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ABSTRACT

The first event of the Black-Box Discrete Optimization Benchmark-

ing (BB-DOB) workshop series aims to establish a set of exam-

ple problems for benchmarking black-box optimization algorithms

for discrete or combinatorial domains. In this paper, we 1) dis-

cuss important features that should be embodied by these bench-

mark functions and 2) present the W-Model problem which ex-

hibits them. TheW-Model follows a layered approach, where each

layer can either be omitted or introduce a different characteris-

tic feature such as neutrality via redundancy, ruggedness and de-

ceptiveness, epistasis, and multi-objectivity, in a tunable way. The

model problem is defined over bit string representations, which al-

lows for extracting some of its layers and stacking them on top

of existing problems that use this representation, such as OneMax,

theMaximumSatisfiability or the Set Covering tasks, and theNK land-

scape. The ruggedness and deceptiveness layer can be stacked on

top of any problem with integer-valued objectives. We put the W-

Model into the context of related model problems targeting rugged-

ness, neutrality, and epistasis. We then present the results of a

series of experiments to further substantiate the utility of the W-

Model and to give an idea about suitable configurations of it that

could be included in the BB-DOB benchmark suite.
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1 INTRODUCTION

The aim of the first Black-Box Discrete Optimization Benchmark-

ing Workshop (BB-DOB@GECCO) workshop is to develop a stan-

dard methodology and problem set for the benchmarking of black-

box optimization algorithms for discrete and combinatorial domains.

With this paper, we make two contributions to this end:

(1) The goal of benchmarking is to get a complete picture of

the strengths and weaknesses of optimization methods. We

discuss a set of important problem features, which there-

fore should be represented in the set of BB-DOB benchmark

problems.

(2) We then propose theW-Model problem, which can simulate

these features in a layered, tunable way, for inclusion into

the BB-DOB benchmark set. The layers of this model can

also easily be combined with classical optimization prob-

lems.

Many real-world optimization tasks can be solved very effi-

ciently with metaheuristics like Stochastic Local Search [17] and

Evolutionary Algorithms (EAs) [44]. However, some frequently

occurring problem characteristics cause difficulties for such algo-

rithms [47, 51]. Some of the most important features that influence

the problem hardness are ruggedness, neutrality, and deceptive-

ness in the fitness landscape as well as one of their causes, epista-

sis. The hardness of a problem further increases with the number of

involved objective functions. In real applications, the influence of

these features on the optimization process and their interactions

with each other are often a priori unknown and complicated to

measure.

https://doi.org/10.1145/3205651.3208240
https://doi.org/10.1145/3205651.3208240
http://www.acm.org/
http://dx.doi.org/10.1145/3205651.3208240
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A comprehensive set of benchmark functions for discrete optimiza-

tion should include problems which exhibit these features in different

strengths and in different combinations.

Many classical problems from operations research such as the

Traveling Salesman Problem (TSP) [6, 48] or the Maximum Satis-

fiability Problem [1, 16] are not necessarily good choices for this

purpose. One reason for this is that the hardness of these problems

usually does not depend only on the “obvious” problem parameters

such as the number of cities, clauses, or decision variables. An in-

stance of the TSP, for example, is not necessarily hard just because

it has a large number of cities. Regardless how many cities it has,

if they could be arranged in a circle or equidistant grid, we can

easily find the optimal solution. For many classical problems, com-

plex statistics need to be computed in order to get an impression

on whether a problem instance will be hard before trying to solve

it [27].

The requirements that a good problem for the BB-DOB bench-

mark set should meet can be divided into non-functional aspects

that increases its usability and functional properties which allow it

to produce scientifically interesting results [11]. Let us first define

the non-functional requirements:

(1) The objective function(s) should

(a) have known ranges and

(b) be easy and fast to compute.

(2) The optimal solutions should be known.

(3) A standard representation from the discrete domain should

be used, such as bit strings or permutations.

(4) It should be possible to

• create both easy and hard problem instances at small scales

of the problem and

• derive a problem instance entirely and deterministically

derived from its parameters.

Having a fast-to-compute objective function with a known range

and being able to represent different degrees of hardness within

small-scale problems will allow to conduct many experiments in

a short time as well as storing and processing candidate solutions

in an efficient way. If the range of the objective value and the opti-

mum are known, we have both easy ways to determine success or

failure as well as to compare the performance on problems of dif-

ferent scale/range, because we can normalize the objective values.

The last requirement aims at increasing the reproducibility of

experiments, which is currently a hot topic [18]. In the combinato-

rial domain problem instances are often specified in form of text

files following certain formats, requiring a researcher to both have

the paper and the problem instance files described in it. The latter

one is not needed if our requirement is met.

Besides such features which increase the ease of use of themodel,

it should have the following properties from a “functional” (re-

search) perspective:

(1) It should be well-motivated from the theoretical perspective

and allow establish connections to results already existing

in theoretical research or be theoretically tractable in way

that allows new theoretical results.

(2) Its fitness landscape should exhibit features that are chal-

lenging for commonmetaheuristics, such as those discussed

at the beginning of this introduction.

(3) Ideally, it should be possible to tune these features and study

them both separately and in combination.

(4) The hardness of the problem should be determined directly

by tunable parameters.

A benchmark problemmeeting these requirementswould be highly

suitable for experiments, as it would allow researchers to discover

and compare the mutual strengths and weaknesses of their algo-

rithms. In this paper, we present W-Model, a tunable benchmark

model which fulfills all the above functional and non-functional re-

quirements. This problem, proposed in its original form by Weise

et al. [49], allows for studying several characteristic fitness land-

scape features in a tunable way. It can be tackled both with fixed-

length and variable-length bit string representations either in a

single- or a multi-objective variant.

A problem proposed for the BB-DOB benchmark set should fur-

ther meet the following availability criteria:

(1) It should be specified fully and reproducibly in the submit-

ted paper.

(2) A reference implementation in one of the major program-

ming languages should be provided as open source software

on a publicly-available repository.

(3) Comprehensive utilities should provided to show that the

reference implementation is equivalent to the definition in

the paper and to allow for testing whether an alternate im-

plementation fulfills the problem specification.

(4) Example experiments and results should be available.

We provide an open source reference implementation of the model

in Java at http://github.com/thomasWeise/BBDOB_W_Model, in-

cluding unit tests that allow for verifying the correctness of (pos-

sibly different) model implementations, an automatic experiment

parallel execution environment, and an example experiment setup

with some simple metaheuristics applied to the W-Model. We sug-

gest that a set of configurations of this problem into the black-box

discrete optimization benchmark suite.

In the following text, we first discuss features that can make an

optimization problem hard together with their representation in

the W-Model in Section 2. We then analyze the related work, i.e.,

benchmark problems which try to model (subsets of) similar fea-

tures in Section 3. We then conduct an experimental study show-

ing that the W-Model suitable to simulate arbitrary complex opti-

mization problems correctly in Section 4. In 5, we summarize our

research on the model.

2 DIFFICULT FEATURES AND MODEL
DEFINITION

OurW-Model [44, 49] possesses tunable neutrality and redundancy,

ruggedness and deceptiveness, epistasis, and multi-objectivity fea-

tures. It is divided in distinct layers as sketched in Figure 1. These

layers correspond to a step-by-step transformation of a bit string

x to the objective value(s).

The baseline of the model problem is to find a bit string x⋆ =

0101010101010 . . . 01 of a predefined length n consisting of alter-

nating zeros and ones.

This setup is very similar to the OneMax problem. While the

goal of the OneMax problem is to find a bit string x of minimal

http://github.com/thomasWeise/BBDOB_W_Model
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Figure 1: An example evaluation of a candidate solution for

the W-Model.

Hamming distance h(x,x⋆
OM
) to x⋆

OM
= (1111. . . ), the goal un-

der the W-Model is to minimize the Hamming distance h(x, x⋆)

to x⋆ = (0101. . . ), as sketched in layer 5 of Figure 1. It can

be expected that the extensive body of research on the OneMax

problem [2, 9, 28, 40] would carry over to the baseline version of

theW-Model problem. This objective function can be computed in

O (n).

While suitable for the search space of bit strings of length n,

search spaces of variable-length bit strings can be facilitated as fol-

lows: Overly long strings are cut off after index n and the value

n − l(x) is added to the objective values for strings x whose length

l(x) is too short (l(x) < n).

2.1 Neutrality (layer 2)

The application of a search operator is neutral if it yields no change

in objective value [7, 37]. It is challenging for optimization algo-

rithms if the best candidate solution currently known is situated

on a plane of the fitness landscape, i.e., if all adjacent solutions have

the same objective values. The optimization algorithm then cannot

find any gradient information1 and thus there is no direction into

which to proceed in a systematic manner. From the black-box point

of view, each search operation will yield identical results.

Researchers in the late 1990s and early 2000s hoped that neu-

trality could increase the “evolvability” in an optimization process

and may hence lead to better performance [7, 39, 41]. However,

otherworks indicate that theremay not be an advantage in random

redundancy [23, 38], so especially uniform redundancy should al-

ways be avoided in representation design – but testing its impact

may show how the optimization algorithms can deal with prob-

lems where redundancy is unavoidable.

A well-defined amount of neutrality can be generated in the

W-Model through uniform redundancy in the search space, as

sketched in layer 2 of 1. We therefore apply a trivial transforma-

tion uµ that shortens the original bit string x by an integer factor

µ ∈ 1. . .n. The ith bit in uµ (x) is defined as 0 if and only if the ma-

jority of the µ bits starting at locus i · µ in x is also 0, and as 1 other-

wise. The default value 1 set in draw situations has (in average) no

effect on the fitness, because the target solution x⋆ is defined as

a sequence of alternating zeros and ones. If the length l(x) of the

bit string x is not a multiple of µ, the remaining l(x) mod µ bits

are ignored. If µ = 1, no neutrality as introduced. This transforma-

tion could be plugged on top of any bit-string based optimization

problem and requires O (nµ) steps.

2.2 Epistasis (layer 3)

According to Lush [4, 26], the interaction between biological genes

is epistatic if the effect on the fitness from altering one gene de-

pends on the allelic state of other genes. Transposed to optimiza-

tion, twodecision variables (here: bits) can be said to interact epistat-

ically, if the contribution of one of these variables to the objective

value depends on the value of the other variable [4, 12, 31, 44].

Explicit epistasis is introduced in theW-Model as second trans-

formation after the neutrality layer [44, 51]. A bijective function eν
is defined, which translates a bit string x of length ν to a bit string

eν (x) of the same length in O
(
ν2
)
steps. Assume that we have two

bit strings x1 and x2 which only differ in one single location, i.e.,

their Hamming distance h(x1,x2) is one. eν leads to epistasis by

exhibiting the following property:

h(x1, x2) = 1⇒ h(eν (x1), eν (x2)) ≥ ν − 1 ∀x1,x2 ∈ {0, 1}
ν (1)

Themeaning of Equation 1 is that a change of one bit in a bit string

x leads to the change of at least ν−1 bits in the corresponding map-

ping eν (x). This, as well as the demand for bijectivity, is provided

if we define eν as in Equation 2, where we use both the binary and

the two’s complement natural number representation of the string

x for simplicity:

eν (x) =




eν (x)[i ] =
⊗

x[j]
∀ j∈N0:0≤j<ν ,
j,(i−1) mod ν

∀ x : 0 ≤ x < 2ν−1

eν (x − 2ν−1) otherwise

(2)

In other words, for all strings c ∈ {0, 1}ν which have the most

significant bit (MSB) not set, the eν transformation is performed

1The term “gradient” is a concept from continuous domains and we adopt it in a very
loose way to discrete domains as a compact way of stating “direction in the search
space where the objective values change (ideally improve).”
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Figure 2: An example for the epistasis mapping z → e4(z).

bitwise. The ith bit in eν (x) equals the exclusive-or combination

of all but one bit in x . Hence, each bit in x influences the value

of ν − 1 bits in eν (x). For all strings x with 1 in the MSB, eν (x)

is simply set to the negated eν transformation of x with the MSB

cleared (the value of the MSB is 2ν−1). This differentiation in e is

needed in order to ensure its bijectiveness for even ν .

Bit strings of arbitrary length can be divided into consecutive

blocks of the length ν and each of them is transformed separately

with eν . If the length l(x) of a given bit string x is no multiple

of ν , the remaining l(x) mod ν bits at the end will be transformed

with the function el (x ) mod ν instead of eν , as outlined in layer 3 of

Figure 1.

The tunable parameter ν for the epistasis ranges from 2 to n

leading to a complexity between O (n) and O
(
n2
)
. Ifm objective

functions are specified (see next section), the string length grows

ton ·m and so does the valid range for ν . If ν is set to a value smaller

than 3, no additional epistasis is introduced. Figure 2 outlines the

mapping for ν = 4.

This setup means that the interacting variables are all adjacent,

which may or may not be a feature present in real-world problems.

This property allows operations like single-point crossover to be

functional. One could increase the hardness by first exchanging all

bits according to a fixed permutation, which should be randomly

selected before the experiment. Here we vote against this measure,

since black-box optimization algorithms should not make assump-

tions about the relationship of decision variables based on their

location in the representation anyway.

Besides the explicit epistasis introduced here, implicit epistasis

can occur through the neutrality and ruggedness (see 2.4) map-

pings. To the best of our knowledge, it may not be possible to study

these three effects completely separately, but with our model, well-

dosed degrees of epistasis, neutrality, and ruggedness can sepa-

rately or jointly generated. Of course, this epistasis transformation

can again be plugged on top of any problem using binary string

representations.

2.3 Multi-Objectivity (layer 4)

Many optimization problems are multi-objective, i.e., involve mul-

tiple, possible conflicting criteria [10, 13, 14]. A task withm objec-

tive functions is created in the originalW-Model by interleavingm

instances of the benchmark problem with each other and defining

separate objective functions for each of them.

Instead of just dividing the candidate solution x inm blocks of

length n, each standing for one objective, we scatter the objectives

as illustrated in layer 4 of Figure 1. There, the bits for the first

objective function comprise x1 = (x[0],x[m],x[2m], . . . ), those used

by the second objective x2 = (x[1], x[m+1], x[2m+1], . . . ).

If a variable-length representation is used, superfluous bits (be-

yond the index range 0. . .nm − 1) are ignored. If x is too short, the

missing bits in the phenotypes are replaced with the complement

from x⋆, i.e., if one objective misses the last bit (index n − 1), it

is padded with x⋆[n−1] which will worsen the objective by 1 on

average.

No bit in x is used in more than one objective, so the optimiza-

tion goals are orthogonal and unrelated. The objective functions

of theW-Model will begin to conflict if epistasis (ν > 2) is applied.

Changing one bit in the candidate solution will then change the

outcome of at most min{ν ,m} objectives. Some of them may im-

prove while others may worsen.

2.4 Ruggedness and Deceptiveness (layer 6)

It is a general rule for representation design that it should exhibit

(strong) causality [34, 35]. Small search steps should lead to small

changes in the objective values. In rugged fitness landscapes, this

is not the case: small changes in a candidate solution often cause

large changes in its objective values. This makes it harder for an

optimization algorithm to find and climb a gradient in objective

space. Hand in hand with ruggedness goes deceptiveness. A region

of the fitness landscape is deceptive if performing a gradient de-

scend does not lead towards the optimal solution but instead away

from it.

There are two (possibly interacting) sources of ruggedness and

deceptiveness in a fitness landscape. The first one is the epistasis

already modeled, since it generally violates causality. The other

concerns the objective functions themselves, it lies in the nature of

a problem.We introduce this type of ruggedness and deceptiveness

a posteriori as a permutation r of the values from 0 to n which is

applied to the objective values.

In an objective function with low total variation, the objective

values of the neighboring candidate solutions are also neighboring.

In the W-Model without epistasis (ν ≤ 2), for instance, two solu-

tions differing in one bit will also differ by one in their objective

values.We canwrite down the list of objective values the candidate

solutions will take on if they would bit-wise be improved from the

worst to the best possible configuration as (n,n − 1, . . . , 2, 1, 0). Ex-

changing two of the values in this list will create some artificial

ruggedness. A measure for the ruggedness of such a permutation

r is ∆(r ) =
∑n−1
i=0 |ri − ri+1 |.

The original sequence of objective values has theminimumvalue

n and the maximum possible value is ∆̂ =
n(n+1)

2 . We can define

permutations rγ which are applied after the objective values are

computed and which have the following features:

(1) They are bijective (since they are permutations).

(2) They must preserve the optimal value, i.e., rγ [0] = 0.

(3) ∆(rγ ) = n + γ .

With γ ∈ 0. . . (∆̂ − n), we can fine-tune the ruggedness. For γ ′ = 0,

no ruggedness is introduced. For a given n, permutations rγ ′ can

be produced with the function permutate in Algorithm 1.

Algorithm 1 consists of two parts. permutate constructs permu-

tations with increasing ruggedness measure γ ′. As shown in [49]

and Figure 3, using this transformation alone may lead to very de-

ceptive problems at moderate levels ofγ ′. Hence, the permutations
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are re-arranged first using a second function translate, which en-

sures that the problem hardness smoothly increases from easy to

rugged to deceptive and create permutations rγ .
2

To illustrate this, all ruggedness permutations rγ for an objec-

tive function defined over bit strings of length five (i.e., which can

range from 0 to n = 5) are shown in Figure 3. As can be seen,

the permutations scramble the objective function more and more

with rising γ and reduce its gradient information, before produc-

ing gradients which actually point away from the optimum. The

ruggedness transformation is sketched in layer 6 of Figure 1.

3 RELATED WORK

We now discuss problems based on fixed-length bit string repre-

sentations which were defined in order to investigate problematic

features such those discussed in the previous section.

In the late 1980s, Kauffman [20] defined the maybe most promi-

nent member of this problem class, the NK landscape [20–22], a

family of objective functions with tunable epistasis. We exemplar-

ily describe it with slightly more details to give an impression of

the general concept according to which such problems can be con-

structed. Each of theN bitsxi in a candidate solution of theNK land-

scape contributes one real value fNK,i : {0, 1}
K+1 7→ [0, 1] to the

objective function fNK . fNK,i is determined the value of xi and

the values of K other bits xi1 , xi2 , . . . ,xiK called the neighbors of

xi , i.e., we get

fNK (x) =
1

N

N∑

i=1

fNK,i
(
xi ,xi1 ,xi2 , . . . ,xiK

)
(3)

Whenever the value of a bit changes, all the contributions of the

bits to whose neighbor set it belongs will change too – to values

uncorrelated to their previous state. While N describes the basic

problem complexity, the intensity of this epistatic effect can be

controlled with the parameter K : If K = 0, there is no epistasis

at all. For K = N − 1 the epistasis is maximized and the fitness

contribution of each gene depends on all other genes.

Weise [44] discusses a variety on research work analyzing the

NK landscape, which did not allow modeling features such as neu-

trality or multi-objectivity – capabilities provided by theW-Model.

Meanwhile, multi-objectivity is introduced in theMNK landscapes [3,

42]. It should be noted that the W-Model would allow using an

(M)NK landscape on top of its neutrality transformation or in con-

junction with themulti-objectivitymapping as a replacement of its

epistasis and ruggedness transformations. The problems devised

by Barnett [7], Geard et al. [15], Newman and Engelhardt [32]

and Lobo et al. [24] can similarly be integrated into the W-Model.

They extend the NK landscapes with neutrality features, which

then could be studied together in the context of multi-objective

optimization. The same holds for the p-spin model developed by

Amitrano et al. [5], which can be considered as an alternative to

the NK fitness landscape for tunable ruggedness [43].

The Royal Road functions developed by Mitchell et al. [29] are a

set of special fitness landscapes for GAs. Platel et al. [36] combined

them with Kauffman’s NK landscapes and introduced the Epistatic

Road. This landscape is significantly harder to construct and to

2At the place where the n is standing in Algorithm 1 (Line 19), the original version
of this paper had start. This is wrong, it should be n.

tune than W-Model and – like the other related works – also has

fewer capabilities.

TheND family of fitness landscapes has been developed by Beau-

doin et al. [8] in order to provide a model problem with tunable

neutrality. It also features deceptiveness via the internal use of

trap functions. Yet, it cannot model multi-objectivity, ruggedness,

or epistasis.

In [25], Lochtefeld and Ciarallo present an extension of the orig-

inal version of the W-Model. Their TOP model aims to provide a

more fine-grained objective convolutionmechanism and it also ap-

plies two levels of ruggedness transformations. This extension has

successfully been used to explore the relationship of problematic

landscape features are related to the performance of multiobjec-

tivization via helper objectives.

4 EXPERIMENTAL RESULTS

In order to verify whether this model suitably represents the fea-

tures discussed, we have performed a comprehensive set of exper-

iments [33] from which we will list the most significant results.

These experiments were done in the framework of a Bachelor’s

thesis and are partially unpublished. They are based on an older

implementation of the model and the variable-length representa-

tion (which we do not recommend for usage in BB-DOB), but can

serve here to illustrate the features of our model problem.

In these experiments, we applied a standard multi-objective ge-

netic algorithm with population size 1000, single-point crossover,

single-bit mutation, and a variable-length bit string genome with

a maximum string length of 8000 bits. In each test, we applied a

non-functional objective minimizing the length of the strings. We

suggest using these settings as default setup for all experiments in-

volving ourmodel in order to keep the results comparable. Further-

more, we have used tournament selection with tournament size 5

and Pareto ranking for fitness assignment. For each setting, at least

50 runs have been performed.

In the experiments, we distinguished between success and per-

fection. Success means finding individuals x of optimal functional

fitness, i.e., f (x) = 0. Multiple such successful strings may exist,

since superfluous bits at the end of genotypes do not influence their

functional objective. The perfect string x⋆ has no such useless bits,

it is the shortest possible solution with f = 0 and, hence, also op-

timal in the non-functional length criterion. We refer to the num-

ber of generations needed to find a successful individual as success

generations s and to those needed to find the perfect solution as

perfection generations p.

4.1 The Basic Problem

In Figure 4a, we illustrate the basic problem complexity. The mini-

mum, average, and maximum success generations š , s, and ŝ mea-

sured rise almost linearly after the basic problem parameter n has

exceeded 300 bits. The average perfection generations p are much

higher and rise faster, indicating that trimming down a solution to

the minimum length is a complicated process.

4.2 Ruggedness

As outlined in Section 2.4, the number of ruggedness permutations

r depends on the maximum objective values. Hence, it changes
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ŝ
s-

p-

(a) Basic Problem n

8 6
24 40 80 120 160

ruggedness n

s-

0

100

200

300

(b) Ruggedness + Basic Problem n

0
40

80
120

160

1020304050

0

100

200

300 s-

m

n

(c) Neutrality µ + Basic Problem n

40
80

120
160

01020304050

0
200
400
600
800

n
n

s-

(d) Epistasis ν + Basic Problem n

0
40

80
120

160

1020304050

0

40

80

100

n
n

fa
il
ed

 r
u
n
s

(e) Epistasis – Failed Runs (ν, n)

1
3

5
7

9

23456789

100

200

300

h

m

s-expected

(f) Expected Epistasis ν + Neutral-
ity µ

3
5

7
9

123456789
n

100

200

300

400

m

s-

(g) Real Epistasis ν + Neutrality µ

2
4

6
8

2
4

6
8

100
200
300
400

s-

n
rug

ged
nes

s

(h) Real Epistasis ν + Ruggedness

Figure 4: Experimental Results

with the basic problem complexity. Furthermore, with the r per-

mutation algorithms, also deceptive fitness landscapes will be cre-

ated [49]. For visualization purposes, a scale from0 to 10 for rugged-

ness and for deceptiveness were used in [33], separating and order-

ing the two characteristics.

In Figure 4b, the average generations needed for finding a suc-

cessful individual have been plotted against the basic problem com-

plexity n and the ruggedness according to this scale. Apart from a

few peaks in the diagram occurring for n > 70, the problem hard-

ness, as expected, increases very fast with the ruggedness.

4.3 Neutrality

The redundancy-based neutrality in our model exhibits a rather in-

teresting behavior illustrated in 4c. Until a degree of µ ≈ 10, the

problems rapidly gets harder. From there on, a further increase of

µ only leads to a very slow increase in hardness. The reason for

this behavior is rooted in the crossover operations. If crossover is

present, it seemingly plays no role whether 10, 20, or even more

bits of the genotype determine the single phenotypic bits. To prove

this, the experiments were repeated with lower crossover rates.

Then, s increases much faster and also becomes unsolvable (in 1000

generations) very early. For the BB-DOB benchmark suite, we sug-

gest using values µ ∈ 1. . . 4.

4.4 Epistasis

The behavior of the epistasis model component is as interesting

as that of the neutrality layer. Figure 4d shows that the problem

complexity steeply increases with rising values of ν . This becomes

even more obvious when comparing with Figure 4e, where the

number of experimental runs (out of 100) are plotted that were not

able to find a successful individual up to the 1000-generation limit.

Both graphs, however, have also deep incisions at locations where

ν takes on values of the form 2+4v : v ∈ N. Such epistasis settings

lead to significantly easier problems, which can be explained by

the nature of the epistatic mapping eν – it decreases the Hamming

distance of elements x1,x2 which have originally h(x1,x2) = ν/2

for such values [33]. For inclusion in the BB-DOB benchmark suite,

we therefore suggest to only use ν values that are not such multi-

ples.

4.5 Epistasis and Neutrality

The usefulness of our model problem stands and falls with the abil-

ity to combine the different features introduced in Section 2. There-

fore, we ran multiple test experiments with a fixed problem size

n = 80. One of them was to check how the epistasis and neutrality

interact in the model. Therefore, we have simply added up the pre-

vious two experiments (sketched in Figure 4f) and compared these
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“expected s” with results from real experiments with the same pa-

rameter settings. The results, depicted in Figure 4g, meet the ex-

pectations almost exactly in terms of the problem structure, while

exhibiting an almost constant quantitative offset of about 100 gen-

erations.

4.6 Epistasis and Ruggedness

In Figure 4h, we have plotted an experiment series which combines

ruggedness and epistasis. The outcomes of these experiments are

very similar to the expected results when adding up Figure 4b and

Figure 4d for n = 80. A rising ruggedness component leads, how-

ever, to over-proportional increases in s . This may be due to epis-

tasis making optimization complicated because it leads to rugged-

ness in the fitness landscape. By introducing additional ruggedness

in the objective functions (which is what we are doing in this se-

ries), resonance like fish tailing seems to result.

5 CONCLUSIONS AND FUTURE WORK

In this paper, we have discussed requirements that a good bench-

mark problem for the BB-DOB suite should exhibit. On the func-

tional side, the benchmark problem should allow investigating dif-

ferent fitness landscape features separately and in combination.

Then, researchers can explore the mutual advantages and disad-

vantages of their algorithms. Non-functional requirements such as

low complexity, ease of understanding, and easy replication of ex-

periments should increase the usability of the problem.

We showed that the W-Model meets all of these require-

ments. We provide a Java implementation of this model problem

at http://github.com/thomasWeise/BBDOB_W_Model along with

unit test for verifying other implementations, an automated paral-

lel experimentation environment, and example experiments.

We then presented some results from experiments with the W-

Model problem [33, 49]. We have shown that our model is not only

simple and easily tangible from a theoretical point of view, but also

exhibits a behavior which meets our expectations in experiments.

We suggest to apply a set of specific single-objective, fixed-length

representation settings of the model problem in the framework of

the BB-DOB benchmark suite. While we are still researching good

settings for the model parameters, we, for now, propose using

(1) a selection of values of n ranging from 10 to 64,

(2) all values of µ ∈ 1. . .3,

(3) values of ν which are not of the form 2+ 4v and are close to

2 + ((n − 2) · i/10) for i ∈ 0. . . 10 together with powers of 2

and 10, and

(4) values of γ which are in n(n − 1) · i/20 for all i ∈ 0. . . 10

together with powers of 2 and 10.

These settings should lead to a set of well-reproducible problems

that cover awide range of difficulties, from very easy (i.e., OneMax)

to highly epistatic and rugged landscapes with neutral plateaus.

We believe that establishing theW-Model as component of the BB-

DOB benchmark can help researchers to evaluate optimization al-

gorithms in different situations in an unbiased manner.

We thank the reviewers for pointing out that classical hardness

measures on which W-Model is conceptually built are known to

not be perfect and potentially misleading [19, 30]. Hence, more

research is necessary and one part of our future work is to learn

more about the impact of the model settings on the optimization

process. By conducting further experiments, wewill attempt to col-

lect more empiric data on how the features of the fitness landscape

influence the success probability of optimization.
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At the place where the n is standing in Algorithm 1 (Line 19), the

original version of this paper had start. This is wrong, it should

be n.

Algorithm 1: rγ ←− build_permutation(γ ,n)

This algorithm is a corrected version compared to [44, 49].

Input: n: the maximum objective value

Input: γ : the γ value for tuning the ruggedness, with

γ ∈ 0. . . 12n(n − 1) value

Data: i, j,k : counter variables

Data: start ,max,upper : computed values

Data: γ ′: the translated version of γ

Output: rγ : the permutation rγ for re-arranging objective

values

1 begin

2 return permutate(translate(γ ),n)

3 sub-algorithm r ←− permutate(γ ′,n)

4 r ←− allocate integer array of length n + 1

5 max ←−
⌊
1
2n(n − 1)

⌋

6 if γ ′ ≤ 0 then start ←− 0

7 else

start ←− n − 1 −

⌊
1
2 +

√
1
4 + 2(max − γ ′)

⌋

8 k ←− 0

9 for j ←− 1 up to start − 1 do

10 if j is odd then r [j]←− n − k

11 else

12 k ←− k + 1

13 r [j]←− k

14 for j ←− start up to n do

15 k ←− k + 1

16 if start is odd then r [j]←− n − k

17 else r [j]←− k

18 upper ←− (γ ′ −max) + 1
2 (n − start − 1)(n − start)

19 j ←− n

20 for i ←− 1 up to upper do

21 j ←− j − 1

22 swap r [j] and r [n]

23 return r

24 sub-algorithm γ ′ ←− translate(γ ,n)

25 if γ ≤ 0 then return 0

26 l ←−
n(n−1)

2

27 i ←−
⌊
n
2

⌋
·
⌊
n+1
2

⌋

28 if γ ≤ i then

29 j ←−

⌊
n+2
2 −

√
n2

4 + 1 − γ

⌋

30 k ←− γ − j (n + 2) + j2 + n

31 return k + 2
(
j (n + 2) − j2 − n

)
− j

32 else

33 j ←−

⌊
(n mod 2)+1

2 +

√
1−(n mod 2)

4 + γ − 1 − i

⌋

34 k ←− γ − (j − (n mod 2)) (j − 1) − 1 − i

35 return l − k − 2j2 + j − (n mod 2) (−2j + 1)

http://www.acm.org/
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