsets of F is the power set P(E). 7 be an element
of this set and II(7) the set of all possible permutations
of the elements of (the edges in) 7. The set T of all tours
is then defined as T = {T": T € II(7) A7 € P(E)} and the
problem space, the set of all possible sets of tours, is given
as X = P(T).

2.3 Constraints and Objective

The goal of solving a Capacitated Arc Routing Problem is
to find a feasible schedule that satisfies all edge demands at
the lowest possible costs. For each edge whose demand is to
be satisfied, two types of costs arise: the traversal costs along
the edge and the routing costs from the current position of
the vehicle to the start of the edge. After completing each
tour, the vehicle returns back to the depot v;.

For simplicity’s sake, we assume that the list of edges
route(e;,e;) describing least-cost path between the end node
of any edge e; and the starting node of any edge e; is known,
as it can easily be calculated with Floyd’s Algorithm [15].
The total cost of any edge list r with a vehicle starting
at the end of the first edge then is defined as pathCost in
Additionally, we introduce a special edge, the

depot loop e = (v1,v1), which has zero cost and demand.
The total costs tourCost(T') of a tour T' can be computed
by interpreting the tour as an edge list with the depot loop
inserted at the beginning and end, as shown in

! Alternatively, multiple vehicles may be utilized at once.




Finally, the overall costs of a candidate solution z € X and
hence, the objective function f, are given as the sum of all

tour costs in |[Equation

len(r)
pathCost(r) = Z C(r[i]) + ZC(@) (1)
=2 ecroute(rfi—1],1i])
tourCost(T) = pathCost(e o T o e) (2)
flz) = Z tourCost(T) (3)
VTex

There are three constraints which must be true for any can-
didate solution to be feasible. First, the capacity L of the
vehicle must not be exceeded at any tour (Equation 4)). Each
edge may occur at most once in a tour. The constraints cq4
and ¢, in[Equation 5 and [Equation 6]specify that any of the
original directed edges must occur in exactly one tour and
that exactly one of two directed edges representing any of
the n, original undirected edges must occur once as well.

ce(x) =VT €z = <Z R(e)> <L (4)

VeeT
ci(z)y=Vielng=|{T:Texhe €T} =1 (5)
cu(@) =Vi€lng = {T: T E€xNenyt2i-1 €ETH + (6)

|{71:T1€ m/\end+2iefT}| =1

We do not consider limits on the number of tours (or ve-
hicles), as we are interested in low cost solutions only. In
cases were such limits are important, one could, e.g., ap-
ply a global repair operator similar to [27] discussed in the
following section to the phenotypes.

3. RELATED WORK

There are three sets of works that are related to our ap-
proach. Here, we will first discuss existing research on CARP
followed by research regarding ontogenic representations, and
finally concern works on hyper-heuristics.

3.1 CARP

CARPs belong to the class of NP-hard problems |16, |33]
which means that algorithms for exact solutions are only
feasible for problem instances of small scale or with oth-
erwise special properties. This gives rise to a wide set of
heuristic and metaheuristic methods in the area. The Tabu
Search approach CARPET |2(0] represents a candidate solu-
tion as set of routes, each of which being a list of vertices
annotated with a Boolean variable indicating whether the
edge between two vertices should be served or not.

A first Memetic Algorithm (MA) for CARPs, based on
a hybridization of a Genetic Algorithm with a local search,
is introduced in |24]. Here, the solutions are represented
as the sequences in which edges are served and in which
intermediate edges, needed for routing purposes only, are
omitted. Different from our definition, the solution is only
one sequence of tasks which is later divided into separate
tours using a heuristic [34].

A deterministic Tabu Search method which can outper-
form both the CARPET and this MA is introduced in [3]. This
algorithm is further improved by introducing a global repair
operator which can amend low-cost infeasible solutions [27].
This RTS algorithm is still amongst the best approaches for
CARPs.

An Evolutionary Algorithm (EA) for solving CARPs that
uses the same representation as defined in [Section 2.2]is pro-
posed in |18, [19].

Local search in CARP is usually based on simple operators
making small changes to a candidate solution. However, if
the search space is large or contains many local optima, big-
ger changes which are able to leave the basins of attraction
of an optimum are necessary. The MA for CARPs (MAENS)
given in [33] addressed this problem by introducing a Merge-
Split operator which possesses this ability. The experiments
in |33] showed that it can outperform all the aforementioned
Tabu Search and MA approaches. MAENS has further been
extended for solving multi-objective CARPs in [28§], where
the goal is not only to minimize the total costs, but also
the makespan, i.e., the maximum cost over all tours in a
candidate solution.

All the above algorithms have in common that they work
on a direct representation of the solutions. Genotypes and
phenotypes are essentially the same and the tours making
up a schedule are modified by the search operations directly.
The global information that the algorithms utilize comes
from the objective functions directly. These functions are
not treated as black boxes: knowledge about their structure
is, e.g., used in search operations such as 2-opt [24].

Different from that, the Ant Colony Optimization algo-
rithm (ACO) described in [25] combines local and global
information in the search. In ACO, (simulated) pheromones
correspond to local information that simulated ants use to
choose the next step on their path. Based on the overall
solution fitness (global information) these pheromones are
updated. In |25], initial solutions are furthermore created
with heuristics and solutions are refined with local search.
This procedure does not allow for reuse of solutions or adap-
tation to dynamic changes and is more complex than our
approach.

3.2 Ontogenic Representation

In indirect representations, the search space G is signifi-
cantly different from the solution space X and a genotype-
phenotype mapping gpm : G — X translates between them.
The dimension of G may be much smaller than the dimen-
sion of X or even independent from it. Especially the latter
case is interesting, as such representations are suitable to
solve large-scale problems.

At least two classes of indirect representations may be dis-
tinguished [2, |9]: generative and ontogenic approaches. In
the generative method, the GPM is a one-shot functional
mapping from the genotypes to the phenotypes. The GPM
may be an arbitrarily complex decoder, but it only uses the
information given in the genotypes as input. One example
for such mappings in the area of GP is Grammatical Evolu-
tion |29,132], where the genotypes are integer strings and the
candidate solutions are sentences of a language defined by
a given grammar. Here, the GPM starts with the starting
symbol of that static grammar as current variable. The first
gene in the genotype identifies the first rule of the grammar
fitting to the current variable to be expanded. This may re-
sult in new variables occurring, which are then subsequently
expanded by rules identified by the following genes.

Ontogenic (or developmental) mappings additionally in-
volve feedback from simulations or the process of comput-
ing the objective values when building the phenotypes in an
iterative manner |1, 9]. Our work is a developmental, on-



togenic approach which iteratively adds edges to a solution
based on an environment’s state.

A good example for such a constellation is the experiment
described in [14]: The evolution of shapes serving the pur-
pose of heat shields. One shape is made of cells in a grid,
one cell is either filled or empty. The decision regarding a
cells filling is made by a cellular automaton whose rules are
based on the temperature of the current cell and the state
of neighboring cells. As the cellular automaton modifies the
cells, a simulation of heat diffusion updates the temperature
of each cell. The candidate solution is constructed through
an iterative feedback loop between a construction process
and the simulation used to compute a phenotype’s fitness.

Recently, it was shown that ontogenic mappings can yield
results similar to direct and generative ones but with lesser
computational effort despite the more complex solution cre-
ation and evaluation process on the example of the evolution
of rigid truss design optimization [9]. In a direct method,
the volume of the (up to 600) beams of a truss would be
optimized by a numerical optimization algorithm directly.
The genotype of a generative approach could be a function
which translates the coordinates of a beam to its thickness.
In the ontogenic method in |9], the genotypes are functions
that receive as parameter the mechanical stress on a beam
and return how much the cross section of the beam should
be increased. Beginning with a basic beam structure, the
mechanical stress is evaluated and the function is applied to
each of the beams. The updated truss is simulated again
and the process is iterated a couple of times. The resulting
structure, the phenotype, has up to 600 parameters whereas
the genotypes in |9] are multi-layer perceptrons representing
the modification function, encoded as real vectors contain-
ing, e.g., only 12 neural weights.

3.3 Hyper-Heuristics

Hyper-heuristics |4, [31] are methods with a search space
of heuristics. This is also the search space of our method.
However, there is a semantic difference: hyper-heuristics
build heuristics in order to solve a general class of prob-
lems whereas our approach searches the perfect heuristic for
a fixed scenario. Therefore, we only use one single test case,
which also is the training case, at a time.

Hyper-heuristics need to use multiple training cases [3] in
order to avoid overfitting to a specific case and test their
heuristics on test cases not used during the evolution [21].
Overfitting is acceptable in our approach as it may lead to
good approximations of the global optimum. Yet, we will
show in the experiments in [Section 5l that the heuristics dis-
covered with our GP methods still preserve generality and
are efficient for slightly modified or even entirely different
problem instances.

4. DEVELOPMENTAL CARP SOLVING

In this paper, we present an ontogenic approach towards
CARPs based on Symbolic Regression with GP. The geno-
types of our approach are mathematical functions g : £ —
R. The functions are expressed as trees of expressions that
assign heuristic values to edges and can be considered as
constructive heuristics. Each such function is mapped to a
candidate solution x € X as follows:

1. Start with an empty schedule and

2. locate a simulated vehicle with load L at the depot.

3. The set of unsatisfied edges S is initialized as S +— FE.
4. last(e) «— 0Ve € S.

5. The heuristic function represented by the genotype g
is evaluated for each edge e € S.

6. The first edge e* = argmin {g(e) : e € S} encountered
with the lowest heuristic value is chosen to be satisfied
next.

7. last(e) «— g(e) Ve € S.

8. If the demand R(e*) is larger than the current load in
the vehicle or e* = ¢,

(a) end the current tour,

(b) return the vehicle to the depot, and set its load
back to L.

(¢) Then start a new tour.
9. If e* # e, append e* to the current tour.
10. Subtract R(e*) from the load of the vehicle.
11. Place the vehicle at point tail(e*).
12. Add the depot loop to S, i.e., set S «— S U {e}.

13. Remove e* from S (set S «+— S\ {e*}). If e* is one
of the two directed edges representing an undirected
edge u, remove the other directed edge belonging to u
as well.

14. If |S\ {e}| > 0, go back to[Point o

The result of this process is a full schedule which fulfills all
the constraints introduced in [Section 2.31 The genotype-
phenotype mapping is ontogenic as it prescribes a develop-
mental process which has access to the following information
obtain from simulating the vehicle’s behavior:

1. demand(e). The demand R(e) of the edge divided by the
vehicle’s capacity, i.e., R(e)/L. For the scaled demand of
the depot loop e, we tried both 0 and —1, which does not
lead to significantly different results in the preliminary ex-
periments. We finally chose —1, i.e., the depot loop has an
unscaled demand of —L.

2. load. The remaining amount of the product inside the
vehicle divided by the vehicle’s capacity L.

3. cost(e). The cost of servicing edge e € F, normalized
into [0,1]. These costs contain at least the traversal cost
C(e). If load > demand(e), then routing costs from the
current location of the vehicle to the starting node head(e)
of e are added. Otherwise, routing costs are calculated
from the current location of the vehicle to the depot v1 and
from there to head(e). Normalized into [0, 1] (together with
depotCost(e)).

4. depotCost(e). The costs to reach the depot from the end
of e, normalized into [0, 1]. Normalization is done by divid-
ing the value by the maximum costs (in terms of both, cost
and depotCost) over all unsatisfied edges.

5. satisfied. The fraction of edges with non-zero demands
[E|-S|

[E[-1 °

that have already been satisfied

6. last(e). The heuristic value assigned to the edge e in the
previous round of edge selection.



S. EXPERIMENTS

5.1 Benchmark Datasets

We tested our algorithm on five sets of CARP benchmark
instances, namely the gdb set [6], the val set [1], the egl
set |11,112,126], the br-egl set |3], and the kshs set [22]. These
benchmark data sets differ widely in terms of scale, i.e., in
the number of vertices, the original number of edges ng4+n.,
and the number of tasks ng = |[{e: e € EAR(e) > 0}, as
well as the number |z| of tours that the lowest-cost solution
needs to fulfill all tasks. In Tables[dto[B], we list the features
of these sets as well as the best results obtained with these
two algorithms from literature (if available) and the corre-
sponding best result achieved with our ontogenic method.

5.2 Experimental Settings
5.2.1 The Two Configurations

Our experiments were conducted with tree-based stan-
dard GP using a (¢ + A) population treatment, i.e., trun-
cation selection where p parents and their A offspring com-
pete for p spots in the mating pool, with p = A = 48.
Each run was granted a total of 16 384 function evaluations
(FEs). If no improvement in fitness was achieved during at
least 1536 FEs (32 generations), an independent restart was
performed within the run. The initial population is gen-
erated using ramped-half-and-half [23]. Sub-tree exchange
crossover, sub-tree replacement mutation, and mathematical
simplification (e.g., a + 0 — a) were used as search oper-
ations in the proportion 2:5:2. The maximum tree depth is
set to 10.

The six terminal symbols given in[Section 4 were extended
with ephemeral random constants [23] and the following
purely mathematical functions a+b, a—b, a*b, a/b, max {a, b},
exp(a), sin(a), angle(a, b) (where angle(a,b) returns the an-
gle between the x-coordinate b, the y-coordinate a, and the
origin of the Cartesian coordinate system). All functions are
protected, i.e., they return —1 instead of —oo, 0 instead of
NaN, and 1 instead of +o00. angle, sin, and exp are included
in order to provide non-linear transformations.

The above setup will be referred to as GP in the following
text. We repeated the experiments done with Gp with a
second setup (GP*) which is identical with GP except for two
modifications: 1) Instead of using ramped-half-and-half, we
seeded the initial population with random individuals chosen
from the set of best discovered solutions by GP for each of
the 81 cases from gdb (size 23), val (size 34), and egl (size
24). 2) Instead of granting 16 384 FEs, we only granted 8192
(i.e., half as much runtime).

5.2.2  The Objective Function

For simplification purposes, we here define the objective
function v used by both of our GP methods directly for a
genotype g in Its main component is the total
cost f of the plan z = gpm(g) obtained from the ontogenic
GPM applied to g as defined in Pressure to-
wards smaller genotypes is included by subtracting the in-
verse of weight(g), the number of nodes in the tree g. This
penalty only kicks in for two genotypes producing plans of
the same costs as it is smaller than 1 and 1 is the unit of
costs.

1

weight(g) M

v(g) = f(gpm(g)) —

Table 1: Features of the gdb set |f] and obtained results.

Scen. Features Best Costs (minimize)
id [ ng  Jz] [ RTS MAENS | GP GP”
1 22 5 | 316 316 | 316 316
2] 26 6 | 339 339 | 839 339
3] 22 5| 275 275 | 275 275
41 19 4| 287 287 | 287 287
5| 26 6 | 377 377 | 383 383
6| 22 5 | 298 298 | 302 302
7T 22 5 [ 325 325 | 3256 825
8] 46 11 | 348 348 | 366 363
91 51 11 | 303 303 | 320 320
10 | 25 41 275 275 | 275 275
11 | 45 5| 395 395 | 419 419
12 | 23 7 | 458 458 | 474 474
13 | 28 7 | 536 536 | 558 558
14 | 21 5| 100 100 | 100 100
15 [ 21 4 58 58 58 58
16 | 28 5[ 127 127 | 127 127
17 | 28 5] 91 91| 91 91
18 | 36 5| 164 164 | 166 164
19 [ 11 3 55 55 55 55
20 | 22 5 [ 121 121 | 123 123
21| 33 6 [ 156 156 | 160 160
22 | 44 9 | 200 200 | 206 206
23| 55 11 | 233 233 | 239 239

5.3 Experiment 1: Static Optimization

In Tables [ to Bl we provide the best results achieved
during the 30 runs by our two methods in comparison with
the (best) results from literature (where also 30 runs are
used). It can be seen that the results of both Gp and Gp*
are either the same (italic values in the tables) or slightly
worse than these currently known lower bounds.

There are three obvious reasons for this: 1) The results in
literature have been obtained by evaluating more candidate
solutions (e.g., the MAENS was granted approximately 90 000
FEs |28]). It should be added that our approach has a higher
per-solution effort due to the computations necessary in the
construction process, but this is still a valid point. 2) The
results from literature are the best ones obtained after years
of research and probably correspond to the global optima in
many of the benchmark cases. 3) The indirect representa-
tion (and the size of the genotypes) is independent of the
problem scale and only encodes a subset of the possible so-
lutions [9]. It therefore can only deliver an approximation of

0.14
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0.1
0.08
0.06
0.04

0.02 ‘*‘ 3:

0 5 10 15 20 25 30 35 40 45

#tours = #cars = [x] |

Figure 1: The relative performance F' in dependence on the
number of tours |z|.



Table 2: Features of the val set |1] and obtained results.

Scen. Features Best Costs (minimize)
id [ nrg Jz[ | RTS MAENS [ GP  GP*
TIA | 39 2| 173 173 | 173 173
1B | 39 41173 173 | 181 181
1C| 39 9245 245 | 251 248
2A | 34 2| 227 227 | 229 229
2B | 34 3] 259 259 | 262 262
2C | 34 8 | 457 457 | 480 480
3A | 35 2 81 81 83 83
3B | 35 3 87 87 91 89
3¢ | 35 7138 138 | 143 140
4A | 69 3 | 400 400 | 417 412
4B | 69 4| 412 412 | 436 426
4C | 69 5 | 428 428 | 467 460
4D | 69 9 | 530 530 | 573 571
5A | 65 3| 423 423 | 444 434
5B | 65 4 | 446 446 | 465 455
5C | 65 5 | 474 474 | 497 488
5D| 65 9| 583 577 | 629 613
6A | 50 3| 223 223 | 229 227
6B | 50 41 233 233 | 239 239
6C | 50 11| 317 317 | 335 333
TA | 66 6 | 279 279 1 291 289
7B | 66 6 | 283 283 | 292 287
7C | 66 11 | 334 334 | 360 356
8A | 63 3| 386 386 | 400 390
8B | 63 41 395 395 | 415 409
8C | 63 9524 521 | 563 539
9A | 92 3] 323 323 | 331 331
9B | 92 5| 326 326 | 339 334
9C | 92 5 332 332 | 351 348
9D | 92 10 | 391 391 | 426 415

10A | 97 3| 428 428 | 445 445

10B | 97 4| 436 436 | 461 458

10C | 97 5 | 446 446 | 469 469

10D | 97 10 | 534 531 | 574 569

Table 3: Features of the egl set [11, 12, 26] and obtained
results.

Scen. Features Best Costs (minimize)

id nr  |z] | RTS  MAENS GP GP*
EI-A| 98 5] 3548 3548 | 3644 3609
E1-B | 98 7| 4498 4498 | 4689 4648
E1-C | 98 10| 5595 5595 | 5798 5725
E2-A | 98 7| 5018 5018 | 5338 5282
E2-B 98 10 6317 6317 6704 6546
E2-C | 98 15| 8335 8335 | 8777 8657
E3-A 98 8 5898 5898 6301 6148
E3-B | 98 12| 7787 7775 | 8041 8041
E3-C | 98 17| 10305 10292 | 10687 10610
E4-A 98 9 6461 6456 6802 6703
E4-B | 98 14| 9026 8998 | 9621 9394
E4-C 98 20 | 11598 11561 | 12105 12002
S1-A | 190 7 5018 5018 5358 5304
S1-B | 190 10 | 6394 6388 | 6671 6487
S1-C | 190 14 | 8518 8518 | 8800 8687
S2-A | 190 14 9970 9895 | 10602 10591
S2-B | 190 21 | 13345 13147 | 14102 13653
S52-C | 190 28 | 16600 16430 | 17309 17170
S3-A | 190 15 | 10284 10257 | 11258 11127
S3-B | 190 22 | 13857 13749 | 14725 14514
S3-C | 190 30 | 17316 17207 | 18330 17925
S4-A | 190 19 | 12348 12341 | 13351 13159
S4-B | 190 27 | 16442 16337 | 17186 16937
S4-C | 190 36 | 20281 20538 | 21874 21467

Table 4: Features of the br-egl set |3] and obtained results.

Scenario Features Best Costs (minimize)

id nrg |z RTS GP GP”
GI-A [ 375 21 | 1025765 | 1137696 1111244
G1-B | 375 25| 1135873 | 1256632 1248726
G1-C | 375 30 | 1271894 | 1367675 1371167
G1-D | 375 35 | 1402433 | 1556484 1495953
GI-E | 375 41 | 1558548 | 1690310 1654457
G2-A [ 375 23 | 1125602 | 1262630 1221212
G2-B | 375 27 | 1242542 | 1367509 1360481
G2-C | 375 33 | 1401583 | 1539577 1489739
G2-D [ 375 38 | 1516072 | 1669510 1617203
G2-E | 375 42 | 1668348 | 1788617 1770868

Table 5: Features of the kshs set [22] and obtained results.

Scen. Feat. Best Costs
id | nr GP GP™
30 14661 14661
30 9863 9863

30 11684 11498
30 10957 10957
30 10197 10197

]
4
4

30 4 9320 9320
4
3
3

OOk W N Y

the global optimum by nature. Direct methods like MAENS,
at least in theory, always can discover the global optimum
if given enough runtime.

Let us now compare GP and GP*. By seeding the popu-
lation and providing half of the FEs only, we would expect
a convergence to one of the previously discovered good so-
lutions or worse results (as p = 48 is less than the number
of candidate genotypes for seeding). However, what we ob-
serve instead is that we obtain better results in many scenar-
ios (underlined elements the tables). This means that the
genotypes, i.e., the evolved case-specific constructive heuris-
tics, are general or at least contain general modules that can
be combined in order to form even better heuristics.

The most astonishing results here are for sets br-egl and
kshs in Tables M and For seeding the GP*, only results
for the sets wval, gdb, and egl were used. As the sets br-
egl and kshs contain entirely different benchmark cases, we
would expect the GpP* with its lower FE contingent to be
in a stark disadvantage. However, the opposite is the case:
In all but one of the br-egl and one of the kshs cases, it
performs better than Gp. There is only a single case where
GP is better. This is especially remarkable as the instances
in br-egl are of much larger scale (see the ngr and |z| values)
than any in the other benchmark sets. The cases in kshs,
on the other hand, are of a smaller scale than most other
instances.

The data of this experiment allowed us to identify which
feature of a problem instance has the strongest impact on
the solution quality that our method can provide.

In[Figure 1] we plot the relative performance F of the best
result = obtained with our approaches in comparison with
the global optimum z* from literature for each benchmark
instance as defined in [Equation 8} in relation to the number
|z| of tours T in z. The more tours are necessary, the higher
does F' tend to be.

@)
1)

-1 (8)
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Figure 2: Box plot: static heuristic vs. GP* in the gdb10
scenarios.

This is natural, as the genotypes are constructive heuris-
tics and, to some degree, greedy methods. As said in the first
paragraph of each tour also contains the final
travel back to the depot. An ideal heuristic should therefore
select edges closer to the depot near the end of a tour in order
to minimize the return costs. For a forward-only heuristic,
switching between cheap edges from the current location to-
wards such edges at the right time seems to be complicated
— and our method also suffers from this problem. The more
tours a solution consists of, the more often this problem oc-
curs and, hence, the higher F', i.e., the farther the solutions
are away from the global optimum. Instead of the problem
scale ng, this trend is the most determining factor in our
method.

5.4 Experiment 2: Dynamic Optimization &
Noise Robustness

Seeding the population in GP* with previous solutions
showed that evolved genotypes (heuristics) can be used as
basis to find good heuristics for new scenarios. In this second
experiment, we want to test how a genotype can deal with
limited changes of the scenario for which it was synthesized.

We choose case 10 from set gdb (gdb10) and case 7C from
val (val 7C) as basis for this experiment. gdb10 has a smaller
scale of ng = 25 and RTS, MAENS, as well as our GP and GP*
all repetitively yielded solutions with costs 275 and needed
4 tours. wval7C, on the other hand, has a larger scale of
nr = 66. Here, our methods found a worse result (costs 356,
11 tours) than RTS and MAENS (costs 334). This solution has
only been discovered once (by GP*) and is hence not in the
seeds for GP*. The two basic scenarios are therefore quite
different.

From these scenarios, we derive new scenarios, each with
a certain number #del of edges removed. We then com-
pare the solutions provided by a fixed heuristic with those
provided by GP*. For each value of #del in 1...7, we cre-
ated a number #cases of solvable scenarios (with connected
graphs). As fixed heuristic, we choose the first genotype g
with costs 275 discovered by GP* in the previous experiment
for gdb10 and the one solution with costs 356 for val 7C. We
performed 7 runs with GP* for each of these scenarios.

In Figures [21 and [3] we give box plots of the relative per-
formance F' of the static heuristics g compared with the
best results delivered by the 7 GP* runs (analogously to

q 8). For each of the #cases scenarios per F#del

05 -
F R
0.4 _

0.3

0.2
0.1
0 _—— - - - - _—

#del 1 2 3 4 5 6 7
#cases 66 214 198 192 186 181 175
#runs 462 1498 1386 1344 1302 1267 1225

Figure 3: Box plot: static heuristic vs. GP* in the val7C
scenarios.

setting, one F' value is obtained. All the #cases values for
one #del setting together make up one box with whiskers at
the 0.025 and 0.975 quantile and markers for the maximum
and minimum.

The graphs for gdb10 and val7C' exhibit similar perfor-
mance changes. However, the worst case scenarios (top
whiskers) in the larger graph val7C are generally better:
deleting a few edges has less impact than for the smaller
graph gdb10. The most interesting observation is that the
relative performance of the static heuristic in median (mid-
dle line of the boxes) is only for the #del = 2 case more than
20% worse than the GP* result — for both, gdb10 and val 7C.
In all other situations, we observe a gentle performance de-
generation and even a stabilization for rising #del. In fact,
in five out of the seven #del settings, the 25% quantile is 0
for gdb10 — and F = 0 means that g and GP* have identical
performance.

20% performance loss towards a near-optimal solution may
be acceptable if pervious heavily relied-on connections are
removed from the graph and quick decisions need to be
made. Yet, we here would prefer a “readjustment” run with
GP* and a seeded population instead of only re-using the
genotypes as is.

Besides the dynamic aspect, this experiment can also be
considered as proof for the noise robustness of our method.
Such behavior has been found in many works on ontogenic
mappings such as |14] and likely explanations for it are given
in [§].

6. CONCLUSIONS AND FUTURE WORK

With the results in this paper, we have demonstrated that
a developmental approach to the Capacitated Arc Routing
Problem is feasible for both static and dynamic cases. We
have shown that Genetic Programming is a suitable method
for evolving a heuristic function for this purpose.

Compared to direct encodings, our experiments demon-
strated three advantages: 1) The size of the genotypes is in-
dependent from the problem scale. The penalty in terms of
the objective value that we pay for this and for using only lo-
cal information is small. 2) Good genotypes from prior runs
can be reused to seed the population of GP even for entirely
different scenarios. 3) The genotypes represent heuristics
which can even deliver good results in case of changes to a
scenario. They may also be the basis for cheap “readjust-
ment” optimization runs similar to our GP* method.



The most promising results were obtained with method
GP*, Genetic Programming with a seeded population. This
showed that even specialized heuristics from different sce-
narios are likely composed of general building blocks which
can be combined and refined in a short optimization run.

Our plans for future work concern two main points. 1) In [9],

the function driving the development in the ontogenic syn-
thesis of beam data structures is represented as a multi-layer
perceptron (MLP) whose weight vector is evolved with a
CMA-ES variant [30]. This is also possible in our scenario
and we will run corresponding experiments in the near fu-
ture in order to find out whether GP or MLPs are more
efficient in this scenario. We will also test whether such a
“smooth” representation may offer better reuse and adapta-
tion capabilities or not.

2) The approach to CARPs introduced in this paper is ap-
plicable to other Vehicle Routing Problems as well. There-
fore, we will conduct experiments on different classes of
computer-aided logistic planning.
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