

From Standardized Data Formats to Standardized Tools for Optimization Algorithm Benchmarking

Thomas Weise · 汤卫思

tweise@hfuu.edu.cn · http://iao.hfuu.edu.cr

Hefei University, South Campus Faculty of Computer Science and Technology Institute of Applied Optimization 230601 Hefei, Anhui, China Econ. & Tech. Devel. Zone, Jinxiu Dadao 99

- Dools for Research on Optimization
- Example Experiment and Data
- 4 Conclusions

Introduction

2 Tools for Research on Optimization

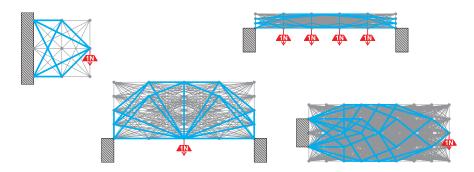
3 Example Experiment and Data

4 Conclusions

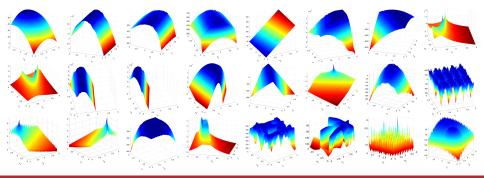
• Many questions in the real world are optimization problems

- Many questions in the real world are *optimization problems*, e.g.,
 - Find the *shortest* tour for a salesman to visit a certain set of cities in China and return to Hefei!

- Many questions in the real world are optimization problems, e.g.,
 - Find the *shortest* tour for a salesman to visit a certain set of cities
 - How can I construct a truss which can hold a certain weight with at most a certain amount of iron?



- Many questions in the real world are optimization problems, e.g.,
 - Find the shortest tour for a salesman to visit a certain set of cities
 - · Construct a truss which can hold a certain weight
 - Find the minima of complex, multi-dimensional mathematical formulas



From Standardized Data Formats to Standardized Tools for Optimization Algorithm Benchmarking Thomas Weise

"(Meta-)Heuristic optimization algorithms try to find solutions which are as good as possible as fast as possible."

• Algorithm performance has two dimensions ^[1, 2]:

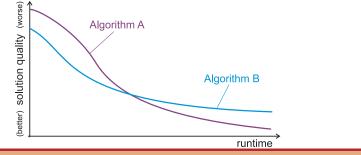
"(Meta-)Heuristic optimization algorithms try to find solutions which are as good as possible as fast as possible."

• Algorithm performance has two dimensions ^[1, 2]: solution quality

"(Meta-)Heuristic optimization algorithms try to find solutions which are as good as possible as fast as possible."

• Algorithm performance has two dimensions ^[1, 2]: solution quality and required runtime

- Algorithm performance has two dimensions ^[1, 2]: solution quality and required runtime
- Anytime Algorithms^[3] are optimization methods which maintain an approximate solution at *any time* during their run and iteratively improve this guess.



- Algorithm performance has two dimensions ^[1, 2]: solution quality and required runtime
- Anytime Algorithms^[3] are optimization methods which maintain an approximate solution at *any time* during their run and iteratively improve this guess.
- All metaheuristics are Anytime Algorithms.

- Algorithm performance has two dimensions ^[1, 2]: solution quality and required runtime
- Anytime Algorithms^[3] are optimization methods which maintain an approximate solution at *any time* during their run and iteratively improve this guess.
- All metaheuristics are Anytime Algorithms.
- Several exact methods like Branch-and-Bound ^[4–6] are Anytime Algorithms.

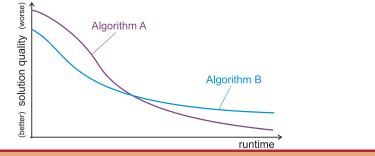
- Algorithm performance has two dimensions ^[1, 2]: solution quality and required runtime
- Anytime Algorithms^[3] are optimization methods which maintain an approximate solution at *any time* during their run and iteratively improve this guess.
- All metaheuristics are Anytime Algorithms.
- Several exact methods like Branch-and-Bound ^[4–6] are Anytime Algorithms.
- Consequence: Most optimization algorithms produce approximate solutions of different qualities at different points during their process.

- Algorithm performance has two dimensions ^[1, 2]: solution quality and required runtime
- Anytime Algorithms^[3] are optimization methods which maintain an approximate solution at *any time* during their run and iteratively improve this guess.
- All metaheuristics are Anytime Algorithms.
- Several exact methods like Branch-and-Bound ^[4-6] are Anytime Algorithms.
- Consequence: Most optimization algorithms produce approximate solutions of different qualities at different points during their process.
- We can let them run arbitrarily long, there usually is no explicit, natural end point

- Algorithm performance has two dimensions ^[1, 2]: solution quality and required runtime
- Anytime Algorithms^[3] are optimization methods which maintain an approximate solution at *any time* during their run and iteratively improve this guess.
- All metaheuristics are Anytime Algorithms.
- Several exact methods like Branch-and-Bound ^[4–6] are Anytime Algorithms.
- Consequence: Most optimization algorithms produce approximate solutions of different qualities at different points during their process.
- We can let them run arbitrarily long, there usually is no explicit, natural end point
- Experiments must capture data on the whole runtime behavior!

"(Meta-)Heuristic optimization algorithms try to find solutions which are as good as possible as fast as possible."

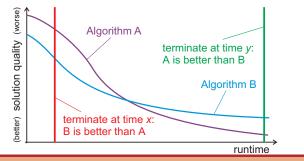
- Algorithm performance has two dimensions ^[1, 2]: solution quality and required runtime
- If we just compare "final" results, we may arrive at incomplete conclusions



From Standardized Data Formats to Standardized Tools for Optimization Algorithm Benchmarking Thomas Weise 5/22

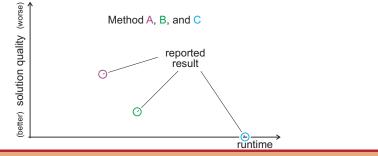
"(Meta-)Heuristic optimization algorithms try to find solutions which are as good as possible as fast as possible."

- Algorithm performance has two dimensions ^[1, 2]: solution quality and required runtime
- If we just compare "final" results, we may arrive at incomplete conclusions

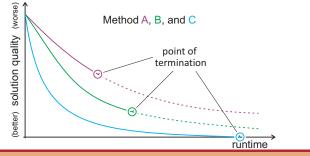


From Standardized Data Formats to Standardized Tools for Optimization Algorithm Benchmarking Thomas Weise 5/22

- Algorithm performance has two dimensions ^[1, 2]: solution quality and required runtime
- If we just compare "final" results, we may arrive at incomplete or entirely wrong conclusions



- Algorithm performance has two dimensions ^[1, 2]: solution quality and required runtime
- If we just compare "final" results, we may arrive at incomplete or entirely wrong conclusions



Introduction

2 Tools for Research on Optimization

3 Example Experiment and Data

4 Conclusions

Research on Optimization

• What questions does research on optimization ask?

Research on Optimization

- What questions does research on optimization ask?
 - Which optimization algorithm is best for my problem?

- What questions does research on optimization ask?
 - Which optimization algorithm is best for my problem?
 - An optimization algorithm can have parameters ... which parameter settings make it work the best?

- What questions does research on optimization ask?
 - Which optimization algorithm is best for my problem?
 - An optimization algorithm can have parameters ... which parameter settings make it work the best?
 - For an optimization problem, there can be many concrete instances ... which features make them hard or easy?

- What questions does research on optimization ask?
 - Which optimization algorithm is best for my problem?
 - An optimization algorithm can have parameters ... which parameter settings make it work the best?
 - For an optimization problem, there can be many concrete instances ... which features make them hard or easy?
- How do researchers answer these questions?

- What questions does research on optimization ask?
 - Which optimization algorithm is best for my problem?
 - An optimization algorithm can have parameters ... which parameter settings make it work the best?
 - For an optimization problem, there can be many concrete instances ... which features make them hard or easy?
- How do researchers answer these questions?
 - Select (or develop) different algorithms/setups on different problem instances.

- What questions does research on optimization ask?
 - Which optimization algorithm is best for my problem?
 - An optimization algorithm can have parameters ... which parameter settings make it work the best?
 - For an optimization problem, there can be many concrete instances ... which features make them hard or easy?
- How do researchers answer these questions?
 - Select (or develop) different algorithms/setups on different problem instances.
 - Run experiments and collect data about the algorithm progress over runtime.

- What questions does research on optimization ask?
 - Which optimization algorithm is best for my problem?
 - An optimization algorithm can have parameters ... which parameter settings make it work the best?
 - For an optimization problem, there can be many concrete instances ... which features make them hard or easy?
- How do researchers answer these questions?
 - Select (or develop) different algorithms/setups on different problem instances.
 - Run experiments and collect data about the algorithm progress over runtime.
 - Draw diagrams, print tables (often summarizing over groups of instances or algorithms).

- What questions does research on optimization ask?
 - Which optimization algorithm is best for my problem?
 - An optimization algorithm can have parameters ... which parameter settings make it work the best?
 - For an optimization problem, there can be many concrete instances ... which features make them hard or easy?
- How do researchers answer these questions?
 - Select (or develop) different algorithms/setups on different problem instances.
 - Run experiments and collect data about the algorithm progress over runtime.
 - Draw diagrams, print tables (often summarizing over groups of instances or algorithms).
 - 🕘 Identify interesting information, find reasons, go back to step 🌘

- What questions does research on optimization ask?
 - Which optimization algorithm is best for my problem?
 - An optimization algorithm can have parameters ... which parameter settings make it work the best?
 - For an optimization problem, there can be many concrete instances ... which features make them hard or easy?
- How do researchers answer these questions?
 - Select (or develop) different algorithms/setups on different problem instances.
 - Run experiments and collect data about the algorithm progress over runtime.
 - Draw diagrams, print tables (often summarizing over groups of instances or algorithms).
 - 🟮 Identify interesting information, find reasons, go back to step 🌘
- This is a lot of work.

- What questions does research on optimization ask?
 - Which optimization algorithm is best for my problem?
 - An optimization algorithm can have parameters ... which parameter settings make it work the best?
 - For an optimization problem, there can be many concrete instances ... which features make them hard or easy?
- How do researchers answer these questions?
 - Select (or develop) different algorithms/setups on different problem instances.
 - Run experiments and collect data about the algorithm progress over runtime.
 - Draw diagrams, print tables (often summarizing over groups of instances or algorithms).
 - 🟮 Identify interesting information, find reasons, go back to step 🌘
- This is a lot of work. And much data is needed, due to anytime character of algorithms.

- What questions does research on optimization ask?
 - Which optimization algorithm is best for my problem?
 - An optimization algorithm can have parameters ... which parameter settings make it work the best?
 - For an optimization problem, there can be many concrete instances ... which features make them hard or easy?
- How do researchers answer these questions?
 - Select (or develop) different algorithms/setups on different problem instances.
 - Run experiments and collect data about the algorithm progress over runtime.
 - Draw diagrams, print tables (often summarizing over groups of instances or algorithms).
 - 🜒 Identify interesting information, find reasons, go back to step 🌘
- This is a lot of work. And much data is needed, due to anytime character of algorithms. Tools automating the evaluation procedure are needed.

Which information is needed?

• Which information is needed to plot runtime/performance diagrams?

Which information is needed?

 Which information is needed to plot runtime/performance diagrams?
 For each algorithm on each problem, we need several independent "runs" (due to the usually stochastic nature of algorithms).

- Which information is needed to plot runtime/performance diagrams?
 For each algorithm on each problem, we need several independent "runs".
 - For each run, we need several tuples of "(elapsed runtime, solution quality)" to capture whole runtime behavior (not just a single result/time point...).

- Which information is needed to plot runtime/performance diagrams?
 - For each algorithm on each problem, we need several independent "runs".
 - For each run, we need several tuples of "(elapsed runtime, solution quality)".
- Which information is needed to allow for automatic grouping of data?

- Which information is needed to plot runtime/performance diagrams?
 - For each algorithm on each problem, we need several independent "runs".
 - For each run, we need several tuples of "(elapsed runtime, solution quality)".
- Which information is needed to allow for automatic grouping of data?
 - Meta-data on algorithm parameters for each run: then we can draw summary diagrams over "similar" algorithm setups.

- Which information is needed to plot runtime/performance diagrams?
 - For each algorithm on each problem, we need several independent "runs".
 - For each run, we need several tuples of "(elapsed runtime, solution quality)".
- Which information is needed to allow for automatic grouping of data?
 - Meta-data on algorithm parameters for each run.
 - Meta-data on the features of the problem instances: then we can draw summary diagrams over "similar" instances.

- Which information is needed to plot runtime/performance diagrams?
 - For each algorithm on each problem, we need several independent "runs".
 - For each run, we need several tuples of "(elapsed runtime, solution quality)".
- Which information is needed to allow for automatic grouping of data?

Meta-data on algorithm parameters for each run.

Deta-data on the features of the problem instances.

• Today, automated evaluation tools only exist for dedicated problems and specific algorithm types.

- Which information is needed to plot runtime/performance diagrams?
 - For each algorithm on each problem, we need several independent "runs".
 - For each run, we need several tuples of "(elapsed runtime, solution quality)".
- Which information is needed to allow for automatic grouping of data?

Meta-data on algorithm parameters for each run.

Meta-data on the features of the problem instances.

- Today, automated evaluation tools only exist for dedicated problems and specific algorithm types.
- Reason: each tool only supports its own, very specific file format and assumes fixed, predefined benchmark instances.

- Which information is needed to plot runtime/performance diagrams?
 - For each algorithm on each problem, we need several independent "runs".
 - For each run, we need several tuples of "(elapsed runtime, solution quality)".
- Which information is needed to allow for automatic grouping of data?

Meta-data on algorithm parameters for each run.

Ø Meta-data on the features of the problem instances.

- Today, automated evaluation tools only exist for dedicated problems and specific algorithm types.
- Reason: each tool only supports its own, very specific file format and assumes fixed, predefined benchmark instances.
- With common formats for the above data, tools that can deal with *arbitrary* algorithms on *arbitrary* problems can be developed.

- Which information is needed to plot runtime/performance diagrams?
 - For each algorithm on each problem, we need several independent "runs".
 - For each run, we need several tuples of "(elapsed runtime, solution quality)".
- Which information is needed to allow for automatic grouping of data?

Meta-data on algorithm parameters for each run.

Ø Meta-data on the features of the problem instances.

- Today, automated evaluation tools only exist for dedicated problems and specific algorithm types.
- Reason: each tool only supports its own, very specific file format and assumes fixed, predefined benchmark instances.
- With common formats for the above data, tools that can deal with *arbitrary* algorithms on *arbitrary* problems can be developed.
- The *optimizationBenchmarking.org* is an example for such tools.

• Common data formats must be

Requirements for Data Formats

- Common data formats must be
 - very easy to read/write/parse/generate

- Common data formats must be
 - very easy to read/write/parse/generate
 - human-readable and human-editable

- Common data formats must be
 - very easy to read/write/parse/generate
 - human-readable and human-editable
- We define a data format for

- Common data formats must be
 - very easy to read/write/parse/generate
 - human-readable and human-editable
- We define a data format for
 - collected runtime/quality tuples from experiments => text: space-separated values

- Common data formats must be
 - very easy to read/write/parse/generate
 - human-readable and human-editable
- We define a data format for
 - collected runtime/quality tuples from experiments => text: space-separated values
 - information about measurement dimensions \Longrightarrow XML

- Common data formats must be
 - very easy to read/write/parse/generate
 - human-readable and human-editable
- We define a data format for
 - collected runtime/quality tuples from experiments ⇒ text: space-separated values
 - information about measurement dimensions \Longrightarrow XML
 - information about algorithm parameters \Longrightarrow XML

- Common data formats must be
 - very easy to read/write/parse/generate
 - human-readable and human-editable
- We define a data format for
 - collected runtime/quality tuples from experiments \Longrightarrow text: space-separated values
 - information about measurement dimensions \Longrightarrow XML
 - information about algorithm parameters \Longrightarrow XML
 - information about problem instance featues \Longrightarrow XML

Introduction

2 Tools for Research on Optimization

8 Example Experiment and Data

4 Conclusions

• We perform an example experiment on the MAX-3SAT $^{\mbox{\tiny [7]}}$ domain

- We perform an example experiment on the MAX-3SAT ^[7] domain
- We want to compare the performance of six different (trivial) algorithm setups differing in two parameters

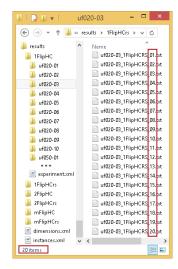
- We perform an example experiment on the MAX-3SAT ^[7] domain
- We want to compare the performance of six different (trivial) algorithm setups differing in two parameters
- We use ten groups with ten problem instances each from SATLib^[8], differing in two features (number k of clauses, number of variables n)

- We perform an example experiment on the MAX-3SAT ^[7] domain
- We want to compare the performance of six different (trivial) algorithm setups differing in two parameters
- We use ten groups with ten problem instances each from SATLib^[8], differing in two features (number k of clauses, number of variables n)
- We do 20 runs for each instance \times algorithm setup combination

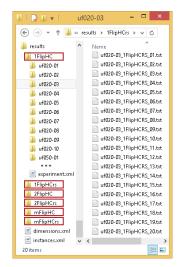
- We perform an example experiment on the MAX-3SAT ^[7] domain
- We want to compare the performance of six different (trivial) algorithm setups differing in two parameters
- We use ten groups with ten problem instances each from SATLib^[8], differing in two features (number k of clauses, number of variables n)
- We do 20 runs for each instance \times algorithm setup combination
- We prescribe this folder structure of instance
 —> algorithm
 setup
 —> run(s).txt, as it can be adopted for any kind
 experiment in optimization.

• After the experiment. . .

- After the experiment...
 - ... we have 20 independent runs (log files)

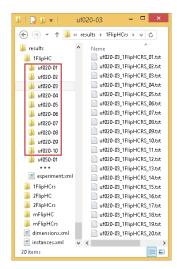


- After the experiment...
 - ... we have 20 independent runs (log files)
 - for each of the 6 algorithm setups,



• After the experiment...

- ... we have 20 independent runs (log files)
- for each of the 6 algorithm setups,
- on each of the $10\ {\rm benchmark}$ instances



• After the experiment. . .

- ... we have 20 independent runs (log files)
- for each of the 6 algorithm setups,
- on each of the $10\ {\rm benchmark}$ instances
- of each of the $10 \ {\rm instance} \ {\rm sets}$

🕼 l 💽 🕼 = l	uf	020-03		×
€ ∋ • ↑). « r	esults ► 1Fli	pHCrs ト ↓	Ċ
🎍 results	^	Name	-	
1FlipHC		📄 uf020	03_1FlipHCRS	01.6d
🕌 uf020-01		📄 uf020	03_1FlipHCRS	02.txt
🍑 uf020-02		📄 uf020	03_1FlipHCRS	03.txt
🍑 uf020-03		📄 uf020	03_1FlipHCRS	04.txt
鷆 uf020-04		📄 uf020	03_1FlipHCRS	05.txt
🍶 uf020-05		📄 uf020	03_1FlipHCRS	06.txt
鷆 uf020-06		📄 uf020	03_1FlipHCRS	07.txt
🍑 uf020-07			03_1FlipHCRS	-
🍑 uf020-08		1000	03_1FlipHCRS	-
鷆 uf020-09			03_1FlipHCRS	-
🎳 uf020-10		📄 uf020	03_1FlipHCRS	_11.txt
🍶 uf050-01		1000	03_1FlipHCRS	-
•••			03_1FlipHCRS	-
experiment.>	ml	1000	03_1FlipHCRS	-
IFlipHCrs		1774	03_1FlipHCRS	-
JE 2FlipHC		1000	03_1FlipHCRS	-
2FlipHCrs		1074	03_1FlipHCRS	-
imFlipHC		1000	03_1FlipHCRS	-
mFlipHCrs			03_1FlipHCRS	-
dimensions.xm	ป	📄 uf020	03_1FlipHCRS	_20.txt
instances.xml	\sim	<		>
20 items				800

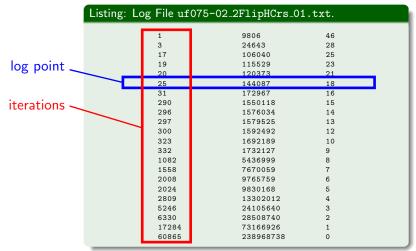
• Example log file obtained from applying the 2-flip Hill Climber with Restarts to the 2nd benchmark instance of set uf075.

isting: Log File uf07.	5-02_2FlipHCrs_01	.txt.	
1	9806	46	
3	24643	28	
17	106040	25	
19	115529	23	
20	120373	21	
25	144087	18	
31	172967	16	
290	1550118	15	
296	1576034	14	
297	1579525	13	
300	1592492	12	
323	1692189	10	
332	1732127	9	
1082	5436999	8	
1558	7670059	7	
2008	9765759	6	
2024	9830168	5	
2809	13302012	4	
5246	24105640	3	
6330	28508740	2	
17284	73166926	1	
60865	238968738	0	

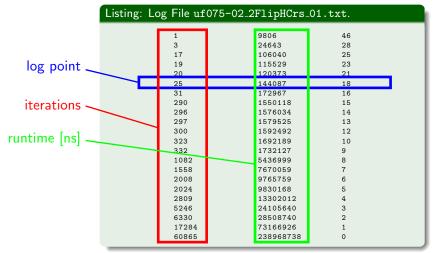
From Standardized Data Formats to Standardized Tools for Optimization Algorithm Benchmarking Thomas Weise

• Example log file obtained from applying the 2-flip Hill Climber with Restarts to the 2nd benchmark instance of set uf075.

• Example log file obtained from applying the 2-flip Hill Climber with Restarts to the 2nd benchmark instance of set uf075.

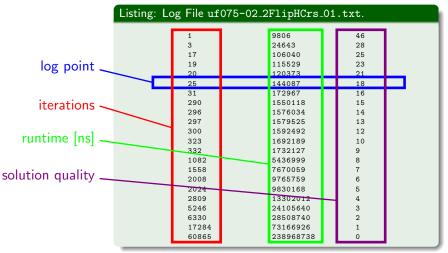


• Example log file obtained from applying the 2-flip Hill Climber with Restarts to the 2nd benchmark instance of set uf075.



From Standardized Data Formats to Standardized Tools for Optimization Algorithm Benchmarking Th

• Example log file obtained from applying the 2-flip Hill Climber with Restarts to the 2nd benchmark instance of set uf075.



From Standardized Data Formats to Standardized Tools for Optimization Algorithm Benchmarking

Metadata

• Metadata is represented as XML.

• Metadata on the measured dimensions is represented as XML.

Listing: The description of the measured dimensions.

```
<?xml version="1.0" encoding="UTF-8"?>
<dimensions xmlns="http://www.optimizationBenchmarking.org/formats/...">
  <dimension name="FEs"
    description="Theunumberuofufunctionuevaluations,ui.e.,utheuamountuofugeneratedu
       candidate solutions."
    dimensionType="iterationFE" direction="increasingStrictly" dataType="long"
    iLowerBound="1" />
  <dimension name="RT" description="Theuelapseduruntime...inunanoseconds."</pre>
    dimensionType="runtimeCPU" direction="increasing" dataType="long"
    iLowerBound="0" />
  <dimension name="F" description="The, number, of, unsatisfied, clauses."</pre>
    dimensionType="gualityProblemDependent" direction="decreasing"
    dataType="int" iLowerBound="0" iUpperBound="2000" />
</dimensions>
```

Metadata

• Metadata on the measured dimensions and the benchmark instance features is represented as XML.

Listing: The description of the benchmark instance features.

```
<?xml version="1.0" encoding="UTF-8"?>
<instances xmlns="http://www.optimizationBenchmarking.org/formats/...">
  <instance name="uf020-01"
    \texttt{description="A_{\cup}uniformly_{\cup}randomly_{\cup}generated_{\cup}satisfiable_{\cup}3-SAT_{\cup}instance_{\cup}with_{\cup}20_{\cup}variables_{\cup}and_{\cup}91_{\cup}clauses.">
    <feature name="n" value="20" />
    <feature name="k" value="91" />
  </instance>
  <instance name="uf050-01"</pre>
    description="A.uniformly.randomly.generated.satisfiable.3-SAT.instance.with.50.variables.and.218.clauses.">
    <feature name="n" value="50" />
    <feature name="k" value="218" />
  </instance>
  <instance name="uf075-01"
    description="A.uniformly.randomly.generated.satisfiable.3-SAT.instance.with.75.variables.and.325.clauses.">
    <feature name="n" value="75" />
    <feature name="k" value="325" />
  </instance>
</instances>
```

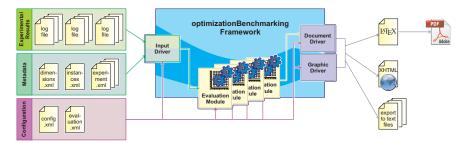
Metadata

• Metadata on the measured dimensions, the benchmark instance features, and the algorithm setups is represented as XML.

Listing: The description of the parameters of one specific experiment setup.

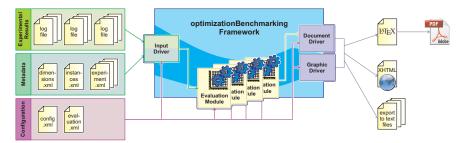
```
<?xml version="1.0" encoding="UTF-8"?>
<experiment
xmlns="http://www.optimizationBenchmarking.org/formats/..."
name="1FlipHC" description="An_uexperiment_uwith_ua_1-flip_Hill_Climber_without_u
restarts.">
cparameter name="algorithm" value="HC" />
<parameter name="algorithm" value="HC" />
<parameter name="operator" value="1-flip" />
<parameter name="restart" value="false" />
</experiment>
```

optimizationBenchmarking.org



• The *optimizationBenchmarking.org* framework is an example for software accepting data in such common formats.

optimizationBenchmarking.org



- The *optimizationBenchmarking.org* framework is an example for software accepting data in such common formats.
- It can be configured and launched via a web-based GUI and researchers can select, transform, and group data based on the meta-information.

first page of the report in LATEX for IEEEtran

first page of the report in LATEX for LNCS

first page of the report in LATEX for sig-alternate first page of the report in XHTML

• As result, it can produce human-readable reports with high-level conclusions and publication-ready diagrams from this data.

From Standardized Data Formats to Standardized Tools for Optimization Algorithm Benchmarking Thomas Weise 15/22

Introduction

2 Tools for Research on Optimization

3 Example Experiment and Data

• Experimentation with optimization algorithms is complicated and involves much data if we want to do it right.

- Experimentation with optimization algorithms is complicated and involves much data if we want to do it right.
- We therefore need tool support.

- Experimentation with optimization algorithms is complicated and involves much data if we want to do it right.
- We therefore need tool support.
- The existing tool support is limited to specific problems, i.e., there is 1:1 relationship between tool and problem.

- Experimentation with optimization algorithms is complicated and involves much data if we want to do it right.
- We therefore need tool support.
- The existing tool support is limited to specific problems, i.e., there is 1:1 relationship between tool and problem.
- A general data format would lift this boundary, general tools could evolve.

- Experimentation with optimization algorithms is complicated and involves much data if we want to do it right.
- We therefore need tool support.
- The existing tool support is limited to specific problems, i.e., there is 1:1 relationship between tool and problem.
- A general data format would lift this boundary, general tools could evolve.
- We define such a format and give an example for a tool using it (*optimizationBenchmarking.org*).



Thomas Weise [汤卫思] tweise@hfuu.edu.cn http://iao.hfuu.edu.cn

Hefei University, South Campus Institute of Applied Optimization Hefei, Anhui, China

From Standardized Data Formats to Standardized Tools for Optimization Algorithm Benchmarking Thomas Weise 18/22

Bibliography I

- Nikolaus Hansen, Anne Auger, Steffen Finck, and Raymond Ros. Real-parameter black-box optimization benchmarking 2010: Experimental setup. Rapports de Recherche 7215, Institut National de Recherche en Informatique et en Automatique (INRIA), March 9, 2010. URL http://hal.inria.fr/docs/00/46/24/81/PDF/RR-7215.pdf.
- Thomas Weise, Raymond Chiong, Ke Tang, Jörg Lässig, Shigeyoshi Tsutsui, Wenxiang Chen, Zbigniew Michalewicz, and Xin Yao. Benchmarking optimization algorithms: An open source framework for the traveling salesman problem. *IEEE Computational Intelligence Magazine (CIM)*, 9(3):40–52, August 2014. doi: 10.1109/MCI.2014.2326101. Featured article and selected paper at the website of the IEEE Computational Intelligence Society (http://cis.ieee.org/).
- Mark S. Boddy and Thomas L. Dean. Solving time-dependent planning problems. Technical Report CS-89-03, Providence, RI, USA: Brown University, Department of Computer Science, February 1989. URL ftp://ftp.cs.brown.edu/pub/techreports/89/cs89-03.pdf.
- John D. C. Little, Katta G. Murty, Dura W. Sweeny, and Caroline Karel. An algorithm for the traveling salesman problem. Sloan Working Papers 07-63, Cambridge, MA, USA: Massachusetts Institute of Technology (MIT), Sloan School of Management, March 1, 1963. URL

http://dspace.mit.edu/bitstream/handle/1721.1/46828/algorithmfortrav00litt.pdf.

- Weixiong Zhang. Truncated branch-and-bound: A case study on the asymmetric traveling salesman problem. In Proceedings of the AAAI-93 Spring Symposium on AI and NP-Hard Problems, pages 160–166, Stanford, CA, USA, 1993. Menlo Park, CA, USA: AAAI Press. URL www.cs.wustl.edu/~zhang/publications/atsp-aaai93-symp.ps.
- 6. Weixiong Zhang. Truncated and anytime depth-first branch and bound: A case study on the asymmetric traveling salesman problem. In Weixiong Zhang and Sven König, editors, AAAI Spring Symposium Series: Search Techniques for Problem Solving Under Uncertainty and Incomplete Information, volume SS-99-07 of AAAI Technical Report, pages 148–155. Menlo Park, CA, USA: AAAI Press, 1999. URL

https://www.aaai.org/Papers/Symposia/Spring/1999/SS-99-07/SS99-07-026.pdf.

- Holger H. Hoos and Thomas Stützle. Stochastic Local Search: Foundations and Applications. The Morgan Kaufmann Series in Artificial Intelligence. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2005. ISBN 1558608729 and 978-1558608726. URL http://books.google.de/books?id=3IkadXnC491C.
- Holger H. Hoos and Thomas Stützle. Satlib: An online resource for research on sat. In Ian P. Gent, Hans van Maaren, and Toby Walsh, editors, SAT2000 – Highlights of Satisfiability Research in the Year 2000, volume 63 of Frontiers in Artificial Intelligence and Applications, pages 283–292. Amsterdam, The Netherlands: IOS Press, 2000. URL http://www.cs.ubc.ca/~hoos/Publ/sat2000-satlib.pdf.

Bibliography II

 Thomas Weise. From standardized data formats to standardized tools for optimization algorithm benchmarking. In Proceedings of the 16th IEEE Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC'17), July 26–28, 2017, University of Oxford, Oxford, UK, Los Alamitos, CA, USA. IEEE Computer Society Press.

• In optimization, there exist *exact* and *heuristic* algorithms.

- In optimization, there exist *exact* and *heuristic* algorithms.
- Let's again look at the classical "Traveling Salesman Problem" (TSP).

- In optimization, there exist *exact* and *heuristic* algorithms.
- Let's again look at the classical "Traveling Salesman Problem" (TSP).
 - Clearly, there is (at least) one shortest tour.

- In optimization, there exist *exact* and *heuristic* algorithms.
- Let's again look at the classical "Traveling Salesman Problem" (TSP).
 - Clearly, there is (at least) one shortest tour.

- In optimization, there exist *exact* and *heuristic* algorithms.
- Let's again look at the classical "Traveling Salesman Problem" (TSP).
 - Clearly, there is (at least) one shortest tour.
 - Theory proofs that the time to find this tour may grow exponentially with the number of cities we want to visit.

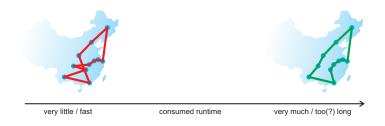
- In optimization, there exist *exact* and *heuristic* algorithms.
- Let's again look at the classical "Traveling Salesman Problem" (TSP).
 - Clearly, there is (at least) one shortest tour.
 - Finding the best tour, i.e., exact algorithms, may take too long.

consumed runtime to find tour: very much / too(?) long

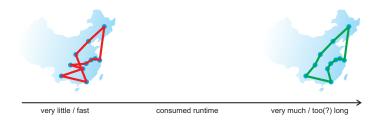
- In optimization, there exist *exact* and *heuristic* algorithms.
- Let's again look at the classical "Traveling Salesman Problem" (TSP).
 - Clearly, there is (at least) one shortest tour.
 - Finding the best tour, i.e., exact algorithms, may take too long.
 - But we can find just *some* tour very quickly.

consumed runtime to find tour: very much / too(?) long

- In optimization, there exist *exact* and *heuristic* algorithms.
- Let's again look at the classical "Traveling Salesman Problem" (TSP).
 - Clearly, there is (at least) one shortest tour.
 - Finding the best tour, i.e., exact algorithms, may take too long.
 - But we can find just *some* tour very quickly.



- In optimization, there exist *exact* and *heuristic* algorithms.
- Let's again look at the classical "Traveling Salesman Problem" (TSP).
 - Clearly, there is (at least) one shortest tour.
 - Finding the best tour, i.e., exact algorithms, may take too long.
 - But we can find just *some* tour very quickly.
 - Of course the quality of that tour will be lower: the tour will be longer than the best one.



- In optimization, there exist *exact* and *heuristic* algorithms.
- Let's again look at the classical "Traveling Salesman Problem" (TSP).
 - Clearly, there is (at least) one shortest tour.
 - Finding the best tour, i.e., exact algorithms, may take too long.
 - But we can find just *some* tour very quickly.
 - Of course the quality of that tour will be lower: the tour will be longer than the best one.

- In optimization, there exist *exact* and *heuristic* algorithms.
- Let's again look at the classical "Traveling Salesman Problem" (TSP).
 - Clearly, there is (at least) one shortest tour.
 - Finding the best tour, i.e., exact algorithms, may take too long.
 - But we can find just some tour very quickly.
 - Of course the quality of that tour will be lower.
 - (Meta-)Heuristic optimization algorithms try to find solutions which are as good as possible as fast as possible.

