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Introduction

What do we want from a Benchmark Problem?

The goal of benchmarking is to get a complete picture of the
strengths and weaknesses of optimization methods.

Some frequently ccurring problem characteristics cause difficulties to
optimization algorithms [2, 3]

neutrality

ruggedness
deceptiveness
epistasis
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Introduction

A Benchmark Problem should. . .

1 include problems which exhibit the difficult features ruggedness,
epistasis, neutrality, and deceptiveness in different strengths and in
different combinations.

So are classical problems like the Traveling Salesman Problem
(TSP) [4, 5] r the Maximum Satisfiability Problem (SAT) [6, 7] d
candidates?

Not really. It is not that easy to understand how hard, difficult,
rugged, deceptive, r epistatic a TSP r SAT problem is. . .
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Introduction

A Benchmark Problem should. . .

1 include problems which exhibit the difficult features ruggedness,
epistasis, neutrality, and deceptiveness in different strengths and in
different combinations.

2 exhibit these difficult features in degrees which are obvious, easy to
understand, and ideally tunable.

3 have a problem hardness determined directly by tunable parameters.
4 have known optima and the range of the objective function should be

known.
5 be easy to understand and fast to compute.
6 fit to a standard representation from discrete optimization, i.e., either

bit strings r permutations (of fixed length).
7 allow the creation of easy and hard, small and large instances.
8 be replicable, i.e., allow to derive problem instances deterministically

from very few parameters.
9 be theoretically tractable.
10 have components which can be combined with other, existing

problems.
11 be extensible to other domains, e.g., variable-length representations,

multi-objective domains, . . .
12 have an available reference implementation with utilities and tests

showing that/whether the implementation (or any implementation of
the problem) is identical to the problem definition in a publication,
maybe even an experiment execution environment.

13 have available example data sets with results from example
experiments.
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The W-Model Tunable Benchmark Problem

• Benchmark Model [1, 8, 9] defined over
{0, 1}n.

Fulfills all requirements above.

Neutrality, Epistasis,
Ruggedness/Deceptiveness (and
multi-objectivity) implemented as
separate, parameterized layers which could
also be plugged on top of other problems.

Problem instance completely defined by
five parameters n, µ, ν, γ, and

Known global optimum:
x⋆ = . . . of length n
with objective value f(x⋆) = .

Computing of objective function f is in
O
(

n ν2
)

.

Reference implementation [10] with many
unit tests, parallel experiment execution
environment, and example algorithms at

Huge example experiment [10] obtained
from this implementation with GB of
algorithm traces at
doi: .
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The W-Model Tunable Benchmark Problem

• Benchmark Model [1, 8, 9] defined over
{0, 1}n.

• Fulfills all 13 requirements above.

• Neutrality, Epistasis,
Ruggedness/Deceptiveness (and
multi-objectivity) implemented as
separate, parameterized layers which could
also be plugged on top of other problems.

• Problem instance completely defined by
five parameters n, µ, ν, γ, and m

• Known global optimum:
x⋆ = 0101010101010 . . . 01 of length n
with objective value f(x⋆) = 0.

Computing of objective function f is in
O
(

n ν2
)

.

Reference implementation [10] with many
unit tests, parallel experiment execution
environment, and example algorithms at

Huge example experiment [10] obtained
from this implementation with GB of
algorithm traces at
doi: .
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Section Outline

These are the slides for paper [1] presented at the BB-DOB workshop at
GECCO’2018.

1 Introduction

2 The W-Model

3 Experiment

4 Summary
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Basic Problem

• Goal: minimize the Hamming distance h(x, x⋆) to x⋆ = (0101...) of
length n.

Very similar to OneMax problem [11–14].

Computing of objective function is in O (n) for bit strings with length
l(x) = n.

Fixed-Length Search Space: bit strings of length n.

Variable-Length Search Space: overly long strings (l(x) > n) are cut
after position n, strings that are to short are padded with x⋆.

The Tunable W-Model Benchmark Problem, July 24, 2018 Thomas Weise & Zijun Wu 9/32

Objective Values5

n=6

f(x )=31 f(x )=62

1   10101 101010



Basic Problem

• Goal: minimize the Hamming distance h(x, x⋆) to x⋆ = (0101...) of
length n.

• Very similar to OneMax problem [11–14].

Computing of objective function is in O (n) for bit strings with length
l(x) = n.

Fixed-Length Search Space: bit strings of length n.

Variable-Length Search Space: overly long strings (l(x) > n) are cut
after position n, strings that are to short are padded with x⋆.

The Tunable W-Model Benchmark Problem, July 24, 2018 Thomas Weise & Zijun Wu 9/32

Objective Values5

n=6

f(x )=31 f(x )=62

1   10101 101010



Basic Problem

• Goal: minimize the Hamming distance h(x, x⋆) to x⋆ = (0101...) of
length n.

• Very similar to OneMax problem [11–14].

• Computing of objective function is in O (n) for bit strings with length
l(x) = n.

Fixed-Length Search Space: bit strings of length n.

Variable-Length Search Space: overly long strings (l(x) > n) are cut
after position n, strings that are to short are padded with x⋆.

The Tunable W-Model Benchmark Problem, July 24, 2018 Thomas Weise & Zijun Wu 9/32

Objective Values5

n=6

f(x )=31 f(x )=62

1   10101 101010



Basic Problem

• Goal: minimize the Hamming distance h(x, x⋆) to x⋆ = (0101...) of
length n.

• Very similar to OneMax problem [11–14].

• Computing of objective function is in O (n) for bit strings with length
l(x) = n.

• Fixed-Length Search Space: bit strings of length n.

Variable-Length Search Space: overly long strings (l(x) > n) are cut
after position n, strings that are to short are padded with x⋆.

The Tunable W-Model Benchmark Problem, July 24, 2018 Thomas Weise & Zijun Wu 9/32

Objective Values5

n=6

f(x )=31 f(x )=62

1   10101 101010



Basic Problem

• Goal: minimize the Hamming distance h(x, x⋆) to x⋆ = (0101...) of
length n.

• Very similar to OneMax problem [11–14].

• Computing of objective function is in O (n) for bit strings with length
l(x) = n.

• Fixed-Length Search Space: bit strings of length n.

• Variable-Length Search Space: overly long strings (l(x) > n) are cut
after position n, strings that are too short are padded with x⋆.

The Tunable W-Model Benchmark Problem, July 24, 2018 Thomas Weise & Zijun Wu 9/32

Objective Values5

n=6

f(x )=31 f(x )=62

1   10101 101010



Neutrality Layer

• The application of a search operator is neutral if it yields no change in
objective value [15, 16].

Usually negative impact on performance [17, 18].

Transformation u(x) shortens x by fact r µ by computin majority
value for blocks of length µ, set bit to in draws for even µ (no
average effect as x⋆ = ).

Fixed-Length Search Space: bit string length now µ n.

Variable-Length Search Space: if l(x) no multiple of µ, ignore last
l(x) mod µ bits.
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Epistasis Layer

• The interaction between biological genes is epistatic if the effect on
the fitness from altering one gene depends on the allelic state of other
genes [19, 20].

Tw decision variables (here: bits) interact epistatically, if the
contribution of one of these variables to the objective value depends
on the value of the other variable [9, 20–22].
W-Model : Bijective function eν translates a bit string x of length ν
to a bit string eν(x) of the same length in O

(

ν2
)

steps.

h(x1, x2) = h(eν(x1), eν(x2)) ≥ ν − ∀x1, x2 ∈ , ν (1)

A change of one bit in a bit string x leads to the change of at least
ν − bits in the corresponding mapping eν(x).

eν(x) =











eν(x)[i] =
⊗

x[j]
∀ j∈N0:0≤j<ν,

j=(i−1) mod ν

∀ x : ≤ x < ν−1

eν(x− ν−1) otherwise

(2)

Each bit in x influences the value of ν − bits in eν(x).
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Epistasis Layer

eν(x) =











eν(x)[i] =
⊗

x[j]
∀ j∈N0:0≤j<ν,

j 6=(i−1) mod ν

∀ x : 0 ≤ x < 2ν−1

eν(x− 2ν−1) otherwise

(2)

• Each bit in x influences the value of ν − 1 bits in eν(x).

Candidate solutions divided into blocks of length ν to be transformed
separately, if block of length l(x) mod ν remains, it is transformed
with el(x) mod ν .
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Epistasis Layer

eν(x) =











eν(x)[i] =
⊗

x[j]
∀ j∈N0:0≤j<ν,

j 6=(i−1) mod ν
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• Each bit in x influences the value of ν − 1 bits in eν(x).

• Candidate solutions divided into blocks of length ν to be transformed
separately, if block of length l(x) mod ν remains, it is transformed
with el(x) mod ν .
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Multi-Objectivity Layer

• Many optimization problems are multi-objective, i.e., involve multiple,
possible conflicting criteria [23–25]

We simply interleave instances of the W-Model to get an
-objective problem.

Disagreement in the rthogonal objective functions can be simulated
via epistasis ν > .
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Ruggedness and Deceptiveness Layer

• Strong causality means that small changes in a candidate solution
lead to small changes in the objective value [26, 27].

Rugged fitness landscape: small changes in candidate solution =
large changes in objective value.

Deceptive fitness landscape: following changes towards declining
objective function leads aways from optimum.

Epistasis is a source of ruggedness and deceptiveness.

F r ν = in W-Model : Change one bit in x leads to change of in
objective value.

If we improve candidate solution from w rst possible to best
bit-by-bit, we traverse objective values (n, n− , . . . , , , 0).

If we can exchange the values in this sequence, this will increase the
ruggedness r cause deceptiveness!

The ruggedness ∆ of a permutation r be ∆(r) =
∑n−1

i=0 |ri − ri+1|.
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Ruggedness and Deceptiveness Layer

• If we improve candidate solution from worst possible to best
bit-by-bit, we traverse objective values (n, n− 1, . . . , 2, 1, 0).

• The ruggedness ∆ of a permutation r be ∆(r) =
∑n−1

i=0 |ri − ri+1|.

Original sequence above has ∆(n . . . 0) = n and maximum possible

value is ∆ = n(n+1)
2 .

We define mappings based on permutations rγ′ with the following
features

:

1 They are bijective (since they are permutations).

2 They must preserve the optimal value, i.e., rγ′ [0] = .
3 ∆(rγ′) = n+ γ′.

With γ′ ∈ . . . (∆− n), we can fine-tune the ruggedness.
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Ruggedness and Deceptiveness Layer

• Such permutations can be generated using the algorithm defined in [1]

Original algorithm produces alternating sequences of rugged and
deceptive problems, the latter are much harder.

Re-arrangement into permutations rγ′ which nicely blend from
smooth to rugged to deceptive problems.

Permutation serves as lookup-table to map objective values.
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Section Outline

These are the slides for paper [1] presented at the BB-DOB workshop at
GECCO’2018.

1 Introduction

2 The W-Model

3 Experiment

4 Summary
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Experiments

• Extensive experiments for the variable-length representation with
multi-objectivity were performed in [28] and we use this data here.

Now, a much bigger dataset for the fixed-length representation and a
single-objective ( = ) is available in [29].

In the experiment discussed here [28], we apply

a standard multi-objective genetic algorithm with
population size 1000,
single-point crossover,
single-bit mutation,
tournament selection with tournament size 5,
Pareto ranking, and a
variable-length bit string genome with a maximum string length of

bits.

We distinguish success (after s generations), i.e., finding a string x
with f(x) = (but which may be to long) and perfection, i.e.,
finding x⋆ (after p ≥ s generations).
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Basic Problem n

• The minimum, average, and maximum success generations š, s, and ŝ
measured rise almost linearly after the basic problem parameter n has
exceeded 300 bits.
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Ruggedness + Basic Problem n

• Ruggedness parameter normalized into the range [0, 1], because its
range depends on n.

Apart from a few peaks in the diagram ccurring for n > , the
problem hardness, as expected, increases very fast with the
ruggedness.
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Ruggedness + Basic Problem n

• Ruggedness parameter normalized into the range [0, 1], because its
range depends on n.

• Apart from a few peaks in the diagram occurring for n > 70, the
problem hardness, as expected, increases very fast with the
ruggedness.
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Neutrality µ + Basic Problem n

• Until a degree of µ ≈ 10, the problems rapidly gets harder with rising
redundancy µ.

From there on, a further increase of µ only leads to a very slow
increase in hardness.

Probably cause: for crossover, larger µ make no big difference.

Experiments with lower crossover rate led to quick decrease of
performance for rising µ.
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Epistasis ν + Basic Problem n

• Problem complexity steeply increases with rising epistasis (values of
ν).

Number of runs that cannot solve problem in generations
quickly rises with ν.

Problems for which ν = + v : v ∈ N are unexpectedly easy.

The epistasis mapping eν decreases the Hamming distance f r x1, x2
which have riginally h(x1, x2) = ν in such cases [28].

We suggest not using these settings.
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Epistasis ν + Basic Problem n

• Problem complexity steeply increases with rising epistasis (values of
ν).

• Number of runs that cannot solve problem in 1000 generations
quickly rises with ν.

Problems for which ν = + v : v ∈ N are unexpectedly easy.

The epistasis mapping eν decreases the Hamming distance f r x1, x2
which have riginally h(x1, x2) = ν in such cases [28].

We suggest not using these settings.
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Epistasis ν + Basic Problem n

• Problem complexity steeply increases with rising epistasis (values of
ν).

• Number of runs that cannot solve problem in 1000 generations
quickly rises with ν.

• Problems for which ν = 2 + 4v : v ∈ N are unexpectedly easy.

The epistasis mapping eν decreases the Hamming distance f r x1, x2
which have riginally h(x1, x2) = ν in such cases [28].

We suggest not using these settings.
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Epistasis ν + Basic Problem n

• Problem complexity steeply increases with rising epistasis (values of
ν).

• Number of runs that cannot solve problem in 1000 generations
quickly rises with ν.

• Problems for which ν = 2 + 4v : v ∈ N are unexpectedly easy.

• The epistasis mapping eν decreases the Hamming distance for x1, x2
which have originally h(x1, x2) = ν/2 in such cases [28].

We suggest not using these settings.

The Tunable W-Model Benchmark Problem, July 24, 2018 Thomas Weise & Zijun Wu 23/32

0
40

80
120

160

1020304050

0

40

80

100

n
n

fa
il
e
d
 r

u
n
s



Epistasis ν + Basic Problem n

• Problem complexity steeply increases with rising epistasis (values of
ν).

• Number of runs that cannot solve problem in 1000 generations
quickly rises with ν.

• Problems for which ν = 2 + 4v : v ∈ N are unexpectedly easy.

• The epistasis mapping eν decreases the Hamming distance for x1, x2
which have originally h(x1, x2) = ν/2 in such cases [28].

• We suggest not using these settings.
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Expected Epistasis ν + Neutrality µ

• Two separate experiments with either neutrality or epistasis added
together: “expected s”

Actual experiment with both neutrality and epistasis: shape similar to
expectation, but generations harder
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Expected Epistasis ν + Neutrality µ

• Two separate experiments with either neutrality or epistasis added
together: “expected s”

• Actual experiment with both neutrality and epistasis: shape similar to
expectation, but 100 generations harder
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Real Epistasis ν + Ruggedness

• If both epistasis and ruggedness are used, results look similar to
expectations of adding the results with only ruggedness to those with
only epistasis.

A rising ruggedness component leads, however, to over-prop rtional
increases in s.
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Real Epistasis ν + Ruggedness

• If both epistasis and ruggedness are used, results look similar to
expectations of adding the results with only ruggedness to those with
only epistasis.

• A rising ruggedness component leads, however, to over-proportional
increases in s.
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Section Outline

These are the slides for paper [1] presented at the BB-DOB workshop at
GECCO’2018.

1 Introduction

2 The W-Model

3 Experiment

4 Summary
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Summary

• We have discussed several requirements for good discrete
optimization benchmark problems.

We have introduced the W-Model as an example problem that fulfills
these requirements and suggest it for inclusion in the BB-DOB
problem suite.

It can be applied with a fixed-length and a variable-length
represention.

Our old experiments with the variable-length representation show that
it behaves well and as expected.

A new implementation [10] is provided along with new results for the
fixed-length representation in [29].
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