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Abstract Evolutionary Computation (EC), a collective name for a range of metaheuristic black-box

optimization algorithms, is one of the fastest-growing areas in computer science. Many manuals and

“how-to”s on the use of different EC methods as well as a variety of free or commercial software libraries

are widely available nowadays. However, when one of these methods is applied to a real-world task, there

can be many pitfalls and booby traps lurking – certain aspects of the optimization problem that may

lead to unsatisfactory results even if the algorithm appears to be correctly implemented and executed.

These include the convergence issues, ruggedness, deceptiveness, and neutrality in the fitness landscape,

epistasis, non-separability, noise leading to the need for robustness, as well as dimensionality and scala-

bility issues, among others. In this article, we systematically discuss these related hindrances and present

some possible remedies. The goal is to equip practitioners and researchers alike with a clear picture and

understanding of what kind of problems can render EC applications unsuccessful and how to avoid them

from the start.
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1 Introduction

Every task with the goal of finding certain
configurations considered as best in the context
of pre-defined criteria can be viewed as an op-
timization problem. If these problems are for-
mally specified, they can be solved algorithmi-
cally either with a dedicated, problem-specific

algorithm (such as Dijkstra’s algorithm for
finding shortest path trees on graphs) or with
a more general optimization method. The set
of optimization algorithms ranges from mathe-
matical (e.g., using Lagrange Multipliers), nu-
merical (e.g., the Regula Falsi) and simple
heuristic (e.g., A⋆-search) approaches to ran-
domized metaheuristics such as the Evolution-
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ary Computation (EC) methods. The latter is
the focus of this special issue.

When skimming through the articles in
this issue, the reader will find many suc-
cessful examples and variants of different EC
techniques.1 However, questions such as these
may arise: “Why are there so many differ-
ent optimization methods?”, “Is optimization
a complicated process? If so, why?”, “What
makes an optimization problem difficult to
solve?”, “Which are the things I should con-
sider when tackling a particular optimization
task?”, and so on. In this article, our aim is
to provide some answers to these questions by
discussing a list of fundamental issues that are
often seen as “obstacles” in the evolutionary
optimization domain.

To start with, there are many design de-
cisions in implementing EC methods. For ef-
fective optimization, it is important to under-
stand not only the problem being studied, but
also how that problem interacts with the ap-
plied technique(s). Design choices that do not
address issues related to convergence, rugged-
ness, deceptiveness and neutrality in the fitness
landscape, epistasis, non-separability, noise, di-
mensionality, scalability and so on can ham-
per the effectiveness of the optimization effort.
By using clear definitions and illustrations to
describe these fundamental issues, we hope to
increase awareness among computer scientists
and practitioners about how to avoid pitfalls
and how EC can be applied more efficiently in
real-world environments (see [5]).

It is necessary to note that this article is
not intended to be a tutorial of how to apply
a particular EC method, e.g., an Evolutionary
Algorithm (EA), to specific problems [6–8] or
how to address subject matters such as multi-
objectivity [9], constraint handling [10], or the
inclusion of problem-specific knowledge [11].
For the practical application of EC methods
in general and EAs in particular, several books

exist [5, 7, 12–14]. Instead, our aim is to take a
closer look at what features of the problem or
search space may decrease the solution qual-
ity even if the algorithm implementation ap-
pears to be correct and “make sense”. Consid-
ering these features (and corresponding coun-
termeasures) before developing an EA applica-
tion (or, at least, when trying to improve its
performance) may lead to significantly better
results.

The article is also not a survey on problem
complexity. Research studies on this topic are
typically carried out from an analytical, math-
ematical, or theoretical perspective, with the
goal to derive approximations for the expected
runtime of the problem solvers [15–17]. These
approaches usually focus on benchmark prob-
lems or specific classes of optimization tasks,
but there is also progress towards developing
more general theorems [17, 18]. Here, we do not
intend to provide a rigorous theoretical treat-
ment of pitfalls and possible traps in evolution-
ary optimization, but simply to present a top-
down view of some “complications” that may
be encountered during the optimization pro-
cess.

Our focus is therefore on the design deci-
sions of EC methods. The effectiveness of these
design decisions is often influenced by their ac-
tual implementation and the associated param-
eter values used in the optimization process.
While parameter values are important for gain-
ing the most benefit from an EC implementa-
tion, design decisions such as problem represen-
tation, operator design, and population struc-
ture are often considered to be even more crit-
ical [19, 20].

In the remainder of this section, we will in-
troduce the basic terminologies used through-
out this article, describe some possible scenar-
ios of the fitness landscape, and briefly discuss
complexity theory. After which, we start off
with the topic of convergence in Section 2, fol-

1 A detailed overview of different EC techniques can be found in [2–4].
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lowed by other issues possibly leading to unsat-
isfying convergence, such as ruggedness (Sec-
tion 3), deceptiveness (Section 4), or neutrality
(Section 5) in the fitness landscape. One way
ruggedness, neutrality, and deceptiveness can
be manifested is from the genotype-phenotype
mapping through a phenomenon known as epis-
tasis (Section 6). Optimization can also be-
come more complicated if solutions that are
sought have to be robust against noise (Sec-
tion 7). A high number of objective functions
(Section 8) or a large problem scale (Section 9)
increases the runtime requirement while also
decreasing the expected quality of the solu-
tions. As shown in the overview provided in
Table 1, we discuss not only these interrelated
issues in optimization, but also list their corre-
sponding countermeasures (which is actually a
m-to-n relation). If an optimization algorithm
performs well in the presence of some of the
problematic facets, this good performance has
to be paid for with a loss of solution quality
in a different situation – this fact has been for-
malized in the No Free Lunch Theorem, which
we will discuss in Section 10. Finally, we con-
clude our review on the various issues with a
summary in Section 11.

1.1 Basic Terminologies

Throughout this article, we will utilize ter-
minologies commonly used in the EC commu-
nity. Most of these terminologies are inspired
from actual biological phenomena. Figure 1
shows the spaces involved in a typical evolu-
tionary optimization scenario. The candidate
solutions (or phenotypes) x of an optimization
problem are elements of the problem space X

(also called the solution space). Their utility
is evaluated by m ≥ 1 objective functions f ,
which embody the optimization criteria (usu-
ally subject to minimization). Together, these
functions can be considered as one vector func-
tion ~f : X 7→ R

m.
The objective functions are the only di-

rect source of information available to an EA. It
uses this information to decide which candidate
solutions are interesting and subsequently com-
bines and/or modifies them in order to sam-
ple new points in the problem space. If these
two processes can be conducted in a meaning-
ful way, with a certain chance of finding better
candidate solutions, the EA can progress to-
wards an optimum – an issue which we discuss
in Section 3.1 in more detail.

The search operations (such as the
unary mutation or the binary recombina-
tion/crossover operation) utilized by the EA
often do not work directly on the phenotypes.
Instead, they are applied to the elements (the
genotypes) of a search space G (the genome).
The genotypes are encoded representations of
the candidate solutions, which are mapped to
the problem space by a genotype-phenotype
mapping gpm : G 7→ X. A traditional Ge-
netic Algorithm (GA), for instance, may utilize
a bit-string based encoding as the search space,
which can be mapped to a real-valued problem
space for function optimization [21–23]. In the
common case that G = X, i.e., when the vari-
ables are processed in their “natural form” [24],
the genotype-phenotype mapping is the iden-
tity mapping.

EAs manage a population, i.e., a set of
individuals (genotype and the corresponding
phenotype), which undergo evaluation, selec-
tion, and reproduction in each iteration (gen-
eration). Before selection, a single scalar fitness
value is assigned to each individual. The fitness
denotes the priority of an individual for being
selected as the parent for offspring in the next
generation, i.e., its chance of being chosen as
the input to a search operation. This fitness,
in general, is determined by a fitness assign-
ment process that usually relies on the objec-
tive value(s) of the candidate solution stored in
the individual record. It often relates these ob-
jective values to those of other candidate solu-
tions in the population, e.g., by computing the
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individual’s (Pareto) rank among them. The
fitness may, however, also include additional
information [19] such as diversity metrics (see,
e.g., Section 2.2.5).

If only a single objective function is to be
optimized (i.e., m = 1 and ~f = f), it is some-
times referred to as the fitness function as well,
so there exists some ambiguity in the termi-
nology [2]. From the latter, the term “fitness
landscape” is derived, which refers to the visu-
alization of an objective function (and not of
the results of a fitness assignment process).

An illustration of the spaces and sets in-
volved in (evolutionary) optimization is given
in Figures 1 and 2, where the candidate
solutions are coordinate pairs decoded from
bit strings (the genotypes) via the genotype-
phenotype mapping. Each element of a geno-
type that can be modified by a search opera-
tion is called a gene. The term building block
denotes groups of gene settings that together
form an essential element of an individual.

1.2 Fitness Landscapes

As aforementioned, the most important
information sources for an optimization algo-
rithm are the m ≥ 1 objective functions that
rate the quality of possible solutions to an op-
timization problem. A function is “difficult”
from a mathematical perspective in this con-
text if it is not continuous, not differentiable, or
if it has multiple maxima and minima. This un-
derstanding of difficulty comes very close to the
intuitive curves in Figure 3 where we sketched
a number of possible scenarios of the fitness
landscape (objective function plots) that we are
going to discuss in this article. The objective
values in the figure are subject to minimization
and the small bubbles represent candidate so-
lutions under investigation. An arrow from one
bubble to another means that the second indi-
vidual is found by applying a search operation
to the first one. As can be seen, there are dif-
ferent objective function shapes that can pose

to be difficult for an optimization algorithm to
proceed its search in this manner. EAs typi-
cally work on multiple solutions simultaneously
and, as a result, the search space navigation
can be difficult to visualize. These graphs thus
provide a simplified visualization of the theories
discussed rather than an accurate depiction of
the EA search process. The structure of EAs
enables them to often overcome some local op-
tima, deception, ruggedness, and neutrality.

From these plots, it may also seem that the
shape of the fitness landscape is defined by the
objective function only. However, this is not
true from the perspective of an EA. Here, the
representation, i.e., the choice of search space,
search operations, and the genotype-phenotype
mapping, has a tremendous impact on the effec-
tive shape of the fitness landscape [25]. As out-
lined in the previous section, an EA conducts
its search by applying the search operators to
genotypes in a search space that are mapped
to phenotypes in a problem space which, in
turn, are evaluated by the objective functions,
as illustrated in Figure 2. The concept of ad-
jacency amongst candidate solutions from the
viewpoint of an EA hence depends on the rep-
resentation used and not on their proximity in
the problem space (unless both spaces are the
same, that is). In any case, many of the prob-
lematic issues which we will discuss in this ar-
ticle are closely related to the choice of repre-
sentation, as can be seen directly in Table 1
and, for instance in Sections 3.2.4, 4.2.1, 5.1.2,
and 6.2.1.

An important feature of the fitness land-
scape is that it may have different global and
local structures. Figure 4 illustrates one objec-
tive function graph (in the top-left sub graph)
from which regions are successively selected
and “zoomed in”. As can be seen, different
sections of this function may exhibit different
problematic features or issues. It is thus neces-
sary to remember that the characteristic of an
objective function may seem to be dynamic [26]
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Figure 1: The involved spaces and sets in (evolutionary) optimization.
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Figure 2: The relation between genotypes and phenotypes (candidate solutions) in EAs.

Fig. 3.a: Best Case Fig. 3.b: Multi-Modal with Low
Total Variation

Fig. 3.c: Multi-Modal with
Higher Total Variation

Fig. 3.d: Rugged (Multi-Modal
+ High Total Variation)

Fig. 3.e: Deceptive Fig. 3.f: Neutral

Fig. 3.g: Needle-In-A-Haystack Fig. 3.h: Nightmare

Figure 3: Examples of different possible scenarios in the fitness landscape (under minimization).
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Figure 4: An artificial example of how landscape features may change depending on the selected
region of the graph.

and change during the course of optimization
when the global optimum is approached.

Before going into the details of difficult fit-
ness landscape features, we would like to briefly
review the term difficult itself from the perspec-
tives of both traditional, deterministic, exact
algorithms as well as EAs.

1.3 Problem Hardness

One of the basic goals of computer science
is to find the best algorithm for solving a given
class of problems. The performance measures
used to rate an algorithm’s efficiency are (1)
the time it takes to produce the desired out-
come and (2) the storage space it needs for
internal data [27], i.e., its time and space com-
plexity. Both of these can be described as func-
tions of the input size of the algorithm for best,
average, and worst-case input situations, which
are usually simplified using the big-O family
notations [28–30].

The computational complexity of a prob-
lem is bounded by the best algorithm known
for that problem. It states how much resources

are necessary for solving the given problem, or,
from the opposite point of view, tells whether
the given resources are sufficient for this pur-
pose.

The set of all problem classes that can be
solved on a computer2 within polynomial time
is called P [32]. These are problems which
are said to be exactly solvable in a feasible
way [33, 34]. The set of problem classes that al-
lows solution verification in polynomial time is
called NP, which also comprises all the prob-
lems from P (P ⊆ NP). A problem A is hard
for a complexity class if every other problem in
this class can be reduced to it, i.e., if the other
problems can be re-formulated so that they can
also be solved with an algorithm for A. Ex-
actly solving any NP-hard problem is difficult
as it may require super-polynomial, exponen-
tial time.

Solving such a problem to optimality is
thus not always possible. When dealing with
NP-hard problems that have more than a cer-
tain number of variables, we may need to give
up some solution quality in order to make the
problem computationally tractable. EAs use

2 or Deterministic Turing Machine [31]
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some random process in their execution. These
stochastic algorithms (usually) trade in solu-
tion correctness, i.e., the guarantee to find the
global optimum, for a lower runtime. In other
words, if we apply an EA, we would normally
not expect to find the global optima but some
reasonably good approximations within feasi-
ble time. The limits of this speed-up are dis-
cussed in Section 9.1.

While NP-hard problems can be consid-
ered to be difficult for any exact method, the
question about which problems are GA- or EA-
hard arises. This question has been considered
from several perspectives [35–38], and the most
notable discussions can be found in [17, 39]:
Problem instance classes for which the ex-
pected worst case first hitting time, i.e., the
number of steps required to find a global op-
timum, of a particular EA has an exponen-
tial lower bound are “EA-hard” (for that EA).
In [17], two such classes have been proposed for
(1+1) EAs: (1) wide-gap problems, where there
is a very low probability that the EA can escape
a local optimum towards a region with higher
utility, and (2) long-path problems, where ad-
vancement towards better objective values has
a reasonably high probability, but the neces-
sary number of such steps is very high. It
should be noted that some instance classes of
NP-hard problems can be EA-easy [40].

Finding out how hard certain problems are
for EAs is an active research area and much
work has been devoted to finding the asymptot-
ical complexity of these stochastic algorithms
in different scenarios [15–18].

2 Convergence

An optimization algorithm has converged
(1) if it cannot reach new candidate solutions
anymore or (2) if it keeps on producing can-
didate solutions from a “small”3 subset of the

problem space [3]. Optimization processes will
usually converge at some point in time. In the
ideal case, convergence happens towards the
global optimum. One of the problems in evo-
lutionary optimization is that it is often not
possible to determine whether the best solution
currently known is situated on a local or global
optimum and thus, if the convergence is accept-
able. In other words, it is not clear whether the
optimization process can be stopped, whether
it should concentrate on refining the current
optimum, or whether it should examine other
parts of the search space instead. This, of
course, can only become cumbersome if there
are multiple (local) optima, i.e., the problem
is multi-modal [41, 42], as depicted in Fig. 3.c.
It is worthwhile to note that convergence of-
ten occurs much more quickly in the objective
space than in the search and solution spaces.

2.1 The Issues

There are at least three basic problems re-
lated to the convergence of an optimization al-
gorithm: premature, non-uniform, and domino
convergence. The first one is considerably the
most important in optimization, but the latter
ones may cause a lot of inconveniences too.

2.1.1 Premature and Non-Uniform Conver-
gence

The main goal in EC is to find solutions
that are as close to the true global optimum
as possible. An optimization process is consid-
ered to have prematurely converged to a local
optimum if it is no longer able (or extremely
unlikely) to explore other parts of the search
space than the area currently being examined
and there exists another region that contains a
superior solution [43, 44]. In case that there is
more than one global optimum, then the second
goal is to discover as many of them as possible.

3 according to a suitable metric like the number of modifications or mutations that need to be applied to a
given solution in order to leave this subset
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In single-objective optimization, all the
global optima have the same objective values
but reside on different peaks (or hyperplanes)
of the objective function. The presence of mul-
tiple such optima is the focus of research on
multi-modal optimization [45–47].

In multi-objective optimization, there are
usually many global optima due to the trade-
off of the objectives. Take the task of find-
ing a good car, for example, where the criteria
speed and fuel consumption would be traded-
off. The optimization process should discover
both, slower, environmentally friendly cars as
well as fast cars that need more gasoline.

In some optimization problems, the num-
ber of (globally) optimal solutions is too large
to provide all of them to the human operator.
On these cases, the subset of delivered solu-
tions should well represent the range of possi-
ble results, i.e., it should be a uniform sample
of all possible optimal features. If only some of
the optimal features are presented to the hu-
man operator, e.g., only the fast cars in the
above example, the convergence is said to be
non-uniform [48].

Figure 5 illustrates these issues on the ex-
amples of a single-objective (Fig. 5.a-c) and a
bi-objective optimization task (Fig. 5.d-f); ob-
jectives are subject to minimization. Fig. 5.a
shows the result of having a very good spread
(or diversity) of solutions, but the points are
far away from the optima. Fig. 5.d is a sketch
of the same issue for a bi-objective problem:
the discovered solutions are diverse, but dis-
tant from the true Pareto front of best trade-
offs. Such results are not attractive because
they do not provide optimal solutions and we
would consider the convergence to be prema-
ture in this case. The second examples (Fig. 5.b
and 5.e) contain solution sets that are very
close to the true optima but cover them only
partially, so the decision maker could lose im-
portant options. Finally, the optimization re-
sults depicted in Fig. 5.c and 5.f have the two

desirable properties of good convergence (i.e.,
the solutions are very close to optimal) and
spread (i.e., the whole trade-off curve between
the two objectives is covered).

2.1.2 Domino Convergence

The phenomenon of domino conver-
gence [49, 50] occurs when the candidate solu-
tions have features contributing to significantly
different degrees to the total fitness. If these
features are encoded separately, they are likely
to be treated with different priorities. If, for ex-
ample, optimization takes place over Rℓ and the
first element of a solution vector is much more
important (from the perspective of the objec-
tive function) than the second one, its priority
during the optimization process will be much
higher too.

Although this seems to be legit, it can
prevent us from finding the global optimum:
gene values with strong positive influence on
the objective values, for instance, will quickly
be adopted by the optimization process (i.e.,
“converge”). During this time, the values of
the genes with smaller contribution are ignored.
Their state may remain rather random and
hitchhike through the generations in genotypes
with good configurations of the more salient
genes [51]. They do not receive evolution-
ary pressure until the optimal configurations
of these genes have been accumulated. This
sequential convergence phenomenon is called
domino convergence due to its resemblance to
a row of falling domino stones [50].

In the worst case, the contributions of the
less influential genes may look almost like noise
and they are not optimized at all. This leads
to premature convergence, since the global op-
timum which would involve optimal configura-
tions of all genes will not be discovered. Here,
restarting the optimization process will not
help because it will turn out the same way with
very high probability.
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Fig. 5.a: Bad Convergence and
Good Spread (single-objective)

Fig. 5.b: Good Convergence and
Bad Spread (single-objective)

Fig. 5.c: Good Convergence and
Spread (single-objective)

Fig. 5.d: Bad Convergence and
Good Spread (bi-objective)

Fig. 5.e: Good Convergence and
Bad Spread (bi-objective)

Fig. 5.f: Good Convergence and
Spread (bi-objective)

Figure 5: Optimal solution approximation sets.

2.1.3 Diversity, Exploration, and Exploita-
tion

In biology, diversity is referred to as the
variety and abundance of organisms at a given
place and time [52, 53]. Genetic diversity is
the fuel of evolution and essential for a species’
robustness against and adaptivity to environ-
mental changes. In EAs, maintaining a diverse
population is very important as well. Losing
diversity means approaching a state where all
the candidate solutions under investigation be-
come similar to each other. Consequently, no
new areas in the search space will be explored
and the optimization process will not make any
further progress.

The process of finding points in new ar-
eas of the search space that are rather distant
from the currently investigated candidate so-
lutions is called exploration [54]. Exploration
increases diversity but often leads to the cre-
ation of solutions inferior to those that have

already been investigated. However, like in bi-
ology, there is a small chance that new genetic
material can lead to the discovery of superior
traits.

On the other hand, exploitation is the
process of improving and combining the
traits of the (best) currently known solutions.
Exploitation-based search operations often per-
form small changes in individuals, producing
new, very similar candidate solutions. This
would give rise to some steady improvement
in fitness for a period of time, but it also re-
duces diversity in the population since offspring
and parents become more and more similar to
each other. Another problem with exploitation
is that possibly existing better solutions which
may be located in distant areas of the problem
space will not be discovered.
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Figure 6: Exploration versus Exploitation

Exploration versus exploitation [55–57] is
therefore the dilemma of deciding which of the
two principles to apply and to which degree at
a certain stage of optimization. It is sketched
in Figure 6 and can be observed in many areas
of optimization.4Optimization algorithms that
favor exploitation over exploration have higher
convergence speed but run the risk of not find-
ing the optimal solution and may get stuck at
a local optimum. Then again, algorithms that
perform excessive exploration may never im-
prove their candidate solutions well enough to
find the global optimum or it may take them
very long to discover it.

Almost all components of optimization
strategies can either be used for increasing ex-
ploitation or in favor of exploration. Exploita-
tion can be achieved by building unary search
operations (e.g., mutation operators) that im-
prove an existing solution in small steps. How-
ever, mutation in an EA can also be imple-
mented in a way that introduces much random-
ness into the individuals, effectively turning it
into an exploration operator. Selection opera-
tions choose a set of the most promising candi-
date solutions that will be investigated in the
next iteration of the algorithm. They can ei-
ther return a small group of best individuals
(exploitation) or a wide range of existing can-
didate solutions (exploration).

A good example for the exploration vs. ex-

ploitation dilemma is the Simulated Annealing
algorithm [60]. It is often modified to a faster
form called simulated quenching , which focuses
on exploitation but loses the guaranteed con-
vergence to the optimum [61]. Another good
example is given in [62, 63], where it is shown
that for some problems, the selection pressure
and mutation rate of an EA must be balanced
extremely well in order to achieve a polyno-
mial expected runtime. Too much exploitation
or exploration may both lead to an exponential
expected first hitting time.

2.2 Countermeasures

There is no general approach to prevent
unsatisfying convergence as this phenomenon
may have a variety of different causes. The
probability of an optimization process getting
caught in a local optimum depends on the char-
acteristics of the problem at hand and the pa-
rameter settings as well as on features of the
optimization algorithms applied [48, 64, 65].

2.2.1 Balanced Exploration and Exploitation

Generally, optimization algorithms should
employ at least one search operation of explo-
rative character and at least one that is able
to exploit good solutions further. There ex-
ists a vast body of research on the trade-off
between exploration and exploitation that op-
timization algorithms have to face [54, 66, 67],
ranging from targeted initialization of the pop-
ulation [68], mining data from the optimiza-
tion process [69], to devising specialized pop-
ulation structures [70] and specialized search
operators [71].

2.2.2 Search Operator Design

A very basic measure to decrease the prob-
ability of premature convergence is to make

4 more or less synonymous to exploitation and exploration are the terms intensification and diversifica-
tion [58, 59]
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sure that the search operations are complete,
i.e., to make sure that they can (theoretically
at least) reach every point in the search space
from every other point. Then, it is possible
to escape arbitrary local optima with non-zero
probability.

A good example for this is the modifica-
tion to Evolutionary Programming (EP) intro-
duced in [72]: By replacing the usually applied
normally distributed mutations with Lévy dis-
tributed ones, the probability to reach distant
points in a real-coded search space within a sin-
gle mutation step is increased and better results
could be obtained. In [73], the large impact of
search operator design on the solution quality
for a combinatorial problem is confirmed.

2.2.3 Restarting

A very crude yet sometimes effective mea-
sure is to restart the optimization process at
randomly or strategically chosen points in time.
One example for this is the Greedy Randomized
Adaptive Search Procedure (GRASP) [74, 75],
which continuously restarts the process of cre-
ating an initial solution and refines it with local
search. Still, this approach is likely to fail in
domino convergence situations.

2.2.4 Low Selection Pressure and/or Larger
Population Size

Generally, the higher the chance that can-
didate solutions with bad fitness are investi-
gated instead of being discarded in favor of
seemingly better ones, the lower the chance of
getting stuck at a local optimum. This is the
exact idea which distinguishes Simulated An-
nealing from Hill Climbing. It is known that
Simulated Annealing can find the global opti-
mum, whereas simple Hill Climbers are likely
to prematurely converge since they always pro-
ceed with the best candidate solution discov-
ered so far.

In an EA, too, using low selection pres-
sure decreases the chance of premature conver-
gence and can lead to a better approximation
of the true global optima. However, such an
approach also decreases the speed with which
good solutions are exploited and thus, increases
the runtime. Also, too low of a selection pres-
sure may cause genetic drift, which we will put
into the context of neutrality and evolvability
in Section 5.1.1.

Increasing the population size may be use-
ful as well, since larger populations can main-
tain more individuals and hence, cover many
different solutions. This coverage can lead to
a lower selection pressure. However, the idea
that larger populations will lead to better opti-
mization results does not always hold [76, 77].
For these reasons, both population-sizing [77,
78] and selection [16] are highly-active research
areas in the EC community.

2.2.5 Sharing, Niching, and Clearing

As opposed to increasing the population
size, it is also possible to “gain more” from the
smaller populations. In order to extend the du-
ration of the evolution in EAs, many methods
have been devised for steering the search away
from areas which have already been frequently
sampled. In steady-state EAs it is common to
remove duplicate genotypes from the popula-
tion [79].

More generally, the exploration capabili-
ties of an optimizer can be improved by inte-
grating density metrics into the fitness assign-
ment process. The most popular of such ap-
proaches are sharing and niching [45, 56, 80–
84]. The Strength Pareto-type Algorithms,
which are widely accepted to be highly efficient,
use another idea: they adapt the number of in-
dividuals a candidate solution dominates as the
density measure [85, 86]. In the simple conver-
gence prevention method [3, 87, 88], candidate
solutions with the same objective values are
deleted based on a given probability. In the
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clearing approach [89, 90], all individuals are
grouped according to their distance in the phe-
notypic or genotypic space and all but a certain
number of individuals from each group receive
the worst possible fitness. The efficiency of all
these diversity preservation methods strongly
depends on the situation – a method suitable
for one scenario may cause problems in an-
other [91].

2.2.6 Clustering of Candidate Solutions

A more explicit method to prevent prema-
ture convergence is to cluster the search space
or population of an EA. This allows the op-
timization method to track multiple different
basins of attraction at the same time and in-
creases the chance of finding the global opti-
mum in one of them. Particularly in the con-
text of Estimation of Distribution Algorithms
(EDAs), various such methods have been pro-
posed [92–103].

2.2.7 Self-Adaptation

Another approach against premature con-
vergence is to introduce the capability of self-
adaptation, allowing the optimization algo-
rithm to change its strategies or to mod-
ify its parameters depending on its current
state. Such behaviors, however, are often im-
plemented not in order to prevent premature
convergence but to speed up the optimization
process (which may lead to premature conver-
gence to local optima) [104, 105].

2.2.8 Multi-Objectivization

Recently, the idea of using helper ob-
jectives [106] has emerged. Here, a single-
objective problem is transformed into a multi-
objective one by adding new objective func-
tions [107–113]. In some cases, such changes

can speed up the optimization process [114,
115]. The new objectives are often derived
from the main objective by decomposition [115]
or from certain characteristics of the prob-
lem [111]. They are then optimized together
with the original objective function with some
multi-objective techniques.

3 Ruggedness

Optimization algorithms generally depend
on some form of trends5 in the fitness land-
scape. Ideally, the objective functions would be
continuous and exhibit low total variation6 (as
sketched in Fig. 3.b), so that the optimizer can
track the trend easily. If an objective function
is unsteady or goes up and down frequently,
it becomes more complicated to find the right
directions to proceed during the optimization
process (see Figure 7 and Fig. 3.d). The more
rugged the function gets, the harder it is to op-
timize it. In short, one could say ruggedness is
multi-modality (see Fig. 3.c) plus steep ascends
and descends in the fitness landscape.

Figure 7: The landscape difficulty increases
with increasing ruggedness.

3.1 The Issue: Weak Causality

During an optimization process, new
points in the search space are created by the
search operations. Generally, we can assume
that the inputs of the search operations corre-
spond to points that have previously been se-
lected. Usually, the better or the more promis-
ing an individual is, the higher are its chances

5 using the word “gradient” here would be too restrictive and mathematical
6 http://en.wikipedia.org/wiki/Total_variation [accessed 2011-11-25]
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of being selected for further investigation. Re-
versing this statement suggests that individu-
als being passed to the search operations are
likely to have good fitness. Since the fitness of
a candidate solution depends on its features, it
can be assumed that the features of these in-
dividuals are promising, too. It should thus be
possible for the optimizer to introduce small
changes to these features (by modifying the
genes encoding them slightly) in order to find
out whether they can be improved any further.
Normally, such exploitive modifications should
also lead to small changes in the objective val-
ues and hence, in the fitness of the candidate
solution.

Strong causality (locality) means that
small changes in the features of an object also
lead to small changes in its behavior [116–118].
In fitness landscapes with weak (low) causal-
ity, small changes in the candidate solutions
often lead to large changes in the objective val-
ues. It then becomes harder to decide which
region of the problem space to explore and the
optimizer cannot find reliable trend informa-
tion to follow. The lower the causality of an
optimization problem, the more rugged its fit-
ness landscape is, which leads to degeneration
of the performance of the optimizer [119]. This
does not necessarily mean that it is impossible
to find good solutions, but it may take longer
time to do so.

3.2 Countermeasures

Ruggedness in the fitness landscape is hard
to mitigate. In population-based approaches,
using large population sizes and applying meth-
ods to increase diversity can reduce the influ-
ence of ruggedness, but only up to a certain
degree.

3.2.1 Hybridization with Local Search

Often, EAs are combined with a local
search technique applied to each individual in
the population before presenting it to the evolu-
tionary process. Two such common approaches
are Lamarckian evolution [120, 121] (perform-
ing a local search on the genotype level) and the
Baldwin effect [121–124] (local search on the
phenotype level). Memetic Algorithms [125–
134] and other hybrid approaches [24, 135–141]
also fall into this category. Since the EA only
receives individuals residing in local optima re-
sulting from the local search procedure(s), the
fitness landscape may seem to be less rugged
from its perspective [142, 143]. However, local
search can also lead to much higher selection
pressure and thus swing the pendulum to the
problem of premature convergence [4].
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3.2.2 Landscape Approximation

In order to smoothen out a rugged land-
scape, it can be approximated by parameteriz-
ing a function based on the knowledge gath-
ered from previously sampled candidate so-
lutions. The optimization process can then
be performed on this smooth approximation,
which, in turn, is updated in each step. The
goal here is not to find a function that perfectly
represents the fitness landscape, but to work
on a much smoother function without changing
the location of the global optimum. In [143],
for example, a k-dimensional quadratic poly-
nomial is used to approximate the fitness func-
tion. The second advantage of this idea is that
a new candidate solution can be created by di-
rectly solving the approximation function ana-
lytically.

3.2.3 Two-Staged Optimization

Another approach is to apply a two-staged
optimization process [144] where two different
algorithms are applied sequentially. Here, the
first optimization method should be an algo-
rithm with strong global optimization abilities,
which discovers the most promising area in the
search space and is not easily distracted from
rugged objectives (e.g., an EDA). Then, an al-
gorithm that is quick to exploit and follow the
trend in a landscape, such as Differential Evolu-
tion (DE), is applied to the subspace discovered
by the first algorithm.

3.2.4 Better Operator and Search Space De-
sign

Weak causality is often caused, to some
extent, by bad design of the solution repre-
sentation and search operations. We pointed
out that exploration operations are important
for minimizing the risk of premature conver-
gence. Exploitation operators are equally im-
portant for refining the solution quality. In

order to apply optimization algorithms in an
efficient manner, it is necessary to find repre-
sentations that allow for iterative modifications
with bounded influence on the objective val-
ues [87, 88, 145, 146], i.e., exploitation. This
can eventually lead to better candidate solu-
tions. Fortunately, many problems where their
formulation is inspired by a real-world problem
share the feature that improved solutions can
often be built from other good solutions, i.e., of-
ten exhibit strong causality. A comprehensive
collection of examples for representations that
exhibit this property in real-world application
domains can be found in [5].

4 Deceptiveness

Especially annoying fitness landscapes
show deceptiveness (or deceptivity). The gra-
dient of deceptive objective functions leads the
optimization process away from the optima,
as illustrated in Fig. 3.e as well as Figure 8.
The term deceptiveness [147] is mainly used
for the GA in the context of the Schema The-
orem [3, 148, 149]. Schemas describe certain
areas (hyperplanes) in the search space. If an
optimization algorithm has discovered an area
with better average fitness compared to other
regions, it will focus on exploring this region
based on the assumption that highly fit areas
are likely to contain the true optimum. Ob-
jective functions where this is not the case are
considered to be deceptive [24, 147, 150]. It is
interesting that some problems with the high-
est level of deceptiveness appear to be easy for
GAs [24], whereas an increasing amount of de-
ceptiveness generally leads to a steep increase
in problem hardness [151].
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Figure 8: Increasingly difficult landscapes
caused by deceptivity.

4.1 The Issue

An objective function is deceptive if a
greedy local search algorithm would be steered
in a direction leading away from all global op-
tima in large parts of the search space. The
basic problem caused by deceptiveness is that
the information accumulated by an optimizer
actually guides it away from the optimum.
Search algorithms that strictly follow a path
towards improving fitness will not be able to
discover the global optimum in this case. In
other words, they may perform worse than non-
repeating random sampling, a random walk, or
an exhaustive enumeration method in terms of
the first hitting time of the global optimum.
These most primitive search methods sample
new candidate solutions without taking into ac-
count the utility of the already investigated so-
lutions and hence are not vulnerable to decep-
tiveness.

4.2 Countermeasures

Solving tasks with deceptive objective
functions perfectly involves sampling many in-
dividuals with very bad features and fitness.
This contradicts the basic ideas of metaheuris-
tics and thus, there are no really efficient coun-
termeasures against high degrees of objective
function deceptivity. Using large population
sizes, maintaining high diversity (see, e.g., Sec-
tions 2.2.5 and 2.2.6), and utilizing linkage
learning (see Section 6.2.3) provide at least a
small chance of finding good solutions.

4.2.1 Representation Design

Like weak causality, deceptiveness can also
be caused by the design of the representation.
Utilizing a more suitable search space, search
operations, and genotype-phenotype mapping
may make an optimization problem much less
deceptive. Notice that the representation is a
part of the optimization algorithm which pro-
duces the inputs of the objective function (see
Figure 1). Changing it can change the behavior
of the objective function from the perspective
of the optimization process significantly. Com-
bining different representations in an EA may
lead to better results as shown in [152]. This
can be a feasible approach if the nature of the
problem is too complex to manually design a
non-deceptive representation.

4.2.2 Niching and Memory

Applying the diversity increasing methods
mentioned in Section 2.2.5 (such as niching and
the simple convergence prevention method) can
delay the convergence of the optimization pro-
cess and thus, increase the chance to escape
from deceptive local optima. Recent studies of
Particle Swarm Optimization (PSO) [153] show
that the local memory property of the simu-
lated particles can lead to some niching behav-
ior, which is especially suitable for this purpose
as well. Here, the lbest PSO with ring topology
discussed in [153] is noteworthy.

4.2.3 Preventing Convergence

Another approach to counteract deceptive-
ness is to stop the optimization algorithm from
converging altogether. If the population of an
EA is prevented from collapsing to a certain
area of the search space and is always kept
“moving”, deceptive basins of attraction will
be left eventually.

The Fitness Uniform Selection
Scheme [154–157] takes the idea a step fur-
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ther. Instead of selecting the most promising
candidate solutions, a diverse population with
individuals from all fitness levels is maintained
in order to avoid getting stuck at a local opti-
mum. To achieve this, in each generation the
best and worst individuals (with the smallest
and largest fitness, say fs and fl) in the popu-
lation are first determined. For each slot in the
new population, a random value r uniformly
distributed between fs and fl is drawn and the
individual with the fitness closest to r will be
selected. The selected candidate solutions will
be diverse in terms of fitness and the popula-
tion basically maintains a path of individuals
out of the current local optimum.

If the optimization problem lacks causality
and the fitness landscape is very rugged, how-
ever, this method may fail. If structurally sim-
ilar points within a small subset of the search
space may possess very different fitness, the
search may get trapped within that subset.

4.2.4 Novelty Search

In Novelty Search [158–160], the objec-
tive function f is completely abandoned. The
reason is that, on one hand, in the case of
deceptivity f may be misleading and guide
the search away from the global optima. On
the other hand, it is also not clear whether
f would reward stepping stones, i.e., the in-
termediate solutions between the initially cho-
sen starting points and the global optimum.
In many Genetic Programming (GP) applica-
tions [145, 161], for example, the intermedi-
ate steps obtained by modifying a bad pro-
gram iteratively towards a perfect solution
rarely form a sequence of improving fitness and
even needle-in-a-haystack situations (see Sec-
tion 5.1.3) are common.

Novelty Search thus does not employ a tra-
ditional fitness measure since it may not help
the optimizer to discover and combine build-
ing blocks anyway. Instead, an archive of past
candidate solutions is kept and updated and

selection will choose the individuals that dif-
fer the most from the archived ones. As more
and more candidate solutions with different be-
haviors are discovered, chances are that one
amongst them is an acceptable solution. This
method led to good results in the evolution of
virtual creatures [160], walking behaviors [159],
and navigation control [158, 159].

5 Neutrality

The outcome of the application of a search
operation to an element of the search space is
neutral if it yields no change in the objective
values [162, 163]. It is challenging for optimiza-
tion algorithms if the best candidate solution
currently known is situated on a plane of the
fitness landscape, i.e., all adjacent candidate
solutions have the same objective values. As
illustrated in Fig. 3.f and Figure 9, an opti-
mizer cannot find any gradient information in
this case and thus there is no direction as to
which way to proceed in a systematic manner.
From its point of view, each search operation
will yield identical individuals. Furthermore,
optimization algorithms usually maintain a list
of the best individuals found, which will even-
tually overflow and require pruning.

Figure 9: Landscape difficulty caused by neu-
trality.

5.1 The Issues

5.1.1 Evolvability

Another metaphor in EC that has been
borrowed from biological systems is evolvabil-
ity [164, 165]. In biology, the meaning of this
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word is twofold [166, 167]: 1) a biological sys-
tem is evolvable if it is able to generate herita-
ble, selectable phenotypic variations [168]; and
2) a system is evolvable if it can acquire new
characteristics via genetic changes that help the
organism(s) to survive and to reproduce. In the
optimization domain, the evolvability of an op-
timization process defines how likely the search
operations will lead to candidate solutions with
new (and eventually, better) objective values.7

In Sections 4.2.3, 4.2.4, and (part of) 2.2.5, we
already argued that preventing an optimization
process from converging, i.e., keeping it in an
evolvable state, may enable it to discover better
results.

The link between evolvability and neu-
trality has been discussed by many re-
searchers [167, 172]. The evolvability of neutral
parts of a fitness landscape depends on the op-
timization algorithm used. For example, the
evolvability of Hill Climbing-like approaches
can be especially low, since the search opera-
tions cannot directly provide improvements or
even changes in fitness. This could then de-
generate the optimization process to a random
walk, as illustrated in Fig. 3.f. Using the ND
fitness landscapes, i.e., landscapes with a well-
defined degree of neutrality, it has been shown
that neutrality may “destroy” useful informa-
tion such as correlation [173].

Researchers in molecular evolution, on the
other hand, found indications that the major-
ity of mutations in biology have no selective in-
fluence [174–176], and that the transformation
from genotypes to phenotypes is a many-to-one
mapping. Neutrality in natural genomes is of-
ten considered as beneficial if it concerns only
a subset of the properties peculiar to the off-
spring while allowing meaningful modifications
of the others [167, 177].

The theory of punctuated equilibria [178–
180] states that species experience long peri-

ods of evolutionary inactivity, which are inter-
rupted by sudden, localized, and rapid pheno-
typic evolutions [181]. It is assumed that the
populations explore networks of neutral genetic
changes during the time of stasis until, sud-
denly, a relevant change in a genotype leads to
a better adapted phenotype [182] and repro-
duces quickly. Similar phenomena can be ob-
served and have been utilized in EAs [183, 184].

Another example for neutrality in biology
is degeneracy : the ability of elements that are
structurally different to perform the same func-
tion or yield the same output [185] while also
having additional, unique features. Similarly,
degeneracy of the properties of candidate so-
lutions introduced by the chosen solution rep-
resentation in an optimization process can im-
prove its robustness and ability to adapt [186].

The key to differentiating between “good”
and “bad” neutrality is its degree in relation to
the number of possible solutions maintained by
an optimization algorithm. The illustrative ex-
ample in Figure 10 shows that a certain amount
of neutral reproduction can foster the progress
of optimization. In Fig. 10.a, a scenario of
premature convergence is depicted. Fig. 10.b
shows that a little shot of neutrality could form
a bridge to the global optimum. The optimizer
now has a chance to escape the smaller peak if
it is able to find and follow that bridge, i.e., the
evolvability of the system has increased. If this
bridge gets wider, as sketched in Fig. 10.c, the
chance of finding the global optimum increases
as well. Then again, if the bridge gets too wide
(see Fig. 10.d), the optimization process may
end up in a scenario like Fig. 3.f where it can-
not find any direction.

7 The direct probability of success [116, 169], i.e., the chance of search operators producing offspring fitter than
their parents, is also sometimes referred to as evolvability in the context of EAs [170, 171].
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Fig. 10.a: Premature
Convergence

Fig. 10.b: Small Neutral
Bridge

Fig. 10.c: Wide Neutral
Bridge

Fig. 10.d: Neutral Bridge
too Wide

Figure 10: Possible positive and negative influence of neutrality (inspired by [187]).

Drift, a term stemming from the area of
population genetics, describes the loss of pop-
ulation diversity resulting from the stochastic
nature of selection in a finite population (in
both nature and EAs) [174, 188]. In neutral
parts of the fitness landscape or under low se-
lection pressure, this effect is very likely. A re-
duction of diversity in the population generally
is a negative effect (see Section 2.1.3).

Unlike ruggedness, which is always bad
for the performance of optimization algorithms,
neutrality has aspects that may further as well
as hinder the process of finding good solutions.
Generally, we can state that very high degrees
of neutrality degenerate optimization processes
to random walks. On the other hand, some
forms of neutral pathways can improve evolv-
ability and hence increase the chance of finding
good solutions.

5.1.2 Redundancy

Redundancy in the context of EAs is a fea-
ture of the genotype-phenotype mapping and
it means that multiple genotypes are mapped
to the same phenotype, i.e., the genotype-
phenotype mapping is not injective. The role
of redundancy in the genome is as controver-
sial as that of neutrality [189]. There exist
many accounts of its positive influence on the

optimization process. In [190, 191], redundant
genotype-phenotype mappings are developed
using voting (via uniform redundancy as well
as a non-trivial approach), Turing machine-
like binary instructions, cellular automata, and
random Boolean networks (RBNs) [192]. Ex-
cept for the trivial voting mechanism based
on uniform redundancy, the mappings could
induce neutral pathways that were beneficial
for exploring the problem space. The RBN
approach in particular provided very good re-
sults [190, 191].

Redundancy can have a strong impact on
the explorability of the problem space. When
utilizing a one-to-one mapping, the translation
of a slightly modified genotype will always re-
sult in a different phenotype. If there exists a
many-to-one mapping between genotypes and
phenotypes, the search operations can create
offspring genotypes that are different from their
parent(s) but still translate to the same pheno-
type. The optimizer may now walk along a
path through this “neutral network”. If many
genotypes along this path can be modified to
different offspring, many new candidate solu-
tions can be reached [190].

Further accounts of positive effects of neu-
trality in the genotype-phenotype mapping can
be found in [193, 194]. In the Cartesian GP
method, neutrality is explicitly introduced to
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increase evolvability [195, 196]. Yet, simple
uniform redundancy is not necessarily benefi-
cial for the optimization process and may even
slow it down [25, 191]. If the population of indi-
viduals under investigation contains many iso-
morphic genotypes, i.e., genotypes that encode
the same phenotype, a slow-down may also oc-
cur [79]. If this isomorphism can be identi-
fied and removed, a significant speed-up may
be gained [79].

5.1.3 Needle-in-a-Haystack Problems

Besides fully deceptive problems, one of
the worst cases found in fitness landscapes is
the needle-in-a-haystack problem [37] (see Fig-
ure 9 and 3.g), where the optimum occurs as
an isolated spike in a plane [146, 197]. In
other words, this is the combination of small
instances of extreme ruggedness with a gen-
eral lack of information in the fitness land-
scape. Such problems are extremely hard to
solve and the optimization process often will
converge prematurely or take very long to find
the global optimum. An example of this kind
of fitness landscapes is the all-or-nothing prop-
erty often inherent to GP [145, 146, 198, 199].

5.2 Countermeasures

Extreme cases of neutrality, especially the
needle-in-a-haystack-type fitness landscapes,
are hard to combat. Hybridization of an
EA with local search is sometimes recom-
mended in such situations [123, 124]. Multi-
objectivization (see Section 8.2.2) and increas-
ing the population size can possibly reduce the
impact of neutrality too.

5.2.1 Selection Pressure

Higher selection pressure may be useful
if the neutral regions in the fitness landscape
still exhibit marginally different objective val-
ues that could be exploited to find a way out.

It should be noted that fitness proportion-
ate selection methods (e.g., “Roulette-Wheel
Selection”) may perform very badly in such
a case, since they will assign the essentially
same reproduction probability to all individu-
als. Other methods such as Tournament Selec-
tion, which only consider the less-then relation
instead of absolute fitness values and propor-
tions, will be not affected.

In the case where all objective values in
the neutral regions are identical, a strong em-
phasis on diversity, possibly achieved by shar-
ing and niching in the problem or search space
(see Section 2.2.5), may drive the search out of
the neutral region faster.

5.2.2 Representation

Uniform redundancy in the genome should
be avoided as it causes adverse forms of neutral-
ity. In [24, 200], it is stated that the represen-
tation of phenotypic traits in the search space
should be as short as possible. The length of
different genes and the numbers of their alle-
les should be as small as possible. However, as
we discussed earlier, non-trivial representations
with a well-adjusted degree of redundancy may
exhibit a higher evolvability and thus lead to a
more robust and steadily improving optimiza-
tion process [196].

5.2.3 Memory

In Tabu Search, recently performed search
steps are memorized and not performed again.
This allows the algorithm to escape small neu-
tral areas. Similar techniques could be applied
in EAs as well.

6 Epistasis, Pleiotropy, and Separability

In biology, epistasis is defined as a form of
interaction between different genes [201]. The
term was coined by Bateson [202] and origi-
nally meant that one gene suppresses the phe-
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notypical expression of another gene. In the
context of statistical genetics, epistasis was ini-
tially called “epistacy” by Fisher [203]. Ac-
cording to [204], the interaction between genes
is epistatic if the effect of altering one gene on
the fitness depends on the allelic state of other
genes. In (evolutionary) optimization, epista-
sis is the non-linear interaction of two or more
genes of the genotypes as expressed in objective
function values after the genotype-phenotype
mapping. Two genes interact epistatically if
the contribution of one of these genes to the ob-
jective value depends on the value of the other
gene [3, 205–207]. Epistasis can also be consid-
ered as the higher-order or non-main effects in
a model predicting fitness values based on the
interactions of the genes from the viewpoint of
Design of Experiments [113, 208].

On one hand, we speak of minimal epis-
tasis when every gene is independent of every
other gene. Then, the optimization process
equals finding the best value for each gene and
can most efficiently be carried out by a simple
greedy search iteratively applied to each gene
while keeping the others constant [205]. On the
other hand, a problem is maximally epistatic
when no proper subset of genes is independent
of any other gene [207, 209]. The effects of epis-
tasis are closely related to another biological
phenomenon: Pleiotropy, which denotes that a
single gene is responsible for multiple pheno-
typical traits [164, 210, 211].

Like epistasis, pleiotropy can sometimes
lead to unexpected improvements but often is
harmful for an evolutionary system [171]. Both
phenomena may easily intertwine. If one gene
epistatically influences, for instance, two others
that are responsible for distinct phenotypical
traits, it has both epistatic and pleiotropic ef-
fects. We will therefore consider pleiotropy and
epistasis together, and when discussing the ef-
fects of the latter, we also implicitly refer to the
former.

In Figure 11, we illustrate a fictional di-

nosaur along with a snippet of its fictional
genome consisting of four genes. Gene 1 in-
fluences the color of the creature and is nei-
ther pleiotropic nor has any epistatic relations.
Gene 2, however, exhibits pleiotropy since it
determines the length of the hind legs and
forelegs. At the same time, it is epistatically
connected with gene 3, which also influences
the length of the forelegs – maybe preventing
them from looking exactly like the hind legs.
The fourth gene is again pleiotropic by deter-
mining the shape of the bone armors on the top
of the dinosaur’s skull and on its snout.

Figure 11: Pleiotropy and epistasis in a di-
nosaur’s genome.

In the area of optimization over continu-
ous problem spaces, epistasis and pleiotropy are
closely related to the term separability . Sepa-
rability is a feature of the objective function(s)
of an optimization problem [212]. A function
of ℓX variables is separable if it can be rewrit-
ten as a sum of ℓX functions of just one vari-
able [71, 213, 214]. Hence, the genes involved
in the problem can be optimized independently
of each other, i.e., are minimally epistatic, and
the problem is said to be separable. A function
f : RℓX 7→ R is separable [215, 216] if and only
if Equation 1 holds.

Otherwise, f(~x) is called a non-separable
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argmin(x1,..,xℓX
)f(x1, .., xℓX) =

(

argminx1f(x1, ..) , .., argminxℓX
f(.., xℓX)

)

(1)

function. If a function f(~x) is separable, the
parameters x1, .., xℓX forming the candidate so-
lution ~x are called independent. A separable
problem is decomposable. A function f : RℓX 7→
R is k-non-separable if at most k of its param-
eters xi are not independent. A non-separable
function f(~x) is called fully non-separable if
any two of its parameters xi are not indepen-
dent. The higher the degree of non-separability,
the harder a function will usually become for
optimization [215–217]. Often, the term non-
separable is used in the sense of fully non-
separable. In between separable and fully non-
separable problems, a variety of partially sepa-
rable problems exist.

6.1 The Issue

As sketched in Figure 12, epistasis has a
strong influence on many of the previously dis-
cussed issues. If one variable (gene) of a point
(genotype) in the search space can “turn off”
or affect the expression of other genes, modify-
ing this gene will lead to a large change in the
features of the phenotype. Hence, the causal-
ity will be weakened and ruggedness ensues in
the fitness landscape. It also becomes harder
to define search operations with an exploitive
character. Moreover, subsequent changes to
the “deactivated” genes may have no influence
on the phenotype at all, which would then in-
crease the degree of neutrality in the search
space. Representations and genotypes with low
pleiotropy often lead to better and more robust
solutions [218].

Figure 12: The influence of epistasis on the fit-
ness landscape.

6.2 Countermeasures

Epistasis is a root cause for multiple re-
lated issues in optimization tasks. The symp-
toms of epistasis can be mitigated with the
same methods that increase the chance of find-
ing good solutions in the presence of ruggedness
or neutrality. Other methods are discussed in
the following.

6.2.1 Choice of the Representation

Epistasis itself is again an issue resulting
from the choice of the search space structure,
the search operations, the genotype-phenotype
mapping, and the structure of the problem
space. Avoiding epistatic effects should be
a major concern during the design phase.
Choosing the solution space and the genotype-
phenotype mapping correctly can lead to great
improvements in the quality of the solutions
produced by the optimization process [145, 146,
199, 219]. Introducing specialized search oper-
ations can achieve similar effects [220].

6.2.2 Adjusting Selection Pressure

Using larger populations and favoring ex-
plorative search operations could be helpful in
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epistatic problems, since these are ways to in-
crease diversity. On the other hand, apply-
ing 1) higher selection pressure, i.e., increasing
the chance of picking the best candidate so-
lutions for further investigation instead of the
weaker ones, and 2) extinctive selection, i.e.,
only working with the newest produced set of
candidate solutions while discarding their par-
ents, can also increase the reliability of an op-
timizer to find good solutions [220]. These two
concepts are slightly contradicting, so careful
adjustment of the algorithm settings appears
to be vital in epistatic environments. Higher
selection pressure also leads to earlier conver-
gence [220], a fact we already discussed in Sec-
tion 2.

6.2.3 Linkage and Interaction Learning

According to [221], linkage is “the ten-
dency for alleles of different genes to be passed
together from one generation to the next” in ge-
netics. This usually indicates that these genes
are closely located in the same chromosome. In
the context of EAs, this notation is not useful
since identifying spatially close elements inside
the genotypes is trivial. Instead, we are inter-
ested in different genes that have a joint effect
on the fitness [222, 223].

Identifying these linked genes, i.e., learn-
ing their epistatic interaction, is very helpful
for the optimization process. Such knowledge
can be used to protect building blocks from be-
ing destroyed by the search operations (such as
crossover in GAs), for instance. Finding ap-
proaches for linkage learning for binary [222,
224, 225] and real-valued [226] genomes has
become a popular research area. Two impor-
tant methods derived from this research are the
messy GA (mGA) [227] and the Bayesian Op-
timization Algorithm (BOA) [228, 229].

Module acquisition [230] may be consid-
ered as such an effort too. Here, an addi-
tional reproduction operation can group con-
nected components of a genotype together into

an atomic group, which becomes immune to
modification by other reproduction operators.
In GP, this is similar to adding a new automati-
cally defined function that represents a subtree
of the program individual.

Especially promising in numerical opti-
mization is the Variable Interaction Learning
(VIL) technique [231] that can detect which
genes have non-separable relations. These
are then grouped together and the result-
ing division of the genotypes can be opti-
mized separately in a cooperative-coevolution
approach [231–233], see Section 9.2.5.

7 Noise and Robustness

Noise is an undesired and unpredictable
random disturbance to a signal. In the con-
text of optimization, three types of noise can
be distinguished [234]. The first form is noise
in the objective functions or in the training
data used [235]. In many applications of Ma-
chine Learning or optimization where a model
for a given system is to be learned, data sam-
ples including the input of the system and its
measured response are used for training. Be-
sides inexactnesses and fluctuations in the in-
put data of the optimization process, pertur-
bations are also likely to occur during the ap-
plication of its results, which takes place after
the optimization has finished. This category
subsumes the other two types of noise: per-
turbations that may arise from inaccuracies in
the process of realizing the solutions and envi-
ronmentally induced perturbations during the
applications of the products. The effects of
noise in optimization have been the subject of
many studies [236–239]. Many optimization al-
gorithms and theoretical results have been pro-
posed to deal with noise. Some of them are,
for instance, specialized GAs [240–245], Evolu-
tion Strategies (ESs) [246–248], and PSO algo-
rithms [249, 250].
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7.1 The Issue: Need for Robustness

The goal of optimization is to find the
global optima of the objective functions. While
this is fully true from a theoretical point of
view, it may not suffice in practice. Optimiza-
tion problems are normally used to find good
parameters or designs for components or plans
to be put into action by human beings or ma-
chines. As we have discussed, there will always
be noise and perturbations in practical realiza-
tions of the results of optimization. Designs,
plans, and procedures must address the fact
that no process is perfect. As a result, prac-
titioners may desire a relatively good and yet
predictable solution that can tolerate a certain
degree of imprecision during its application in
lieu of a less predictable but globally optimal
solution.

A system in engineering or biology is ro-
bust if it is able to function properly in the face
of genetic or environmental perturbations [164,
166, 210]. A local optimum (or even a non-
optimal element) for which slight disturbances
only lead to gentle performance degenerations
is usually favored over a global optimum lo-
cated in a highly rugged area of the fitness
landscape [251]. In other words, local optima
in regions of the fitness landscape with strong
causality are sometimes better than global op-
tima with weak causality. Of course, the level
of this acceptability is application-dependent.
Figure 13 illustrates the issue of local optima
which are robust vs. global optima which are
not.

Figure 13: A robust local optimum vs. an “un-
stable” global optimum.

7.2 Countermeasures

For the special case where the solution
space is a real vector space, several approaches
for dealing with the need for robustness have
been developed. Inspired by Taguchi Meth-
ods [252], possible disturbances are represented
by a vector ~δ in the method suggested in [253,
254]. The objective function can be rewritten

as f̃
(

~x,~δ
)

[255] if ~δ follows a stochastic distri-

bution with known (measured, approximated)
parameters. The probability distribution of ~δ
then can be sampled a number of t times and

the mean values of f̃
(

~x,~δ
)

are used during the

optimization process [255].

This method turns the optimization algo-
rithm into something like a maximum likeli-
hood estimator and also corresponds to using
multiple, different training scenarios during the
objective function evaluation. By adding ran-
dom noise and artificial perturbations to the
training cases, the chance of obtaining robust
solutions that are stable when applied or real-
ized under noisy conditions can be higher.
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8 Dimensionality

Many engineering or scheduling problems
involve multiple, often conflicting, optimization
criteria. In logistic planning tasks [87, 88], for
instance, the goals are 1) to fulfill as many
transportation orders within their respective
time windows as possible, 2) at the lowest pos-
sible cost, and 3) with as little CO2 emissions
as possible. We refer to the number m of ob-
jective functions of an optimization problem as
its dimension (or dimensionality). Later in this
article, we will discuss issues arising from a high
number of decision variables, which we put un-
der the heading scalability in Section 9.)

The most common way to define optima in
multi-objective problems (MOPs) is to use the
Pareto domination relation. A candidate solu-
tion x1 is said to dominate another candidate
solution x2 (x1 ≺ x2) in an m-objective opti-
mization problem if and only if its correspond-
ing vector of objective values ~f(x1) is (par-
tially) less than the one of x2, i.e., i ∈ 1..m ⇒
fi(x1) ≤ fi(x2) and ∃i ∈ 1..m : fi(x1) < fi(x2),
in minimization problems. More precisely, this
is called weak dominance; strong dominance re-
quires x1 to be strictly better than x2 in all ob-
jectives. However, the latter notion is usually
not applied in the optimization domain. The
solutions in the Pareto optimal set (also called
Pareto set or Pareto efficient frontier) are not
(weakly) dominated by any other solution in
the problem space, i.e., globally optimal with
respect to the dominance relation [256–258].
These are the elements we would like to find, or
at least approximate as closely as possible, with
optimization (see Figure 5 in Section 2.1.1).

Many studies in the literature consider
mainly bi-objective problems [259, 260]. Con-
sequently, many algorithms have been designed
to deal with that kind of problems. How-
ever, MOPs having a higher number of ob-
jective functions are common in practice –
sometimes the number of objectives reaches

double figures [261] – leading to the so-called
many-objective optimization [48, 259, 262–264].
This term has been coined by the Opera-
tions Research community to denote problems
with more than two or three objective func-
tions [265, 266].

8.1 The Issue: Many-Objective Opti-

mization

When the dimension of MOPs increases,
the majority of the candidate solutions become
non-dominated. Traditional multi-objective
EAs (MOEAs), however, assign fitness mainly
based on information about the Pareto domi-
nation relation in the population, usually com-
bined with some diversity metric. Examples
include the NSGA-II [267] (Pareto rank com-
bined with the crowding distance in the ob-
jective space), SPEA-2 [86] (Pareto-domination
based strength together with distance to the k

nearest neighbor in the objective space), and
PESA [268] (Pareto domination and number
of other individuals in the same hyper-box
in a grid defined over the search space). It
thus can be assumed that Pareto-based op-
timization approaches (maybe extended with
diversity preservation methods) will not per-
form well in problems with four or more objec-
tives [269, 270]. Results from the application of
such algorithms to two or three objectives can-
not simply be extrapolated to higher numbers
of optimization criteria [259]. In [271], Pareto
optimality is considered as unfair and imperfect
in many-objective problems and [270] indicated
that:

1. an optimizer that produces an entire
Pareto set in one run is better than gener-
ating the Pareto set through many single-
objective optimizations using an aggrega-
tion approach if the number of objective
function evaluations is fixed, and that

2. optimizers that use Pareto ranking based
methods to sort the population will be
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very effective for small numbers of objec-
tives, but not perform as effectively for
many-objective optimization in compar-
ison with methods based on other ap-
proaches.

The results in [259, 262, 272, 273] further
demonstrated the degeneration of the per-
formance of traditional multi-objective meta-
heuristics in many-objective problems in com-
parison with single-objective approaches. Vari-
ous elements distant from the true Pareto fron-
tier may survive as hardly-dominated solutions
and lead to a decrease in the probability of pro-
ducing new candidate solutions dominating the
existing ones [274]. This phenomenon is called
dominance resistance. The problem of redun-
dant solutions is recognized and demonstrated
with an example function (provided as part
of a test function suite for continuous multi-
objective optimization) in [275].

In addition to these algorithm-sided
limitations, [276] suggested that a human
mind [277] will not be able to make efficient
decisions if more than a dozen of objectives are
involved. Visualizing the solutions in a human-
understandable way becomes more complex
with the rising number of dimensions too [278].

The number of non-dominated elements
in random samples increases quickly with the
dimension [279]. The hyper-surface of the
Pareto frontier may increase exponentially with
the number of objective functions [278]. Like
in [278], we would like to illustrate this issue
with an experiment.

Assume that a population-based optimiza-
tion approach is used to solve a many-objective
problem. The algorithm will fill the initial pop-
ulation with n randomly created individuals.
The distribution of the probability P (#dom =
0|m,n) that a randomly selected individual
from this initial population is non-dominated
(in this population) depends on the popula-
tion size n and the number of objective func-
tions m. We have approximated this prob-

ability distribution using experiments with n

m-dimensional vectors where each element is
drawn from the same uniform distribution for
several values of m spanning from m = 2 to
m = 50 and with n = 3 to n = 3600.

Figure 14: The proportion P (#dom = 0|m,n)
of non-dominated candidate solutions for sev-
eral population sizes n and dimensionalities m.

The fraction of non-dominated elements
in the random populations is illustrated in
Figure 14, based on the arithmetic means of
100 000 runs for each configuration. It rises
(roughly) exponentially with m, whereas the
population size n seems to have only an ap-
proximately logarithmically positive influence.
If we list the population sizes required to keep
the fraction of non-dominated candidate solu-
tions at the same level as in the case of n = 5
and m = 2 (at around 0.457), we find that for
m = 3 ⇒ n ≈ 12, for m = 4 ⇒ n ≈ 35, for
m = 5 ⇒ n ≈ 90, for m = 6 ⇒ n ≈ 250, for
m = 7 ⇒ n ≈ 650, and for m = 8 ⇒ n ≈ 1800.
An extremely coarse rule of thumb here would
hence be that around 0.6em individuals are re-
quired in the population to hold the propor-
tion of non-dominated candidate solutions at
around 46% in this experiment.

The increasing dimensionality of the ob-
jective space leads to three main prob-
lems [278]:

1. The performance of traditional ap-
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proaches based solely on Pareto compar-
isons deteriorates.

2. The utility of the solutions cannot be
understood by the human operator any-
more.

3. The number of possible Pareto-optimal
solutions may increase exponentially.

8.2 Countermeasures

Various countermeasures have been pro-
posed against the problem of dimensional-
ity. Surveys on current approaches to many-
objective optimization with EC methods, to
the difficulties arising in many-objective and
on benchmark problems, have been provided
in [260, 278, 280]. In the following we list a
number of approaches for many-objective opti-
mization, some of which are based on the in-
formation provided in [260, 278].

8.2.1 Increasing the Population Size

The most trivial measure is to increase the
population size. This, however, works only
for a few objective functions and we have to
“throw” in exponentially more individuals in
order to neutralize the influence of many ob-
jectives (as can be seen in Figure 14). Hence,
increasing the population size will not get us
far.

8.2.2 Multi-Archive Approaches

On large numbers of objectives, tradi-
tional MOEAs usually exhibit either conver-
gence close to the Pareto front or a good spread
alongside it [259, 262]. One possible solution is
to use two archives [281, 282] in the algorithms:
one for diversity and one for convergence, with
the goal to combine the two positive features.

8.2.3 Increasing the Selection Pressure

The way multi-objective approaches scale
with increasing dimensionality can be improved

by increasing the selection pressure into the
direction of the Pareto frontier. Ishibuchi et
al. [278] distinguished approaches that modify
the definition of domination in order to reduce
the number of non-dominated candidate solu-
tions in the population [283] and methods that
assign different ranks to non-dominated solu-
tions [284–289]. Relying on fuzzy Pareto meth-
ods instead of pure Pareto comparisons is pro-
posed in [266].

8.2.4 Indicator Function-based Approaches

Fitness assignment methods not based on
Pareto dominance can also be applied [278].
One approach is to use indicator functions such
as those involving hypervolume metrics [290,
291]. Hypervolume metrics have been shown
to be able to approximate the Pareto fron-
tier [292].

8.2.5 Scalarizing Approaches

Another possible countermeasure is to use
scalarizing functions [278] for fitness assign-
ment in order to treat many-objective problems
with single-objective style methods. Several
studies [270, 290, 293] showed that this method
can produce better results than applying tradi-
tional MOEAs such as NSGA-II [267] or SPEA
2 [86], but also refuted the idea that Pareto-
based algorithms cannot cope with their per-
formance in general. Other scalarizing methods
can be found in [272, 294–296].

8.2.6 Limiting the Search Area in the Objec-
tive Space

Furthermore, we can limit the search area
in the objective space [260]. This leads to
a decrease in the number of non-dominated
points [278] and can be achieved by either in-
corporating preference information [297–299]
or by reducing the dimensionality [300–304].
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8.2.7 Visualization Methods

Approaches for visualizing solutions of
many-objective problems in order to make
them more comprehensible have been provided
in [305–308].

9 Scalability

An increasing number of objective func-
tions can threaten the performance of optimiza-
tion algorithms. We referred to this as the di-
mensionality problem, i.e., the dimension of the
objective space. There is another space-related
issue – the “curse of dimensionality” of the
search space, i.e., the exponential increase of its
volume with the number of genes (or decision
variables) [309, 310]. To better distinguish be-
tween the dimensionality of the objective space
and the search space, we will refer to the latter
as scale.

As an example, we illustrate small-scale
versus large-scale problems using discrete or
continuous vector-based search spaces. If we
search, for instance, on one gene having val-
ues in the natural interval 1..10, there are
ten points that could be the optimal solution.
When the search space is composed of two such
genes, i.e., (1..10)2, there exist one hundred
possible results and for (1..10)3, it is already
one thousand. In other words, the number of
elements that could be a solution to an opti-
mization problem grows exponentially with the
number of genes.

Figure 15: Illustration of the rising speed of
some functions, inspired by [311].

9.1 The Issue

The issue of scale has already been intro-
duced in Section 1.3, where we discussed the
computational complexity as a measure of how
many algorithm steps are needed to solve a
problem consisting of ℓX decision variables. As
can be seen in Figure 15, if the number t(ℓX)
of algorithm steps, i.e., the runtime, needed to
solve a problem grows exponentially with the
problem size ℓX, it quickly exceeds any feasi-
ble bound. However, in Section 1.3, the is-
sue was considered from the perspective of de-
terministic algorithms, which are supposed to
solve a problem to optimality. As a remedy for
the infeasible runtime of these algorithms, we
then suggested to apply stochastic optimiza-
tion methods. Although these may be able
to solve problems with a several magnitudes
higher scale in a close-to-optimal way, their per-
formance deteriorates with rising scales too.

8 Actually, only a sub-linear speed-up can be achieved [312].
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9.2 Countermeasures

9.2.1 Parallelization and Distribution

When facing problems of large scale, the
main “obstacle” is the high runtime require-
ment. Thus, any measure of using as much
computational power as available can be a rem-
edy. Obviously, there (currently) exists no way
to solve large-scale NP-hard problems exactly
within feasible time. With more computers,
cores, or hardware, only a linear improvement8

of runtime can be achieved at most. How-
ever, for problems residing in the grey area be-
tween feasible and infeasible, distributed com-
puting [313] may be the method of choice.

There is a long tradition of parallelizing
and distributing the computational workload in
EC [314–317]. The basic ways to parallelize an
EA are:

1. Local Parallelization To parallelize the
execution by using hardware with mul-
tiple CPUs [318] in a single computer, or,
as is the current trend,

2. by utilizing modern Graphics Processing
Units (GPUs) [319–322] to evaluate and
process the individuals in a population in
parallel.

3. Parallel Restarts It is also possible to run
different instances of the same algorithm
on multiple CPUs or computers in a net-
work at the same time, which would be a
parallel version of the restarting strategy.

4. Master/Slave Approach [323] If the evalu-
ation of a candidate solution is very time
consuming, this step can be parallelized
to several workers (threads or computers
in a network), which receive their task
from a single central server maintaining
a global population.

5. Island Model [324] Alternatively, each
node (or thread) may maintain an own

population and, from time to time,
exchange promising candidate solutions
with neighboring nodes in the topology.

6. Of course, any combination of the above
is possible [317].

9.2.2 Generative Representations

Another way, possibly the best way, to
tackle a large-scale problem is to “solve” it as
a small-scale problem. For some optimization
tasks, it is possible to choose a search space G

having a smaller size (e.g., a small number ℓG of
genes) than the problem space X (e.g., having
ℓX > ℓG decision variables). Indirect genotype-
phenotype mappings can link the spaces to-
gether.

Here, one option is the generative map-
ping, which step-by-step constructs a complex
phenotype by translating a genotype accord-
ing to some static rules. Grammatical Evo-
lution [325, 326], for instance, unfolds a start
symbol according to a grammar with rules iden-
tified in a genotype. This recursive process
can basically lead to arbitrarily complex phe-
notypes.

9.2.3 Developmental Representations

Applying a developmental, ontogenic map-
ping [20, 327] that uses feedback from simula-
tions or objective functions in the process of
building a candidate solution is another pos-
sible countermeasure. If, for instance, a rigid
truss composed of ℓX = 600 beams is to be
found, instead of optimizing the volumes of
each of the beams directly, the goal would be
to find a suitable function that receives as a pa-
rameter the mechanical stress on a given beam
and returns how much the cross section of the
beam should be increased.

Beginning with a basic beam structure, the
mechanical stress is evaluated and the function
is applied to each of the beams. The updated
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truss is simulated again and the process is re-
peated a couple of times. The resulting struc-
ture would be the phenotype. The genotype
can be an Artificial Neural Network represent-
ing the function, encoded as real vectors con-
taining the neural weights, thus having much
fewer variables (e.g., ℓG = 12). Moreover, ℓG
is independent from ℓX, and therefore, much
larger problem spaces can become tangible and
excellent results may be obtained in reasonable
time, likely with better quality and faster than
using generative mappings [20].

9.2.4 Adaptive Encodings

Somewhat in between purely generative
and a developmental approach is the Dynamic
Parameter Encoding (DPE) method [23], which
is basically a dynamic genotype-phenotype
mapping for binary-encoded real vectors. Tra-
ditionally, the number of bits in each gene is
fixed and corresponds to the desired precision.
In DPE, the interval in the problem space rep-
resented by each gene is assigned dynamically,
iteratively shrinking down from the full range:
If the GA used for optimization has converged
to some values of the bits of a gene, a zoom-
ing operation changes the meaning of that gene
to now represent the corresponding sub-interval
only. This way, the number of bits needed to
achieve a given solution precision can be sig-
nificantly reduced. In other words, although it
still needs one gene in the genotype per deci-
sion variable in the phenotype, the genes them-
selves only consist of a few bits (e.g., three)
and are thus much more compact than in fixed
genotype-phenotype mappings.

9.2.5 Exploiting Separability

If a large-scale problem cannot be solved
as a single small-scale problem, solving it as
multiple small-scale problems may be another
option for saving runtime. Sometimes, parts of
candidate solutions are independent from each

other and can be optimized more or less sep-
arately. In such a case (low epistasis, see Sec-
tion 6), a large-scale problem can be divided
into several components of smaller-scale to be
optimized separately. If solving a problem of
scale ℓX takes 2ℓX algorithm steps, solving two
problems of scale 0.5ℓX will clearly lead to a
great runtime reduction. Such a reduction may
even be worth the sacrifice of some solution
quality. If the optimization problem at hand
exhibits low epistasis or is separable, such a
sacrifice may even be avoided.

Coevolution has shown to be an efficient
approach in combinatorial optimization [328].
If extended with a cooperative component
(i.e., to Cooperative Coevolution [231–233]), it
can efficiently exploit separability in numerical
problems and lead to better results [231, 329].

9.2.6 Combination of Techniques

Generally speaking, it can be a good
idea to concurrently use different sets of al-
gorithms [330] or portfolios [331] to work on
the same or different populations. This way,
the strengths of different optimization meth-
ods can be combined. In the beginning, for
instance, an algorithm with good convergence
speed may be granted more runtime. Later, the
focus can shift towards methods that can retain
diversity and are not prone to premature con-
vergence. Alternatively, a sequential approach
can be performed, which starts with one algo-
rithm and switches to another one when no fur-
ther improvements can be found [144]. By do-
ing this, an interesting area in the search space
can first be discovered, and then be investi-
gated more thoroughly.

10 The No Free Lunch Theorem

So far, we have discussed various difficul-
ties that could arise when applying an opti-
mization algorithm to a given problem. The
fact that not a single optimization method is
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likely to be able to outperform all other meth-
ods on all problems can easily be accepted. In-
stead, we see a variety of optimization methods
specialized in solving different types of prob-
lems. There are also algorithms that may de-
liver good results for many different problem
classes, but could be outperformed by highly
specialized methods in each of them. These
facts have been formalized by Wolpert and
Macready [332] in their No Free Lunch The-
orems for search and optimization algorithms.

Figure 16: A visualization of the No Free Lunch
Theorem.

The performance of an algorithm a exe-
cuted for p steps on an optimization problem
can be defined as the conditional probability of
finding a particular sample (such as the global
optimum). Wolpert and Macready [332] proved
that the sum of such probabilities over all pos-
sible optimization problems on finite9 domains
is always identical for all optimization algo-
rithms. This means that the average perfor-
mance over all finite problems is independent
of the algorithm applied. From this theorem,
we can immediately follow that, in order to
outperform algorithm a1 in one optimization
problem, algorithm a2 will necessarily perform

worse in another problem, as sketched in Fig-
ure 16. This implies that it is impossible for
any optimization algorithm to always outper-
form non-repeating random walks or exhaus-
tive enumerations.

In practice, an optimizer is not applied
to all possible problems but to only some, re-
stricted classes. In terms of these classes, it
is well possible to perform comparisons and to
make statements regarding which algorithms
perform the best (which, by the way, is often
the topic of challenges and competitions [212,
214]).

Another interpretation of the No Free
Lunch Theorem is that every useful optimiza-
tion algorithm utilizes some form of problem-
specific knowledge. In [335], it is stated that
without such knowledge, search algorithms
cannot exceed the performance of simple enu-
merations. Incorporating knowledge starts
with relying on simple assumptions like causal-
ity (see Section 3.1). The more problem spe-
cific knowledge is integrated into the algorithm
structure, the better the algorithm can per-
form [20].

11 Concluding Remarks

The subject of this article is to address
questions about issues that make optimization
problems difficult to solve, with a particular
focus on evolutionary optimization. We have
discussed a variety of scenarios that can influ-
ence/affect the optimization process and lead
to disappointing results.

If an optimization process has converged
prematurely, it is said to be trapped in a
non-optimal region of the search space from
which it cannot “escape” anymore (Section 2).
Ruggedness (Section 3) and deceptiveness (Sec-
tion 4) in the fitness landscape, often caused
by epistatic effects (Section 6), can misguide

9 Recently, it was shown that the No Free Lunch Theorem holds only in a weaker form for countable infinite
and not for continuous domains [333, 334].



Weise et al.: Evolutionary Optimization: Pitfalls 33

the search into such a region. Neutrality and
redundancy (Section 5) may either slow down
optimization or contribute positively. Noise is
present in virtually all practical optimization
problems. The solutions that are derived for
them should thus be robust (Section 7). Also,
many practical problems are multi-objective in
nature, i.e., involve the optimization of more
than one criterion at a time (see Section 8).

Figure 17: The puzzle of optimization algo-
rithms.

The No Free Lunch Theorem argues that
it is not possible to develop a universal opti-
mization algorithm, the problem-solving ma-
chine that can provide us with near-optimal
solutions in short time for every possible op-
timization task in finite domains. Such a state-
ment may sound depressing for those who are
new to this subject.

Actually, quite the opposite is the case, at
least from the point of view of a researcher.
The No Free Lunch Theorem means that there
will always be new ideas, new approaches that
will lead to better optimization algorithms to
solve a given problem. Instead of being doomed
to obsolescence, it is far more likely that most
of the currently known optimization methods

have at least one niche, one area where they
could excel in. This fact has contributed to
the emergence of memetic, hybrid and the new
area of portfolio-type algorithms [331], which
combine different optimization methods.

It is most likely that the “puzzle”10 of op-
timization algorithms as sketched in Figure 17
will never be completed. There will always be
a chance that an inspiring moment, an obser-
vation in nature, for instance, may lead to the
invention of a new optimization algorithm that
performs better in some problem areas than all
the currently known ones.
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Laboratory (TIK): Zürich, Switzerland, May
2001. URL http://www.tik.ee.ethz.ch/sop/

publicationListFiles/zlt2001a.pdf. Errata
added 2001-09-27.

87. Thomas Weise, Alexander Podlich, and Christian
Gorldt. Solving Real-World Vehicle Routing
Problems with Evolutionary Algorithms. In
Raymond Chiong and Sandeep Dhakal, editors,
Natural Intelligence for Scheduling, Planning
and Packing Problems, volume 250 of Studies
in Computational Intelligence, chapter 2, pages
29–53. Springer-Verlag: Berlin/Heidelberg, 2009.

doi: 10.1007/978-3-642-04039-9 2. URL http:

//www.it-weise.de/research/publications/

WPG2009SRWVRPWEA/WPG2009SRWVRPWEA.pdf.
88. Thomas Weise, Alexander Podlich, Kai Reinhard,

Christian Gorldt, and Kurt Geihs. Evolutionary
Freight Transportation Planning. In Mario Gi-
acobini, Penousal Machado, Anthony Brabazon,
Jon McCormack, Stefano Cagnoni, Michael
O’Neill, Gianni A. Di Caro, Ferrante Neri,
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Cardalda, David Wolfe Corne, Jens Gottlieb,
Agnès Guillot, Emma Hart, Colin G. Johnson,
and Elena Marchiori, editors, Applications of Evo-
lutionary Computing, Proceedings of EvoWork-
shop 2003: EvoBIO, EvoCOP, EvoIASP, Evo-
MUSART, EvoROB, and EvoSTIM (EvoWork-
shop’03), volume 2611/2003 of Lecture Notes
in Computer Science (LNCS), pages 91–98.
Springer-Verlag GmbH: Berlin, Germany, 2003.
doi: 10.1007/3-540-36605-9 25.

109. Mikkel T. Jensen. Helper-Objectives: Us-
ing Multi-Objective Evolutionary Algorithms for
Single-Objective Optimisation. Journal of Math-
ematical Modelling and Algorithms, 3(4):323–
347, December 2004. doi: 10.1023/B:JMMA.
0000049378.57591.c6.

110. Frank Neumann and Ingo Wegener. Can Single-
Objective Optimization Profit from Multiobjec-
tive Optimization? In Multiobjective Problem
Solving from Nature – From Concepts to Applica-
tions, Natural Computing Series, pages 115–130.
Springer New York: New York, NY, USA, 2008.
doi: 10.1007/978-3-540-72964-8 6.

111. Martin Jähne, Xiǎodōng Ľı, and Jürgen
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Erick Cantú-Paz. BOA: The Bayesian Opti-
mization Algorithm. In Wolfgang Banzhaf, Ja-
son M. Daida, Ágoston E. Eiben, Max H. Gar-
zon, Vasant Honavar, Mark J. Jakiela, and
Robert Elliott Smith, editors, Proceedings of the
Genetic and Evolutionary Computation Confer-
ence (GECCO’99), pages 525–532. Morgan Kauf-
mann Publishers Inc.: San Francisco, CA, USA,
1999. URL https://eprints.kfupm.edu.sa/

28537/.
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editor, Progress in Evolutionary Computation,
AI’93 (Melbourne, Victoria, Australia, 1993-11-
16) and AI’94 Workshops (Armidale, NSW, Aus-
tralia, 1994-11-22/23) on Evolutionary Computa-
tion, Selected Papers, volume 956/1995 of Lecture
Notes in Computer Science (LNCS), pages 1–16.
Springer-Verlag GmbH: Berlin, Germany, 1993.
doi: 10.1007/3-540-60154-6 43.

239. L. S. Gurin and Leonard A. Rastrigin. Conver-
gence of the Random Search Method in the Pres-
ence of Noise. Automation and Remote Control,
26:1505–1511, 1965.

240. J. Michael Fitzpatrick and John J. Grefen-
stette. Genetic Algorithms in Noisy En-
vironments. Machine Learning, 3(2–3):101–
120, October 1998. doi: 10.1007/BF00113893.
URL http://www.springerlink.com/content/

n6w328441t63q374/fulltext.pdf.
241. Shigeyoshi Tsutsui, Ashish Ghosh, and Yoshiji

Fujimoto. A Robust Solution Searching Scheme
in Genetic Search. In Hans-Michael Voigt, Werner
Ebeling, Ingo Rechenberg, and Hans-Paul Schwe-
fel, editors, Proceedings of the 4th International
Conference on Parallel Problem Solving from
Nature (PPSN IV), volume 1141/1996 of Lec-
ture Notes in Computer Science (LNCS), pages
543–552. Springer-Verlag GmbH: Berlin, Ger-
many, 1996. doi: 10.1007/3-540-61723-X 1018.
URL http://www.hannan-u.ac.jp/~tsutsui/

ps/ppsn-iv.pdf.
242. Shigeyoshi Tsutsui and Ashish Ghosh. Genetic

Algorithms with a Robust Solution Searching
Scheme. IEEE Transactions on Evolutionary
Computation (IEEE-EC), 1(3):201–208, Septem-
ber 1997. doi: 10.1109/4235.661550.

243. Yasuhito Sano and Hajime Kita. Optimization
of Noisy Fitness Functions by Means of Genetic
Algorithms Using History of Search. In Marc
Schoenauer, Kalyanmoy Deb, Günter Rudolph,
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Whitley, and Xı̄n Yáo, editors, Proceedings
of 9th International Conference on Parallel
Problem Solving from Nature (PPSN IX),
volume 4193/2006 of Theoretical Computer
Science and General Issues (SL 1), Lecture
Notes in Computer Science (LNCS), pages 493–
502. Springer-Verlag GmbH: Berlin, Germany,
2006. doi: 10.1007/11844297 50. URL http:

//www.ie.osakafu-u.ac.jp/~hisaoi/ci_lab_

e/research/pdf_file/multiobjective/PPSN_

2006_EMO_Camera-Ready-HP.pdf.
295. Hisao Ishibuchi and Yusuke Nojima. Optimiza-

tion of Scalarizing Functions Through Evolution-
ary Multiobjective Optimization. In Shigeru
Obayashi, Kalyanmoy Deb, Carlo Poloni, To-
moyuki Hiroyasu, and Tadahiko Murata, editors,
Proceedings of the Fourth International Confer-
ence on Evolutionary Multi-Criterion Optimiza-



Weise et al.: Evolutionary Optimization: Pitfalls 57

tion (EMO’07), volume 4403/2007 of Theoret-
ical Computer Science and General Issues (SL
1), Lecture Notes in Computer Science (LNCS),
pages 51–65. Springer-Verlag GmbH: Berlin, Ger-
many, 2007. doi: 10.1007/978-3-540-70928-2 8.
URL http://ksuseer1.ist.psu.edu/viewdoc/

summary?doi=10.1.1.78.8014.
296. Evan J. Hughes. MSOPS-II: A General-Purpose

Many-Objective Optimiser. In Proceedings of
the IEEE Congress on Evolutionary Computation
(CEC’07), pages 3944–3951. IEEE Computer So-
ciety: Piscataway, NJ, USA, 2007. doi: 10.1109/
CEC.2007.4424985.

297. Peter J. Fleming, Robin Charles Purshouse, and
Robert J. Lygoe. Many-Objective Optimiza-
tion: An Engineering Design Perspective. In
Carlos Artemio Coello Coello, Arturo Hernández
Aguirre, and Eckart Zitzler, editors, Proceedings
of the Third International Conference on Evolu-
tionary Multi-Criterion Optimization (EMO’05),
volume 3410/2005 of Theoretical Computer Sci-
ence and General Issues (SL 1), Lecture Notes
in Computer Science (LNCS), pages 14–32.
Springer-Verlag GmbH: Berlin, Germany, 2005.

298. Kalyanmoy Deb and J. Sundar. Reference Point
Based Multi-Objective Optimization using Evo-
lutionary Algorithms. In Maarten Keijzer and
Mike Cattolico, editors, Proceedings of the 8th
Annual Conference on Genetic and Evolution-
ary Computation (GECCO’06), pages 635–642.
ACM Press: New York, NY, USA, 2006. doi:
10.1145/1143997.1144112. URL www.lania.mx/

~ccoello/deb06b.pdf.gz.
299. Lothar Thiele, Kaisa Miettinen, Pekka J. Ko-

rhonen, and Julian Molina. A Preference-based
Interactive Evolutionary Algorithm for Multiob-
jective Optimization. HSE Working Paper W-
412, Helsinki School of Economics (HSE, Helsin-
gin kauppakorkeakoulu): Helsinki, Finland, Jan-
uary 2007. URL ftp://ftp.tik.ee.ethz.ch/

pub/people/thiele/paper/TMKM07.pdf.
300. Dimo Brockhoff and Eckart Zitzler. Are All Ob-

jectives Necessary? On Dimensionality Reduc-
tion in Evolutionary Multiobjective Optimization.
In Thomas Philip Runarsson, Hans-Georg Beyer,
Edmund K. Burke, Juan Julián Merelo-Guervós,
L. Darrell Whitley, and Xı̄n Yáo, editors, Proceed-
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Antonio Della Cioppa, and Ernesto Tarantino, ed-
itors, Genetic Programming – Proceedings of the
11th European Conference on Genetic Program-
ming (EuroGP’08), volume 4971/2008 of Theo-
retical Computer Science and General Issues (SL
1), Lecture Notes in Computer Science (LNCS),
pages 73–85. Springer-Verlag GmbH: Berlin, Ger-
many, 2008. doi: 10.1007/978-3-540-78671-9
7. URL http://www.cs.bham.ac.uk/~wbl/

biblio/gp-html/langdon_2008_eurogp.html.
321. Weihang Zhu. Nonlinear Optimization with

a Massively Parallel Evolution Strategy-Pattern
Search Algorithm on Graphics Hardware. Applied
Soft Computing, 11(2):1770–1781, March 2011.
doi: 10.1016/j.asoc.2010.05.020.

322. Shigeyoshi Tsutsui and Yoshiji Fujimoto. Solv-
ing Quadratic Assignment Problems by Genetic
Algorithms with GPU Computation: A Case
Study. In Franz Rothlauf, Günther R. Raidl,
Anna Isabel Esparcia-Alcázar, Ying-Ping Chen,
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