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ABSTRACT: Stochastic approaches such as evolutionary algorithms have been widely used in various 
science and engineering problems. When comparing the performance of a set of stochastic algorithms, 
it is necessary to statistically evaluate which algorithms are the most suitable for solving a given 
problem. The outcome of statistical tests comparing N ≥ 2 processes, where N is the number of 
algorithms, is often presented in tables. This can become confusing for larger numbers of N. Such a 
scenario is, however, very common in both numerical and combinatorial optimization, as well as in the 
domain of stochastic algorithms in general. In this letter, we introduce an alternative way of visually 
presenting the results of statistical tests for multiple processes in a compact and easy-to-read manner 
using a directed acyclic graph (DAG), in the form of a simplified Hasse diagram. The rationale of 
doing so is based on the fact that the outcome of the tests is always at least a strict partial order, which 
can be appropriately presented via a DAG. The goal of this brief communication is to promote the use 
of this approach as a means for presenting the results of comparisons between different optimization 
methods. 
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1. INTRODUCTION 

In the field of numerical and/or combinatorial optimization, simulation experiments are often used to determine 
which method is the best for solving a given problem. Broadly speaking, techniques for addressing different kinds of 
optimization problems can be classified into two major classes: exact and stochastic algorithms. The latter is 
typically called into play when the problems to be tackled are large, complex, dynamic, or involve the optimization 
of more than one objective function (see Engelbrecht A.P. (2007), Chiong R. (2009), Weise T. (2009a), Chiong R. et 
al. (2012)). 

Due to the stochastic nature of the algorithms, however, the optimization results could vary every time a particular 
algorithm of this class is executed. As such, it becomes mandatory to run the algorithm several times on the same 
problem instance and collect statistics of the results (median, interquartile range, mean, standard deviation, etc.). 
These statistics can only give a very rough impression of the algorithm’s behavior, as pointed out by Weise T. et al. 
(2014). When comparing the performance of two or more stochastic algorithms on a problem instance, statistical 
tests (e.g., the Mann-Whitney U test or Wilcoxon rank-sum test, t-test, Kruskal-Wallis test, etc.) are required to 
claim with a certain level of confidence as to which algorithm is the best. The conclusion that can be drawn from 
such tests is usually something like 



“With a probability to err of no more than 0.01 (i.e., at a significance level of 1%), we can state that ‘Method 
A’ outperforms ‘Method B’.” 

or  

“At a significance level of 5% (or with a maximally allowed type I error probability of 0.05), no statistically 
significant difference can be detected between the performance of ‘Method A’ and ‘Method B’.” 

Instead of following the standard way of presenting statistical test results using tables, in this letter we discuss a very 
simple graphical representation to visualize the outcome of statistical tests used for comparing N processes (or 
stochastic distributions) based on datasets sampled from them. This simple approach was, to the best of our 
knowledge, first conceived by Burda M. (2006), and has thereafter been adopted or independently used by several 
researchers in their work (e.g., Weise T. (2009a), Weise T. (2009b), Zoubek L. and Burda M. (2009), Toledo C.F.M. 
et al. (2011), Weise T. and Tang K. (2012)). Recently, software implementations of the approach have been made 
available by Burda M. (2013) and Voigt K. et al. (2013). The positive aspect of the approach is the simplicity and 
clarity of its presentation, although there has also been reservation from some readers and reviewers about its non-
standard way of representing the data. The goal of this letter is therefore to promote the use of this approach to a 
wider audience. 

2. AN ILLUSTRATION OF N(N−1)/2 COMPARISONS 

Generally, statistical tests (Sheskin D.J. (2004), Harlow L.L. et al. (1997), Levin J.R. (1998), Demšar J. (2006)) are 
tools to compare processes that produce measurable outputs, which can be represented as real numbers. Often, two 
such processes P1 and P2 are compared with the goal to find which of the two tends to produce smaller (or larger) 
outputs. Given finite samples (observations) of these processes, this question can be answered with a certain level of 
confidence by applying statistical tests such as the Mann-Whitney U test (Mann H.B. and Whitney D.R. (1947)). 
Based on a significance level α, i.e., a threshold for the highest acceptable probability to make a false statement, a 
significant difference between P1 and P2 is either confirmed or rejected. 

If N ≥ 2 processes P1, P2, …, PN are observed, then the previous question can be extended to finding which of them 
tends to produce the smallest elements and to detect interrelations. One way to do this is to compare each process 
with every other process, again using the statistical test of choice. There are two issues with this procedure: 1) It 
requires provisions such as the conservative Bonferroni correction (Dunn, O.J., 1961) or post hoc methods like a 
Nemenyi (1961) test after a Friedman (1937) test to avoid statistical errors1 (see Demšar J. (2006) or García S. and 
Herrera F. (2008) for detailed discussions of more sophisticated statistical approaches and better recommendations); 
2) It will result in (at most) N(N−1)/2 outcomes, which are hard to visualize. Here, we focus on the latter issue. A 
common way to represent the outcomes is to use a table (matrix) Ti,j∈ {+, -, 0}. A value of Ti,j = + in the ith row and 
jth column means that process Pi has significantly larger outputs than process Pj, a “-” stands for smaller outputs, and 
0 symbolizes that no significant difference could be detected (at the given significance level α). 

Table 1 shows an example of how a common tabular illustration of the comparison results for eleven processes P1 to 

P11 could look like. Only the upper triangle of the table needs to be populated since Ti,j = + ⇒ Ti,j = -, Ti,j = - ⇒ Ti,j = 

+, Ti,j = 0 ⇒ Ti,j = 0, and Ti,j = 0 for all i, j ∈ 1..N. From the example, it is clear that with the rising number of 
processes, it becomes more difficult to recognize the order of the processes according to the tests from such a table. 

                                                           
1 The first author noted that he did not take such measures in his previous work due to ignorance of the issue. 



 

3. GRAPH-BASED NOTATION 

An Example 

Clearly, a full set of N(N−1)/2 test results defines a partial order on the compared processes. Besides using a table or 
matrix, such a partial order can be illustrated in the form of a directed acyclic graph (DAG), as sketched in Figure 
1(a). Such graphical representations of partial orders are known as Hasse diagrams (Birkhoff G. (1948), Baker K.A. 
et al. (1972)) and have been used in the area of education (Zoubek L. and Burda M. (2009)). In our case, each 
process can be represented as a node in a graph. Here, Ti,j = + will result in a directed edge from the node labeled 
with Pj to the node labeled with Pi. A “–” results in a directed edge into the opposite direction and a “0” is 
represented by having no edge between the corresponding nodes. 

 

Since the test results form a transitive order, edges that are sufficiently explained by transitivity can be omitted in the 
graph (and actually, the corresponding tests do not need to be performed in the first place). Hence Figure 1 does not 
contain an arrow from node P2 to P1, since that one is already subsumed by the arrow from P2 to P11 and from P11 to 
P1. The graph sketched in Figure 1(a) is easier to read than Table 1. The Hasse diagram-based notion can be further 
simplified by combining those nodes for which all incoming arrows come from the same origins and all outgoing 
arrows target the same nodes. 

Figure 1(b) represents such a simplification. It is our strong belief that this representation could be a good alternative 
to the tabular representation, because of its compactness, clarity, and ease of use. From Figure 1(b), it can 
immediately be seen that processes P1 and P7 tend to have the largest outputs while P4 has the smallest. There is no 

 
 

1(a) A full graph. 1(b) A simplified graph. 

Figure 1 The example results from Table 1 illustrated in graphs. 

Table 1  An example of a table specifying the outcome of the statistical comparison of eleven processes P1 to 
P11.  
 

 



significant difference between P9 and P6 or P3, but P9 tends to produce smaller outputs than P10. The outputs of P5 
tend to be larger than those of P3, but there are no significantly differences from those of P2. 

Formal Definition 

Given a set P of N processes Pi : i ∈ 1…N and a statistical test result matrix Ti,j ∈ {+, -, 0}∀i, j ∈ 1…N, the graph-
based representation G is defined as follows: 

1. For each Pi ∈ P, there exists exactly one node labeled with Pi in G. 

2. A node may be labeled with a set S of multiple process names if and only if ∀Pi, Pj ∈ S ⇒ (∀Pk ∈ P ⇒ 
Ti,k = Tj,k and Tk,i = Tk,j) holds. 

3. There exists a directed edge from the node labeled with Pj to the node labeled Pi if and only if: 

a. Ti,j = + (and, hence, Tj,i = -) and 

b. ¬∃ Pk ∈ P : (Ti,k = +) ∧ (Tk,j = +).

The graph can be created by using existing tools such as those of Burda, M. (2013) and Voigt K. et al. (2013). 
Alternatively, one can first create a graph that contains a directed edge for each Ti,j = +. This graph can then be 
iteratively simplified by deleting edges for which rule 3 above holds and merging nodes according to rule 2 until 
further reduction is possible. Since the manual layout of larger graphs is tedious, the resulting graph could be 
represented in a text-based format like the DOT language, which then can be rendered by tools such as 
Graphviz (see http://www.graphviz.org/). 

How to Use 

We want to emphasize that a diagram such as Figure 1 should always be accompanied by a descriptive note stating 
the applied test and the test’s configuration, the significance level, and the meaning of the presence of a directed 
edge in the graph. An example for this notion could be: 

“Figure 1(b) shows the outcome of the application of a two-tailed Mann-Whitney U test with Bonferroni 
correction and a significance level of 1% (type I error probability ≤ 0.01) to the data sampled from processes 
P1 to P11. A directed edge from a node Pi to a node Pj means that, according to the applied test, Pi produces 
{larger / smaller / better} outcomes than Pj.” 

Such a description text is not longer than what would be needed to properly define the meaning of the tabular result 
expression (see the example of Table 1). 

4. OTHER VISUALIZATION TECHNIQUES 

Before we end, it is worth pointing out that there exist several other visualization techniques for illustrating 
statistical test results. However, these techniques may quickly get harder to read once the number of compared 
datasets increases.  

One of these visualization techniques is notched boxplots as described by McGill R. Tukey J.W., and 
Larsen W.A. (1978). Boxplots represent data. They do not represent statistical test results. However, if the notches 
of two boxes representing different datasets do not overlap, this is an indicator that their medians may be 
significantly different at a 5% error level. See Wickham H. and Stryjewski L. (2011) for more discussion on variants 
of boxplots.  



Another possible way of visualization is, instead of printing a table with the win/loss/undecided test results in the 
cells one can print a table where the cells are colored according to the p-value returned by the tests, e.g., light gray = 
low p-value, black = high p-value. The advantage of doing this may be that it would allow us to create really large 
tables, since it uses pixel colors instead of text.  

A nice alternative visualization technique can be found in the work of Demšar J. (2006), in which all algorithms in 
comparison are listed on an axis denoting their average ranks. Algorithms with results that are not statistically 
different are connected with lines.  

Line and letter diagrams are similar to Demšar’s approach, in that they connect groups of datasets that are not 
significantly different. However, some examples as shown in Burda M. (2013) indicate that they may become 
complicated even for small N, and that it may not always be possible to see the statistically significant differences of 
the results at first glance. Burda further hints that the Hasse diagram based approach is better in this respect. 

5. CONCLUDING REMARKS 

We ourselves are not statisticians but mere users of simple statistical tools for analyzing the experimental outcomes. 
The presented approach to visualizing the outcome of statistical tests is the result of hands-on attempts to present 
data for scientific papers with limited space. Our experience with this notation is positive, so we wish to promote its 
use in the analysis of stochastic algorithms. Even though the presented approach appears to be suitable and easy-to-
use for us, others may think otherwise. We would thus be very thankful for any comments, corrections, and 
suggestions regarding this subject. 
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