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Abstract—We introduce an experimentation procedure for
evaluating and comparing optimization algorithms based on the
Traveling Salesman Problem (TSP). We argue that end-of-run re-
sults alone do not give sufficient information about an algorithm’s
performance, so our approach analyzes the algorithm’s progress
over time. Comparisons of performance curves in diagrams can
be formalized by comparing the areas under them. Algorithms
can be ranked according to a performance metric. Rankings
based on different metrics can then be aggregated into a global
ranking, which provides a quick overview of the quality of
algorithms in comparison. An open source software framework,
the TSP Suite, applies this experimental procedure to the TSP.
The framework can support researchers in implementing TSP
solvers, unit testing them, and running experiments in a parallel
and distributed fashion. It also has an evaluator component,
which implements the proposed evaluation process and produces
detailed reports. We test the approach by using the TSP Suite
to benchmark several local search and evolutionary computation
methods. This results in a large set of baseline data, which will
be made available to the research community. Our experiments
show that the tested pure global optimization algorithms are
outperformed by local search, but the best results come from
hybrid algorithms.

Index Terms—Traveling Salesman Problem, Experimentation,

Statistics, Evolutionary Computation

I. INTRODUCTION

In the field of metaheuristic optimization, experimentation is

perhaps the most important tool to assess and compare the per-

formance of different algorithms. However, most studies limit

themselves to presenting means and standard deviations of

final benchmark results. This article proposes an experimental

procedure that can provide deeper insights into an algorithm’s

behavior and more holistic comparisons. We implement this

procedure exemplarily for the Traveling Salesman Problem

(TSP) in a software framework called the TSP Suite, which

eases algorithm implementation, parallel and distributed exper-

imentation, as well as automatic evaluation. We then use the

TSP Suite to compare the performance of several local search

methods and members of the main Evolutionary Computation

(EC) algorithm families [2], e.g., Evolutionary Algorithms

(EAs), Memetic Algorithms (MAs), Estimation of Distribution

Algorithms (EDAs), and Ant Colony Optimization (ACO).

The TSP [3–5] is one of the most well-known combinatorial

optimization tasks. A TSP is defined as a fully-connected

http://www.ieee.org
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graph with n nodes. Each edge has a weight, representing

the distance. A candidate solution is a tour that visits each

node in the graph exactly once and returns back to its starting

node. The objective function f, subject to minimization, is the

sum of the weights of all edges in the tour, i.e., the total tour

length. This optimization version of the TSP is NP-hard [5].

It has been researched for decades, and algorithms that can

exactly solve instances with tens of thousands of nodes and

approximate the solution of million node problems with an

error of less than one part per thousand within feasible time

exist [6].

Still, the TSP remains an interesting subject for research for

two reasons. First, the problem is easy to understand. Many

results and standard benchmark instances with known optima

are available. This makes the problem ideal for testing new

approaches, be it general algorithms or improvements such as

adaptation strategies. Second, while current experimentation

approaches only focus on singular results, investigating the

behavior and progress of TSP solvers is an equally important

issue and may lead to the development of better solvers with

better results.

Experiments for analyzing the behavior of an algorithm

over runtime are cumbersome. They generate much data and

their manual evaluation can take more time than the algorithm

implementation itself. The COmparing Continuous Optimisers

(COCO) [7] system for numerical optimization, used in the

Black-Box Optimization Benchmarking (BBOB) workshops,

is one of the first approaches aiming to reduce the workload

of an experimenter by automatizing most of the steps involved.

Its evaluation procedure generates statically structured papers

that contain diagrams with runtime behavior information. The

necessary data is automatically collected from automatically

executed experiments.

UBCSAT [8], on the other hand, is an experimental frame-

work for satisfiability (SAT) problems. It focuses on a specific

algorithm family, the stochastic local search (SLS) [9]. SLS

methods can be implemented by utilizing a trigger architecture

defined on top of a default algorithm structure. In COCO, the

objective function will automatically gather log data before

returning its result to the algorithm. In UBCSAT, this is done

in its trigger architecture. The trigger architecture can also

compute complex statistics online and provide them to the

running algorithm. COCO and UBCSAT have in common that

they both explore algorithm behavior over runtime instead of

focusing only on final results. They are thus different from

contests such as the DIMACS challenge [10] or the Large-

Scale Global Optimization [11] competitions.

In this paper, we introduce a new experimental procedure for

evaluating and comparing optimization algorithms. Different

from COCO, we prescribe a more general data collection

scheme (see Section II-A). The proposed evaluation process

makes use of diagrams similar to those in COCO and UBCSAT

(see Section II-B), but it does not stop there: It combines the

results from different evaluation criteria and constructs text-

based discussions and conclusions, resulting in comprehensive

reports instead of rigidly structured papers.

The focus of COCO, UBCSAT, and our proposed approach

is on analyzing and comparing concrete algorithm setups.

They complement frameworks such as the Sequential Param-

eter Optimization Toolbox (SPOT) [12], which finds good

setups via efficient automatic parameter tuning. One could,

for example, use the SPOT to configure an algorithm before

analyzing it with COCO.

We first discuss our approach to experimentation with

optimization algorithms in general and for TSP solvers in

particular (Section II). It will become clear that, in order to

gain a deeper insight into the behavior of an algorithm, a

very large amount of work is necessary, both for measurement

and evaluation. Next, we introduce the TSP Suite, an open

source Java software framework for experimentation with

TSP solvers, in Section III. The TSP Suite implements our

experimental procedure and provides automatic data collection

and benchmarking capabilities, as well as a component for

automatically evaluating the gathered data and comparing the

performance of different algorithms. This suite allows re-

searchers working on the TSP to conduct more comprehensive

experiments in a shorter amount of time and significantly

reduces the work needed to gain valuable results and insights.

The TSP Suite also contains implementations of several

different TSP solvers, including local search algorithms, EAs,

MAs, EDAs, and ACO methods. We report the results of a

large set of experiments with these methods in Section IV

as a proof-of-concept for the TSP Suite and will provide

all collected data on the web so that other researchers may

use it for comparison. The system can be downloaded from

http://www.logisticPlanning.org/tsp/.

II. EXPERIMENTATION WITH OPTIMIZATION ALGORITHMS

In this section, we will discuss several issues that arise when

experimentally analyzing metaheuristics in general and TSP

solvers in particular. Some of these issues, such as the time

measures and considerations about performance, may also be

relevant to theoretical algorithm analysis [13–15].

A. Data Collection

Before beginning an experiment, a benchmark dataset must

be chosen. There must also be a definition of how to measure

an algorithm’s performance. Such a definition will always

be based on runtime, so how to measure the time must be

clarified.

1) Benchmark Datasets: The most well-known benchmark

dataset for the TSP is the TSPLib [16]. This library contains

110 instances of symmetric TSPs with scales n ranging from

14 to 85 900. There are 93 instances with less than 2000 nodes.

For each instance, the globally optimal tour is known.

Another dataset, based on the DIMACS 2008 challenge [10],

was used in extensive experiments with the results [17, 18]

published in [5]. This dataset contains instances with n be-

tween 1000 and 1 000 000, not all of which have been provably

solved to optimality. The website of Cook [19] holds further

large-scale TSP instances.

The decision on which benchmark set to use depends on the

goal of the research: The DIMACS instances and similar large-

scale problems allow researchers to explore the limit of what

TSP solvers can achieve and to push this boundary forward. If

http://www.logisticPlanning.org/tsp/
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(a) Reported results in the literature:
Methods A, B, and C appear to be
viable alternatives for different avail-
able computational budgets.

(b) Potential actual behavior of any-
time algorithms: Method C is better.

(c) Strategically placed horizontal and
vertical cuts where log points from
different runs of an anytime algorithm
are to be taken.

(d) The log points caught at these cuts
provide sufficient data to reconstruct
the original curves.

Fig. 1: The problem of reporting singular results and how to

collect multiple data samples per run.

the goal is to perform many experiments for statistical analysis

repeatedly, with different parameter settings, then the TSPLib

is the better choice, since its (mainly) smaller instances allow

for faster experiments.

2) What is Performance? Relevant literature like the web-

page and chapters on the DIMACS challenge [10] as well as the

Large-Scale Global Optimization competition [11] typically

report tuples of (benchmark instance, result, runtime) as out-

comes of experiments, as shown in Figure 1a. However, most

of the common metaheuristics are anytime algorithms [20].

Anytime algorithms can provide an approximate solution for

a problem at any point during their runtime and the approx-

imation quality may improve if more time is given. If such

an algorithm is applied to the TSP, the point at which the

algorithm is terminated and its result is reported becomes an

arbitrary choice of the experimenter.

This means that the reported results from Figure 1a may

actually be singular snapshots of the performance curves

depicted in Figure 1b. Based on Figure 1a, one may assume

that the depicted algorithms A, B, and C are viable alternatives

depending on the available computational budget. Figure 1b

debunks this assumption by uncovering that method C always

has a better approximation quality than the other two. Proper

experimentation should thus avoid reducing algorithm perfor-

mance to singular points.

The other extreme, to record all the solution improvements

an algorithm makes, is not a feasible option. There could

be millions of such events, leading to unmanageably large

log files. Thus, an intermediate approach is necessary, which

collects a limited amount of data but sufficient information to

approximate an algorithm’s runtime behavior.

Performance can be defined as the solution quality (tour

length) that can be reached within a given time frame or as

the time needed to reach a given solution quality. The former is

very commonly seen in benchmarking [11], but the latter has

several advantages [7]. We suggest using both methods and

to strategically define a fixed set of points in time (vertical

lines in Figure 1c) and goal objective values ft (horizontal

lines) at which “log points” are to be collected, as illustrated

in Figure 1d.1

3) What is time? Any collected measurement from a run

holds one objective value and a value for the elapsed time. The

question of how to measure time seems trivial, but it actually

has a major impact on the results the evaluation procedure will

provide. We can define four time measures for TSPs:
a) Absolute Runtime AT: Runtime, traditionally, is mea-

sured as the absolute time AT that has elapsed since the algo-

rithm was started. This has several advantages. For example,

many related papers report CPU times in milliseconds. Also,

clock time is a quantity that makes physical sense. Further-

more, the measurements will include all actions performed by

the algorithm, be it memory allocations or complex matrix

operations. However, CPU times are inherently incomparable

since they largely depend on the machine, operating system,

and software environment. If a runtime of 30 minutes on an

Intel Pentium II processor was reported about ten years ago,

this result is basically meaningless today.
b) Normalized Runtime NT: One idea to reduce the

incomparability of absolute runtime is to normalize it with a

system-dependent “performance value” Z [10], i.e., to provide

a normalized runtime NT. Before applying a TSP solver A to

a given problem instance I , we also apply a standardized algo-

rithm B, the Double-Ended Nearest Neighbor Heuristic [21],

to I and measure its runtime Z(I). The operations that B

performs are similar to those that any TSP solver will carry

out. Z(I) thus should contain most of the system-dependent

aspects that would influence the runtime of A, ranging from

the processor speed to whether the cache is large enough to

hold a whole candidate solution for I . All AT values measured

for A are divided by Z(I) to obtain the corresponding NT

values. If the same algorithm A is executed on two different

computers, for instance, the performance curves over NT

should still look approximately the same.
c) Function Evaluations FE: In the field of optimization,

the runtime of an algorithm is often measured in terms of

function evaluations (FEs), i.e., the total number of con-

structed solutions passed to the objective function [7, 11]. This

measure is entirely independent of the clock time and system

effects. However, it does not reveal “hidden complexities” of

the algorithms such as the runtime of model updating in an

EDA. Moreover, 1 FE may have largely different costs in

different algorithms. The complexity of creating a tour in ACO

is in O(n2), for crossover in an EA it may be in O(n), while

a local search that swaps two cities in a tour of known length

needs O(1) steps to obtain and evaluate the new solution.

Thus, comparing algorithms based on consumed FEs may be

grossly unfair.
d) Distance Evaluations DE: The three examples in

the previous paragraph have in common that their different

1These log points will not necessarily be exactly on the specified thresholds,
as finding a tour of length 107 would, e.g., satisfy a threshold tour length 128.
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complexities of 1 FE are related to the number of times city

distances are computed. When choosing the next city to move

to, an ant in ACO computes a probability value for each not-

yet-visited city. This value also depends on the distance to

the city, i.e., creating a new tour in ACO takes a number of

distance evaluations in O(n2). The length of a new tour created

by crossover in an EA is the sum of n ∈ O(n) distances,

while only 8 ∈ O(1) distances need to be computed in the

case of the local search move mentioned above. Counting the

number of distance evaluations (DEs) may thus often be a

fairer machine-independent runtime measure for TSP solvers.

In other domains, there are similar elementary operations that

could be counted, such as variable flips [8] in SAT problems.

In summary, measuring runtime is actually a non-trivial

issue. A data point collected from a run of an optimization

algorithm on a TSP instance, in our proposed approach, is a

five-dimensional tuple of the best achieved objective value fb
and the four time measures AT, NT, FE, and DE.

B. Data Evaluation

Carrying out an experiment means to apply the same

algorithm to a set of benchmark problem instances, performing

several independent runs for each of them. From each run, a

list of “log points” is collected, which can then be analyzed

to gain insights into the algorithm’s performance.

1) Literature Comparison: Comparison with other studies

in the literature becomes easy if data is collected as discussed

above. If a paper reports results in terms of the arithmetic

mean of fb after a specific time measured in FEs, we can

look up how long it takes for the benchmarked algorithm

to reach the same or better solution quality in mean. Such

a comparison is one of the basic requirements asked for by

any reviewer. It should be noted that the literature often reports

results in terms of runtime measures AT or FE, which have

the drawbacks discussed above. Thus, such comparisons may

not be fair, regardless of whether they are done manually or

automatically with the TSP Suite.

2) Statistical Tests: For each defined runtime or objec-

tive value threshold, statistical comparisons between different

benchmarked algorithms are possible, although it is normal to

only compare the final results of the algorithms.

For this purpose, non-parametric tests like the Mann-

Whitney U test should be used, since they make fewer assump-

tions about the underlying distribution of the measured data.

If N > 2 algorithms are compared, performing 0.5N(N − 1)
tests directly is not advisable. Instead, additional provisions

such as (at least) the conservative Bonferroni correction [22]

or (better) more sophisticated tests together with post-hoc

methods [23, 24] are needed. Statistical tests require the full

set of measured data for all compared algorithms and therefore

cannot be performed with results from the literature, which are

condensed to means or medians.

3) Data Normalization: We often may want to aggregate

data over multiple problem instances. The objective values

f∗ of the globally optimal tours are known for all TSPLib

instances, but they differ significantly. We use the best ob-

jective value fb that a process has discovered until a given

point in time to compute a relative error Fb = (fb − f∗)/f∗.

Fb = 0 means the globally optimal solution has been found

and Fb = 1 means the best discovered solution is twice as

long as the optimum. We will refer to Fb as error and to

corresponding goal thresholds Ft as goal errors.

In addition to having different optimal tour lengths, the

TSPLib instances also differ in terms of their scales n. This

makes it hard to draw diagrams aggregating benchmarking

information from different problem instances. Such aggre-

gation is necessary, however, since no paper can contain

110 separate figures, which would be impossible to interpret.

The COCO/BBOB [7] system often presents the FE axes of

diagrams scaled with the problem dimension. We found that

scaling FE and AT values with n usually leads to curves similar

enough for meaningful aggregation (although we are still

looking for a better option here). Since creating an entirely new

solution requires n distance evaluations in order to compute

the tour length, DE can be scaled by n2. NT does not need to

be scaled, since the complexity of algorithm B used for time

normalization already contains n.

4) Progress Curves: Based on the collected data points,

it is possible to approximate the progress of an algorithm in

terms of the median or other quantiles (based on all runs) of

the error Fb over a given time measure. An example for such

diagrams is given in Figure 5a later in this paper.

5) Estimated Running Time (ERT): For each of the goal

objective values ft that are specified for the data collection of

a given benchmark instance (and the corresponding error Ft),

it is possible to compute the estimated running time ERTT (Ft)
needed to attain it (for a time measure T ) [7].

The ERT can be plotted in two different ways. One can put

Ft on the x-axis and ERT on the y-axis for fixed benchmark

instances (see Figure 5b later in this paper). This shows how

the runtime of an algorithm increases as the goal error reduces.

Alternatively, a fixed threshold Ft can be chosen, the problem

scale n is put on the x-axis, and the mean or median ERT for

Ft and the benchmark instances of that scale are on the y-

axis. This provides information about how the runtime needed

to get a given approximation quality increases with n.

6) Empirical (Cumulative) Distribution Function (ECDF):

For a time measure T , the empirical cumulative distribution

function (ECDFT ) [7, 8, 25] returns the fraction of runs that

have reached a given goal error Ft (normally, Ft = 0). It is

plotted over the runtime and should, ideally, reach 1 as quickly

as possible. Figure 6 later in this paper is an example for

ECDF diagrams.

7) Curve Comparison: Diagrams that display the ERT or

ECDF are more than just visual aids. However, it is not easy to

formalize statements like “this curve tends to be lower than

that one.” One idea to do so is to compare the area under

the curve(s) (AUC) [26, 27]. Algorithms that can find better

solutions faster tend to have smaller areas under their progress

and ERT curves as well as larger areas under their ECDF.

For some problem instances and goal errors Ft, the ERT

may go to infinity and so would the AUC. Here, one can first

compare the length on the x-axis for which the ERT is infinite.

If one algorithm has a shorter section here, it is better. In case

of a tie (or if both discover the global optimum and thus have
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all-finite ERTs), the areas are compared and the one with the

smaller area is considered as better.

8) Information Aggregation via Ranking: We now can

compare algorithms from many different perspectives and,

often, findings will be consistent over different statistics. Yet,

there should be a formal concept to join them into conclusions.

A simple approach here is to rank each algorithm according

to each aspect. Let us assume that we compare five algorithms

according to their ECDF over the DEs. The TSPLib provides

110 benchmark cases and for each of those, we can draw a

diagram. The AUC-based comparison will lead to a ranking of

the algorithms in each of these diagrams. We then can re-rank

the algorithms for ECDFDE according to their median rank

over all the individual diagrams. The resulting ranking can

now contribute to a “global” ranking, which is a ranking that

orders the algorithms according to their median ranks from

many different aspects, including, e.g., ECDFDE, ERTNT, and

progress in terms of FE and NT. Of course, depending on

research goals, the global ranking can also be based on a

narrower set of performance metrics.

The ranking approach has the advantage that it can reduce

many information sources into a simple conclusion. Such a

conclusion would provide a general idea about the perfor-

mance relationship of different algorithms that can then be

further explored by a researcher.

III. THE TSP Suite

Most studies on the TSP limit their analyses to comparing

their results with those from the literature or, at best, using

statistical tests on the end results. Thorough experimentation

requires a significant amount of work. If it is done by hand,

the time needed to evaluate the benchmark results may equal

or even exceed the time spent in implementing the TSP solver

and running the experiments.

However, as mentioned in the introduction, thorough exper-

imentation is necessary for solid research in metaheuristics.

In this section, we present our open source software system:

the TSP Suite. It is a Java 1.7 framework that assists algorithm

developers in implementing and testing their methods, running

experiments and collecting data, as well as evaluating and

comparing results. We describe the experimental procedure

with the TSP Suite step-by-step in the following section.

A. Implementing the Algorithm

Since the TSP Suite is a Java framework, the optimization

algorithm to be investigated must be implemented as a Java

class (program). This class must be an extended class of a class

called TSPAlgorithm and implement a method solve tak-

ing as input an instance of the class ObjectiveFunction.

This instance provides, among others,

1) a method to compute the tour length of a candidate

solution (either in path or adjacency representation [28]);

2) a method to compute the distance between two nodes;

3) a function that returns true when the algorithm should

terminate, either because the granted computational

budget has elapsed or the global optimum has been

discovered2;

4) the random number generator to be used during the run

of the algorithm; as well as

5) information about the elapsed runtime and best solution

discovered so far.

Additionally, similar to the objective functions used in the

COCO framework [7], it automatically gathers all logging

information (in memory).

To be executable, the algorithm class must have a specific

main method, which is a single line of code that can basically

be copied from the documentation of the TSP Suite. By

optionally implementing some methods, an algorithm may be

extended with typed parameters (such as an integer value for

the population size of an EA) that can be passed in via the

command line or in a configuration file.

JUnit tests [29], which can automatically apply a TSP solver

to some of the benchmark instances and check if it produces

invalid results, are provided. In order to unit-test a new

algorithm, one additional class with a single one-line method

needs to be provided. Although testing cannot guard against

errors entirely, it may help to reduce them. The TSP Suite

comes with extensive documentation on how to implement

and test TSP solvers.

There are very few requirements on the algorithm type,

structure, and implementation imposed by the TSP Suite. This

makes it easy to both benchmark existing algorithms and to

re-use TSP Suite-based algorithms for other purposes.

B. Executing the Experiment

To execute the experiment, the algorithm will be instantiated

and applied to all benchmark instances 30 times each by

default. A folder structure with one folder per benchmark case

and one log file per run will be produced. These log files

follow an easy-to-parse text format and contain, among others,

1) the benchmarking data captured according to Sec-

tions II-A2 and II-A3;

2) the algorithm name and class;

3) all parameter settings (if typed parameters have been

specified);

4) information about the software (Java version, OS) and

hardware (processor, available memory) environment;

5) the seed of the random number generator; and

6) if specified, the name, email address, and website of the

experimenter.

A log file thus serves as a complete, publishable documenta-

tion of a single run, maximizing replicability of experiments.

As mentioned before, there are 110 symmetric TSPLib

instances and the system conducts by default 30 runs per

instance. If each run would use up the maximum time of

1h even on the smallest instances, the experiment could take

about 138 days to complete. In order to decrease the runtime,

all processors on a machine can be utilized for executing

independent runs. From our experience, a complete experiment

2The default termination criterion is to exhaust 100n3FEs, 100n4DEs, or
1h of CPU time, or when the optimum is found. This can be changed via the
command line of the system.
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with a sub-par algorithm takes about 1 week on an 8-core

machine. Additionally, several instances of the same program

may be executed in a cluster. If their output paths point

to the same shared folder, the runs to be performed are

automatically divided among them. This way, the workload

of the experiment is parallelized and distributed, but not the

algorithms themselves. Thus, no additional provisions from the

algorithm implementer (apart from not using globally shared

variables) are required.

C. Evaluating and Documenting the Results

Once an experiment has been conducted using the

TSP Suite, the evaluator program can be applied to the

output folder(s) with the log files. This evaluator generates

a comprehensive report, which includes all the steps detailed

in Section II-B. The report is structured into three parts.

The first part contains a description of the TSP, the experi-

ment, and the evaluation process, i.e., a more extensive version

of the text in this paper up to the start of Section III. This

makes the report a standalone document that can be understood

with no further context needed.

The second part of the report is focused on the evaluation

of individual algorithms separately. If the evaluator is fed

with results from multiple experiments, this part contains one

section for each of them. In such a section, the parameter

settings of the experiment are listed, several curves are plotted,

and an automatic comparison with results from the literature

is performed and presented in tabular form.

If multiple experiments have been conducted, a third section

is added to the report, which provides statistical algorithm

comparisons. Here, curves of the algorithms can be plotted

together in the same diagrams and are compared by using the

AUC-approach detailed in Section II-B7. Statistical compar-

isons of end results and runtimes are performed based on the

Mann-Whitney U test with Bonferroni correction. For each

of the above aspects, the algorithms are ranked and these

rankings are reflected in descriptive texts and conclusions. A

final section aggregates all the single rankings and makes a

suggestion about which algorithms tend to perform the best in

overall. This aggregate combines rankings resulting from the

following sources:

1) the aggregated rank for mean ECDF over all benchmark

instances;

2) separate ranks for ECDF over benchmark instances

grouped by n in powers of two;

3) the aggregated rank for ERT over Ft and all benchmark

instances;

4) separate ranks for ERT over Ft and over benchmark

instances grouped by n in powers of two;

5) the aggregated rank for ERT over n;

6) separate ranks for Fb over runtime, over benchmark

instances grouped by n in powers of two;

7) separate ranks for Fb over runtime, for each individual

benchmark instance; and

8) statistical test results, involving comparison of the final

result and the runtime to optimality and to Fb ≤ 0.01.

All time-dependent statistics are computed and ranked sep-

arately for the three time measures DE, FE, and NT. In

summary, the aggregated ranking rewards algorithm speed,

good results, and the ability to discover global optima.

Each section, result, or diagram is always accompanied with

descriptive texts. Additionally, each evaluation step in the last

two parts of the report can independently be turned on or off

and configured via command line parameters of the evaluator.

This way, researchers can adapt the ranking towards their

specific research goals. If the main goal is to find algorithms

that can find the global optimum, then all modules not focused

on that goal can be turned off. The algorithm comparison will

then rank the results solely based on this aspect.

As for the output format, the user can choose between

XHTML with PNG figures and LATEX with EPS figures. In

the latter case, one can choose among the following document

classes: standard article, ACM conference, IEEE article, IEEE

conference, and Springer conference. The LATEX output can

be automatically compiled into a PDF format. Its figures can

easily be re-used for writing papers and articles. XHTML, on

the other hand, has a smoother layout due to not needing page

breaks and can easily be published on the web.

IV. PROOF-OF-CONCEPT: AN EXPERIMENTAL STUDY

We used the TSP Suite to conduct an extensive set of exper-

iments with different metaheuristic TSP solvers. We designed

these experiments with two goals in mind: 1) to create a large

amount of comparison data and algorithm implementations

that covers the major EC algorithm families as well as local

search methods, and 2) to explore several questions about the

performance of these algorithms.

A. Prerequisites

In order to make the comparison fair, we have endeavored to

apply the algorithms in similar configurations. All algorithms

worked on the path representation [28], where solutions are

encoded as permutations of integer numbers. Here, each node

has an id in 1 . . . n and if id β is listed directly after id α in

a permutation, β will be visited directly after α in the tour.

All algorithms except PACO and TEHBSA (see the next

section) used the same four unary search operations (neighbor-

hoods) sketched in Figure 2. If one of these operators creates

a new tour x′ from an existing tour x with known length f(x),
then the length f(x′) of x′ can be computed in O(1) DEs.

The reversing operator reverses a sub-sequence of a tour [28,

30]. As a two-opt move, this procedure deletes two edges and

adds two new ones. The left-rotation operator rotates a sub-

sequence of a tour one step to the left and the right-rotation

operator rotates one step to the right [28, 31]. Both are possible

three-opt moves, i.e., delete and insert (at most) three edges.

Finally, the swap move simply exchanges two nodes [28, 32]

and is a possible four-opt move, as it leads to the deletion and

insertion of at most four edges.

B. Research Questions

We also conducted comprehensive experiments to test

whether the experimental procedure discussed in Section II

can provide meaningful answers to research problems. Some
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f(x’) = f(x) - - + +dist(     ) dist( )BC GH dist( ) dist( )BG CH

x = (A,B ,D,E,F, H,I)C G| | x’ = rev(x, 3, 7) = (A,B H,I)G C,F,E,D,| |

(a) Reversing operator: rev(x, i, j).

f(x’) = f(x) - - -
+ + +

dist(     ) dist( ) dist( )BC CD GH
dist(     ) dist( ) dist( )BD GC CH

x = (A,B D,E,F, H,I)C G| | | x’ = rol(x, 3, 7) = (A,B H,I)D,E,F,G C| ||

(b) Left-rotation operator: rol(x, i, j).

f(x’) = f(x) - - -
+ + +

dist(     ) dist( ) dist( )BC FG GH
dist( ) dist( ) dist( )BG GC FH

x = (A,B D,E,F H,I)C G,| | | x’ = ror(x, 3, 7) = (A,B H,I)G C,D,E,F| | |

(c) Right-rotation operator: ror(x, i, j).

x = (A,B D,E,F H,I)C G| || | x’ = swap(x, 3, 7) = (A,B D,E,F H,I)G C| | | |

f(x’) = f(x) - - - -
+ + + +

dist(     ) dist( ) dist( ) dist( )BC CD FG GH
dist( ) dist( ) dist( ) dist( )BG GD FC CH

(d) Swap operator: swap(x, i, j).

Fig. 2: Examples of the four search operations that modify a

candidate solution x in path representation (as permutation)

according to two input indices i, j ∈ 1..n, along with efficient

methods for computing the objective value f(x′) of the

resulting new permutation x′.

general questions are posed, such as whether global, local,

or hybrid optimization algorithms can perform well on the

TSP. There are questions with a narrower scope too, such as

whether Frequency Fitness Assignment (ffa) [33] is a good

diversity enhancement strategy in an MA for the TSP.

1) Which EC method would be most suited for the TSP?

In order to find some directions regarding which EC method

is better for solving TSPs, we conducted experiments with

several setups of three main branches of EC, namely an

EA [34–36], an ACO [37], and an EDA [38]:

The EA uses the four aforementioned neighborhoods (see

Figure 2) as mutation operators, and for each offspring it

randomly chooses one to apply. It has a crossover rate of 1/3,
and was tested with either the well-known Edge Crossover [39]

or a new Savings Crossover operator. Savings Crossover

constructs a new tour with the Savings heuristic [21], but only

uses edges present in either of the parents. If cycles would

occur, it reverts back to the original heuristic.

Population-based ACO (PACO) [40] is a version of the ACO

algorithm that maintains a set (population) of k solutions. The

edges present in those solutions define the pheromones. In

each iteration, m solutions are generated as in standard ACO

and the best of them replaces the oldest one in the population.

The Edge-Histogram based Sampling Algorithm [41, 42] is

an EDA, which is here applied in the template-based version

(TEHBSA) [42]. It uses a candidate set containing the 20
nearest nodes to any other node. This allows the reduction

of the edge histogram matrix size to 20n, but in this case

the sampling process may arrive at a point where following

the model would lead to a cycle in the tour. The tour is then

VNS1m
move

selection

1:
b:

_:

first improving move
best improving move
not applicable

hTEHBSA256hrns _PACO ,5 25mns

_EA128+256s hMA16,64mnsers

e: edge
s: savingscrossover

h:seeded
:random_initialization

local
search

mns:
rns:

_:

MNS

64
256

n
2n

population/
sample size

3
5

10
25

population
size k

10
25

sample
size m

augmentation
histogram
nearest neighbor node
random node

h:
d:
r:

local
search

initialization
Double Minimum Spanning Tree
Savings Heuristic
random

m:
s
_

:
:

DEA128+256m initialization

Double Minimum
Spanning Tree
Savings Heuristic

m:

s:

16
128

2

64
256

4
8

+
,selection diversity

ffa:
fuss:

rs:
:_

ffa and ( +, )
fuss
random

( +, )

m l

m l

RNS

none

MNS
VNS
RNS
hill climbing

MNS:
VNS:
RNS:

HC:

Fig. 3: The notation for setups of the algorithms explored in

our experiments (DEA, EA, hMA, TEHBSA, PACO, and local

search) as introduced in Section IV and used in Figure 4.

The gray boxes hold one example setup for each algorithm.

The notation elements in the setup names are connected to the

corresponding parameters and parameter values. “ ” represents

default values not explicitly signified in the setup name.

either augmented with the closest unvisited node or a random

node. We have also tested a TEHBSA version that maintains

a complete edge histogram.

2) Does seeding improve the results of metaheuristic TSP

solvers? Usually, the EA, PACO, and TEHBSA begin their

search with random solutions, empty populations, and uni-

formly initialized models, respectively. However, the algo-

rithms can instead be seeded. They can receive their initial

population of solutions from heuristics for the TSP (discussed,

e.g., in [21]).

We tested seeded versions (hEA, hPACO, hTEHBSA) of all

three algorithms in order to confirm whether this approach is

beneficial. The first two individuals in a seeded population are

generated with the Edge-Greedy and Double Minimum Span-

ning Tree heuristic. The remaining slots are filled alternatingly

with individuals resulting from the Savings, Double-Ended

Nearest Neighbor, and Nearest Neighbor Heuristic, which are

started at different, randomly chosen initial nodes.

3) Can pure EC approaches outperform local search meth-

ods on the TSP? Currently, some of the most efficient ap-

proaches for solving the TSP are local search methods [43].

We therefore also benchmarked four local search algorithms
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in order to verify whether EC methods can outperform them

(on the TSPLib instances):

a) A simple Hill Climber (HC) that applies the aforemen-

tioned four search operators in a loop.

b) The Variable Neighborhood Search (VNS) [44] imple-

mented in the TSP Suite is based on the same four neighbor-

hoods. In its main loop, it first shuffles them randomly and

then performs a neighborhood descend. Once it reaches an

optimum it cannot escape from anymore, a random part of

the solution is shuffled and the procedure begins again with

shuffling the neighborhoods.

c) Instead of descending the neighborhoods in a specific

order and always returning to the first neighborhood when an

improvement is made, we also tested an algorithm that tries

to pick a random, different neighborhood for each move it

makes. We call this method “Random Neighborhood Search”

(RNS). Both VNS and RNS were tested in versions that either

take the best (VNSb, RNSb) or first discovered (VNS1, RNS1)

improving move of a neighborhood.

d) Inspired by [45], we developed a new local search

method called Multi-Neighborhood Search (MNS). The MNS

algorithm performs a O(n2) scan of the solution and collects

all improving moves under the four defined neighborhoods

in a queue. The best move is extracted from the queue and

immediately executed. This may invalidate some moves in

the queue, e.g., if it is a rev that directly intersects with

rol (see Figure 2). These moves are pruned from the queue.

Non-intersecting moves are not affected and some moves may

be modified but are still applicable: A rol fully included

inside a reversed sub-sequence, for instance, simply becomes

a corresponding ror move. To walk through a queue of length

l and find the best remaining move while pruning invalidated

ones can be done in O(l) steps. If the queue is empty, it is

filled again. Otherwise, the best remaining move is applied. If

no further moves can be discovered, a random fraction of the

tour is randomly shuffled, exactly in the same way as in VNS

or RNS.

We started these four algorithms either at a random solution,

with one generated by the Savings, or the Double Minimum

Spanning Tree Heuristic.

4) Can local search methods benefit from being hybridized

with EC methods? MAs [46], which combine EAs with

local search, are amongst the best optimization algorithms for

combinatorial problems. We created hybrid versions of the

three EC approaches from Section IV-B2 to verify whether

these can outperform the local search methods.

We refer to our hybrid (seeded) hEA as the hMA. Here,

the crossover rate has been set to 1 and each solution that is

generated will be refined with a local search method. For this

purpose, we have slightly modified versions of RNS (which

randomly chooses between the best- and first-improvement

selection policy per call) and MNS. These versions will stop

when converging to an optimum that is different than the input

solution. We also tested versions of hPACO and hTEHBSA

that have undergone the same hybridization. The tested setups

of these hybrid global search algorithms have a name suffix

indicating the local search used for hybridization (see Figure 3)

and are always seeded (prefix h).

5) Further Questions: Methods for preventing convergence

have recently received much attention in the EC community.

In order to verify whether such approaches can be beneficial

in solving TSPs, we applied three of them in the hMA: Fitness

Uniform Selection (fuss) [47], ffa, and random selection (rs).

Furthermore, we also investigated the performance of the

Genetic Programming based developmental approach (Devel-

opmental EA, DEA in short) for the TSP introduced in [48].

C. Evaluation Results

Each of the algorithms described in Section IV-B was

implemented in the TSP Suite. We investigated 193 different

setups of these algorithms based on the parameter values

given in Figure 3. The experiments resulted in about 20GB of

log files, which will be made available online. Due to space

constraints, we will limit ourselves to the main conclusions and

representative examples of the generated diagrams obtained

with the evaluator component. The global ranking of the setups

given in Figure 4 directly provides answers to the research

questions from Section IV-B:

In their non-hybridized and non-seeded variants, none of the

tested EC approaches (EA, PACO, and TEHBSA) performed

well. In Figure 5, where examples of the ERT and progress

diagrams for the six best such setups of each algorithm family

are plotted, it can be seen that the benchmarked local search

algorithms are faster in obtaining solution qualities below Ft =
0.05.

The ranking in Figure 4 shows that the seeded global

optimization algorithm variants (hEA, hTEHBSA, hPACO)

have performed better than the non-seeded ones. They started

at good solution qualities, but are still outperformed by the

investigated local search algorithms.

The best results have been achieved when global search

methods are seeded and hybridized with local search. Figure 6

contains some examples of ECDF plots for the six best-ranked

hybridized and seeded variants of the global search algorithms.

Figure 6a shows that several hMA setups can find globally

optimal solutions in more than 50% of all runs over all the

benchmark problems. In this respect, the hMA is slightly better

than the hybrid hPACO, but hPACO with local search can find

solutions with Fb ≤ 1% more often and is faster (Figure 6b).

PACO has performed the best among the tested EC methods

and also provided the overall best results when seeded and hy-

bridized with local search. This trend is very clear, especially if

we consider that only 24 PACO-based configurations had been

tested versus 80 hMA-based and 48 TEHBSA-based setups.

MNS has performed better than the other local search

algorithms, both in pure and hybrid forms, likely because

one O(n2)-scan of the solution can result in multiple im-

provements. With ranks 24.5 (seeded) and 56 (not seeded),

it outperformed all pure and seeded EC methods as well as

most of their hybrids.

Although ffa appears to be a slightly better convergence

prevention strategy for the hMA than fuss or rs, the hMA using

neither of them can perform even better. While the always

seeded DEA was able to outperform the non-seeded EA and

TEHBSA variants, it was inferior to a simple seeded HC. Edge

Crossover is better than the new Savings Crossover.
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hPACO3,10mns (rank 1) , hPACO3,25mns (2.5), hPACO5,10mns (2.5), hPACO5,25mns (4), hPACO10,10mns (5), hPACO10,25mns (6), hMA16+64mnse (7) ,

hMA2+8mnse (8), hMA2+4mnse (9), hMA16,64mnse (10), hMA2+8mnss (11), hMA2,8mnse (12), hMA2+4mnss (13), hMA128+256mnse (14),

hMA16+64mnss (15), hMA16+64mnseffa (16), hTEHBSA64hmns (17) , hMA16,64mnseffa (18), hTEHBSA64dmns (19), hMA16+64mnsers (20),

hMA128,256mnse (21), hMA128+256mnseffa (22), hPACO3,10rns (23), hMA128+256mnss (24.5), MNSm (24.5) , hPACO3,25rns (26), hMA2,4mnse (27),

hMA128+256mnsefuss (28), hPACO5,25rns (29), hMA16,64mnsers (30), hMA128,256mnsefuss (31), hPACO10,25rns (32), hMA128,256mnseffa (33),

hPACO10,10rns (34), hMA128+256mnsers (35), hTEHBSA256hmns (36), hMA16+64mnsefuss (37), hTEHBSA64rmns (38), hMA16,64mnss (39),

hTEHBSAndmns (40.5), hTEHBSAnhmns (40.5), hMA16,64mnsefuss (42), hMA128+256mnssfuss (43), hMA128,256mnsers (44), MNSs (45),

hPACO5,10rns (46), hTEHBSA2nhmns (47), hMA16+64mnssffa (48.5), hTEHBSA256dmns (48.5), hTEHBSA2ndmns (50), hTEHBSA256rmns (51),

hTEHBSA2nrmns (52.5), hTEHBSAnrmns (52.5), hMA128+256mnssffa (54), hMA128,256mnss (55), MNS (56), hMA2,8mnss (57), hMA128,256mnssfuss (58),

hMA16,64mnssffa (59), hMA128,256mnssffa (60), hMA128,256mnssrs (61), hMA128+256mnssrs (62.5), hMA2,4mnss (62.5), hMA16,64mnssfuss (64),

hMA16+64mnssfuss (65), hMA2+8rnss (66), hMA2+4rnse (67), hMA16+64rnss (68.5), hMA2+4rnss (68.5), hMA2+8rnse (70), hMA16,64mnssrs (71),

hMA16+64mnssrs (72), hTEHBSA64hrns (73), hTEHBSAndrns (74), hTEHBSA64rrns (75), hTEHBSA64drns (76), hMA16+64rnse (77.5),

hTEHBSA256hrns (77.5), hTEHBSAnhrns (79), hMA128+256rnss (80), hTEHBSA2nhrns (81), hTEHBSA256drns (82), hMA16,64rnss (83),

RNSbm (84), hTEHBSA2ndrns (85), hTEHBSA2nrrns (86), hMA128+256rnssfuss (87.5), hTEHBSA256rrns (87.5), hTEHBSAnrrns (89), RNS1s (90),

RNSbs (91), hMA2,8rnss (92), hMA128,256rnssrs (93), RNS1 (94), hMA16,64rnssffa (95), VNSbm (96), hMA128,256rnss (97), hMA128+256rnssffa (98),

hMA128+256rnssrs (99), hMA16+64rnssffa (100), hMA16+64rnssrs (101), hMA128,256rnssfuss (102), RNS1m (103), hMA16,64rnssfuss (104),

hMA128,256rnssffa (105), VNSbs (106), RNSb (107), hMA16,64rnssrs (108), hMA2,8rnse (109), hMA128+256rnse (110.5), hMA16+64rnssfuss (110.5),

hMA128+256rnseffa (112), hMA16+64rnseffa (113), hMA128,256rnsers (114), hMA128,256rnseffa (115), hMA128,256rnsefuss (116),

hMA128+256rnsefuss (117.5), hMA128+256rnsers (117.5), hMA16,64rnsefuss (119.5), VNS1s (119.5), hMA128,256rnse (121), hMA16+64rnsers (122.5),

hMA16,64rnseffa (122.5), hMA16,64rnse (124), hMA2,4rnss (125), hMA2,4rnse (126), hMA16+64rnsefuss (127.5), hMA16,64rnsers (127.5), VNS1m (129),

VNS1 (130), VNSb (131), hEA128+256e (132) , hEA16+64e (133), hEA128+256s (134.5), hEA16,64e (134.5), hEA16,64s (136), hEA16+64s (137),

hPACO3,25 (138), hPACO5,25 (139), hPACO10,25 (140), hPACO3,10 (141), hPACO5,10 (142.5), hTEHBSA256h (142.5), hPACO10,10 (144.5),

PACO3,25 (144.5) , hTEHBSA256d (146), hTEHBSA2nd (147), hTEHBSA2nh (148.5), hTEHBSA2nr (148.5), HCs (150), hTEHBSA256r (151),

PACO5,25 (152), hTEHBSAnh (153), PACO3,10 (154), hTEHBSA64r (155), hEA128,256e (156), hTEHBSA64h (157.5), PACO10,25 (157.5),

hTEHBSA64d (159.5), hTEHBSAnr (159.5), hTEHBSAnd (161), DEA16,64s (162) , PACO5,10 (163), DEA16+64s (164.5), hEA128,256s (164.5), HC (166),

PACO10,10 (167), DEA128+256m (168.5), DEA128,256s (168.5), DEA128+256s (170), DEA128,256m (171), EA128+256e (172), DEA16,64m (173),

EA16+64e (174), DEA16+64m (175), EA16,64e (176), EA16+64s (177), EA16,64s (178), EA128+256s (179), TEHBSA64d (180), TEHBSAnd (181),

TEHBSA256d (182), TEHBSA2nd (183), TEHBSA2nr (184), EA128,256s (185), TEHBSA2nh (187), TEHBSAnh (187), TEHBSAnr (187), TEHBSA64h (189.5),

TEHBSA64r (189.5), EA128,256e (191), TEHBSA256h (192), and TEHBSA256r (193)

Fig. 4: Rankings of the 193 algorithm configurations according to the metrics defined in Section III-C, specified in the notation

given in Figure 3. The algorithm families are represented by different colors as follows: local search, EA, hMA, PACO, DEA,

and TEHBSA. Names of algorithms that are hybridized with MNS are underlined and those that employ RNS are written in

bold face. The best-ranked version of each algorithm family is displayed in a frame . The best pure global search is displayed

in a red frame and the best non-hybrid, seeded global search has a blue frame.

To sum up, the best local search (MNS) together with the

best pure global search (PACO) produces the best hybrid

search. Pure PACO performs better than the pure EA. Their

hybridized versions with MNS show the same behavior. One

may thus assume that hybridization would have an almost

additive effect. However, this is not always true, since all tested

hybrid algorithms are seeded and the (seeded) hEA is better

than the (seeded) hPACO.

Based on the results presented, we hope that our experi-

mental approach can lead to the development of better algo-

rithms through identifying behaviors and trends of different

algorithms. Prior to these experiments using the TSP Suite,

some of us would expect an MA to be the best hybrid EC

method for the TSP. The results, however, tell us that PACO

is the method of choice.

V. CONCLUSIONS AND FUTURE WORK

This paper has made four contributions to the research on

combinatorial optimization with metaheuristics in general and

the TSP in particular.

First, we proposed an experimentation procedure that allows

for analyzing and comparing optimization algorithms from

several different points of view. This procedure marks a step

forward between the traditional experimental analysis and

data mining applied to performance data from optimization

processes. It is not limited to the TSP and may be useful in

other domains as well.

Second, this experimentation procedure is realized in a

general open source framework for the implementation, unit

testing, experimentation, and analysis of TSP algorithms. The

TSP Suite, including its source code, extensive documenta-

tion, example data, and example reports, can be downloaded

from http://www.logisticPlanning.org/tsp/. With the TSP Suite,

experiments can be run in a parallel or distributed fashion

and evaluation reports containing high-level, human-readable

conclusions can be produced.

Third, the TSP Suite has been used to obtain a baseline set

of data generated from several local search methods as well as

members of the main EC algorithm families (EAs, MAs, ACO,

EDAs) in pure, seeded, and hybridized versions. This allows

users of the TSP Suite to acquire data from algorithms that

are related and suitable for comparison purposes. All of these

implementations and collected data will be made available.

Fourth, with the experiments we have shown that the

http://www.logisticPlanning.org/tsp/
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Fig. 5: Examples of (manually post-processed) progress and ERT diagrams for the six best non-seeded and non-hybridized

setups of each algorithm family.
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Fig. 6: Examples of (manually post-processed) ECDF diagrams containing the six best seeded variants of all algorithm families.

These happened to always be hybridized with MNS (except for DEA, for which no hybrid setups were tested, and the local

search algorithms themselves).
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TSP Suite is an efficient tool for answering both general and

specific research questions. This also validates the experimen-

tal procedure (which is not limited to TSPs). We confirmed

that local search can outperform pure global search methods

on the TSP, but that EC methods hybridized with local search

can be even better. PACO and the new MNS have been found

to be the best global and local optimization algorithms in the

tests, respectively.

There are five major strands of future work, which will be

followed by the authors.

First, we are working to set up a centralized website that

provides the TSP Suite and its documentation as well as all the

generated benchmarking results for download. This site will

allow other researchers to upload their results and maintain an

up-to-date list of the best TSP solvers.

Second, the collection of algorithms in our TSP Suite is

far from complete. We are currently implementing Branch-

and-Bound methods and Lin-Kernighan local search [49].

Comprehensive experiments with these two methods will be

performed.

Third, the experimentation approach described in Sec-

tion II-B will be extended to other well-known optimization

tasks such as Knapsack or Set Covering problems. We plan

to repeat our initial analysis for viable time measures (Sec-

tion II-A3) and then re-use existing code from the TSP Suite.

Fourth, at present the TSP Suite can compare different ex-

periments, but it cannot automatically analyze what influences

their parameters may have. For example, in Section IV-C, we

had to manually conclude that Edge Crossover is better than

our new Savings Crossover. It would be more convenient if the

TSP Suite could automatically derive such conclusions (instead

of treating each algorithm setup as a different algorithm).

Fifth, there are several limitations with the current version of

the experimental procedure that need to be addressed, some

of which are 1) The global ranking of algorithms depends

strongly on the mixture of statistics it is based on, so this

mixture needs to be further discussed and analyzed; 2) The

comparison of the areas under performance curves is our first

formal idea to compare dynamic behaviors, but probably not

statistically robust; 3) The best discovered solution must be

preserved by the TSP Suite in the log files, which entails

performing an O(n) copy operation whenever the running

algorithm registers an improvement. This may potentially skew

the measured CPU times. Since a running algorithm can query

the system for the best solution it has found so far, it is relieved

from making this copy itself, which may offset this expense;

4) Additionally, we are looking for better methods to mine the

data gathered during the experimental runs.
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N. Monmarché, P. Legrand, M. Schoenauer, and E. Lutton, Eds., vol.
5975. Strasbourg, France: Berlin, Germany: Springer-Verlag GmbH,
October 26–28, 2009, pp. 61–73.

[43] K. Helsgaun, “General k-opt Submoves for the Lin–Kernighan TSP
Heuristic,” Mathematical Programming Computation, vol. 1, no. 2-3,
pp. 119–163, October 2009.
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