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e Many questions in the real world are optimization problems




e Many questions in the real world are optimization problems, e.g.,
e Find the shortest tour for a salesman to visit a certain set of cities in
China and return to Hefeil

Beijing




e Many questions in the real world are optimization problems, e.g.,
e Find the shortest tour for a salesman to visit a certain set of cities
e How can | construct a truss which can hold a certain weight with at
most a certain amount of iron?
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e Many questions in the real world are optimization problems, e.g.,
e Find the shortest tour for a salesman to visit a certain set of cities
e Construct a truss which can hold a certain weight
e Find the minima of complex, multi-dimensional mathematical formulas
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We can let them run arbitrarily long, there usually is no explicit,
natural end point
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“(Meta- )Heuristic optimization algorithms try to find solutions which are
as good as possible as fast as possible.”

Algorithm performance has two dimensions "2 solution quality and
required runtime

Anytime Algorithms ! are optimization methods which maintain an
approximate solution at any time during their run and iteratively
improve this guess.

All metaheuristics are Anytime Algorithms.

Several exact methods like Branch-and-Bound ° are Anytime
Algorithms.

Consequence: Most optimization algorithms produce approximate
solutions of different qualities at different points during their process.
We can let them run arbitrarily long, there usually is no explicit,
natural end point

Experiments must capture data on the whole runtime behavior!
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“(Meta- )Heuristic optimization algorithms try to find solutions which are
as good as possible as fast as possible.”

e Algorithm performance has two dimensions " ?: solution quality and

required runtime

o If we just compare “final” results, we may arrive at incomplete or
entirely wrong conclusions
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“(Meta- )Heuristic optimization algorithms try to find solutions which are
as good as possible as fast as possible.”

e Algorithm performance has two dimensions " ?: solution quality and
required runtime

o If we just compare “final” results, we may arrive at incomplete or
entirely wrong conclusions
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e What questions does research on optimization ask?
e Which optimization algorithm is best for my problem?
e An optimization algorithm can have parameters ... which parameter
settings make it work the best?
e For an optimization problem, there can be many concrete instances . ..
which features make them hard or easy?
e How do researchers answer these questions?
@ Select (or develop) different algorithms/setups on different problem
instances.
® Run experiments and collect data about the algorithm progress over
runtime.
® Draw diagrams, print tables (often summarizing over groups of
instances or algorithms).
@ l|dentify interesting information, find reasons, go back to step @

e This is a lot of work. And much data is needed, due to anytime
character of algorithms. Tools automating the evaluation procedure
are needed.
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@ For each algorithm on each problem, we need several independent
“runs” (due to the usually stochastic nature of algorithms).
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@ For each run, we need several tuples of “(elapsed runtime, solution
quality)” to capture whole runtime behavior (not just a single
result/time point...).
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e Which information is needed to plot runtime/performance diagrams?
@ For each algorithm on each problem, we need several independent
“runs”.
@ For each run, we need several tuples of “(elapsed runtime, solution

quality)”.
e Which information is needed to allow for automatic grouping of data?
@ Meta-data on algorithm parameters for each run.
@® Meta-data on the features of the problem instances: then we can draw
summary diagrams over “similar” instances.

From Standardized Data Formats to Standardized Tools for Optimization Algorithm Benchmarking Thomas Weise 8/22


http://www.optimizationBenchmarking.org

Which information is needed? x\’

1AQ2

e Which information is needed to plot runtime/performance diagrams?
@ For each algorithm on each problem, we need several independent
“runs”.
@ For each run, we need several tuples of “(elapsed runtime, solution
quality)”.
e Which information is needed to allow for automatic grouping of data?
@ Meta-data on algorithm parameters for each run.
@® Meta-data on the features of the problem instances.

e Today, automated evaluation tools only exist for dedicated problems
and specific algorithm types.
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e Which information is needed to plot runtime/performance diagrams?

@ For each algorithm on each problem, we need several independent
“runs”.
@ For each run, we need several tuples of “(elapsed runtime, solution

quality)”.
e Which information is needed to allow for automatic grouping of data?
@ Meta-data on algorithm parameters for each run.
@® Meta-data on the features of the problem instances.
e Today, automated evaluation tools only exist for dedicated problems
and specific algorithm types.

e Reason: each tool only supports its own, very specific file format and
assumes fixed, predefined benchmark instances.

e With common formats for the above data, tools that can deal with
arbitrary algorithms on arbitrary problems can be developed.

e The optimizationBenchmarking.org is an example for such tools.

From Standardized Data Formats to Standardized Tools for Optimization Algorithm Benchmarking Thomas Weise 8/22
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e very easy to read/write/parse/generate
e human-readable and human-editable

e We define a data format for

o collected runtime/quality tuples from experiments = text:
space-separated values

o information about measurement dimensions = XML

o information about algorithm parameters =—> XML

e information about problem instance featues = XML
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e We perform an example experiment on the MAX-3SAT " domain

e We want to compare the performance of six different (trivial)
algorithm setups differing in two parameters

e We use ten groups with ten problem instances each from SATLib",
differing in two features (number & of clauses, number of variables 1)

e We do 20 runs for each instance x algorithm setup combination

e We prescribe this folder structure of instance — algorithm

setup — run(s).txt, as it can be adopted for any kind
experiment in optimization.
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Example of Log File Structure

e Example log file obtained from applying the 2-flip Hill Climber with

Restarts to the 2" benchmark instance of set uf075.

Listing: Log File uf075-02_2F1ipHCrs_01.txt.

1 9806 46
3 24643 28
17 106040 25
19 115529 23
20 120373 21
25 144087 18
31 172967 16
290 1550118 15
296 1576034 14
297 1579525 13
300 1592492 12
323 1692189 10
332 1732127 9
1082 5436999 8
1558 7670059 7
2008 9765759 6
2024 9830168 5
2809 13302012 4
5246 24105640 3
6330 28508740 2
17284 73166926 il
60865 238968738 0
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Metadata

e Metadata on the measured dimensions is represented as XML.

he description of the measured dimensions.

<?xml version="1.0" encoding="UTF-8"7>

<dimensions xmlns="http://www.optimizationBenchmarking.org/formats/...">

<dimension name="FEs"

description="The number of function evaluations,yi.e., the amount of generated,

candidate solutions."
dimensionTyp
iLowerBound=

1 />

="iterationFE" direction="increasingStrictly" dataType="long"

<dimension name="RT" description="The elapsed, runtime in nanoseconds."
dimensionType="runtimeCPU" direction="increasing" dataType="long"

iLowerBound="0" />

<dimension name
dimensionType="qualityProblemDependent" direction="decreasing"
dataType="int" iLowerBound="0" iUpperBound="2000" />

</dimensions>

"F" description="Theynumber of_ unsatisfied clauses."
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Metadata §

e Metadata on the measured dimensions and the benchmark instance
features is represented as XML.

e description of the benchmark instance feature

<?xml version="1.0" encoding="UTF-8"7>
<instances xmlns="http://www.optimizationBenchmarking.org/formats/...">
<instance name="uf020-01"
description="Ayuniformly randomly generated, satisfiable 3-SAT instance with, 20, variables,and 91 clauses.">
<feature name="n" value="20" />
<feature name="k" value="91" />
</instance>

<instance name="uf050-01"
description="Ayuniformly randomly generated, satisfiable 3-SAT instance with, 50, variables and, 218 clauses.">
<feature name="n" value="50" />
<feature name="k" value="218" />

</instance>

<instance name="uf075-01"
description="Ayuniformly randomly generated, satisfiable 3-SAT instance with, 75, variables and 325 clauses.">
<feature name="n" value="75" />
<feature name="k'" value="325" />

</instance>

</instances>
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Metadata

e Metadata on the measured dimensions, the benchmark instance
features, and the algorithm setups is represented as XML.

Listing: The description of the parameters of one specific experiment setup.

<?xml version="1.0" encoding="UTF-8"7>
<experiment
xmlns="http://www.optimizationBenchmarking.org/formats/..."
name="1FlipHC" description="An,experiment_ with,ay1-flip Hill, Climber without
restarts.">
<parameter name="algorithm" value="HC" />
<parameter name="operator" value="1-flip" />
<parameter name="restart" value="false" />
</experiment>
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e The optimizationBenchmarking.org framework is an example for
software accepting data in such common formats.
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A
log log
file file
A
dimen-| |instan-| |experi-]
sions. ces ment
xml xml xml
eval-
ooxrst?lg uation
) xml

e The optimizationBenchmarking.org framework is an example for
software accepting data in such common formats.

Module

i

e |t can be configured and launched via a web-based GUI and
researchers can select, transform, and group data based on the
meta-information.
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Evaluation Report on Six Exporiments

P

first page of the re- first page of the re- first page of the re- first page of the re-
port in IATEX for port in WKTEX for port in IATEX for port in XHTML
IEEEtran LNCS sig-alternate

e As result, it can produce human-readable reports with high-level
conclusions and publication-ready diagrams from this data.
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involves much data if we want to do it right.
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Experimentation with optimization algorithms is complicated and
involves much data if we want to do it right.

We therefore need tool support.

The existing tool support is limited to specific problems, i.e., there is
1:1 relationship between tool and problem.

A general data format would lift this boundary, general tools could
evolve.
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Conclusions %\

Experimentation with optimization algorithms is complicated and
involves much data if we want to do it right.

We therefore need tool support.

The existing tool support is limited to specific problems, i.e., there is
1:1 relationship between tool and problem.

A general data format would lift this boundary, general tools could
evolve.

We define such a format and give an example for a tool using it
(optimizationBenchmarking.org).
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e In optimization, there exist exact and heuristic algorithms.
e Let's again look at the classical “Traveling Salesman Problem” (TSP).
o Clearly, there is (at least) one shortest tour.
o Theory proofs that the time to find this tour may grow exponentially
with the number of cities we want to visit.
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e In optimization, there exist exact and heuristic algorithms.
e Let's again look at the classical “Traveling Salesman Problem” (TSP).

o Clearly, there is (at least) one shortest tour.

o Finding the best tour, i.e., exact algorithms, may take too long.

e But we can find just some tour very quickly.

o Of course the quality of that tour will be lower: the tour will be longer

than the best one.

very little / fast consumed runtime very much / too(?) long




Heuristic Optimization %\’

e In optimization, there exist exact and heuristic algorithms.
e Let's again look at the classical “Traveling Salesman Problem” (TSP).
o Clearly, there is (at least) one shortest tour.
e Finding the best tour, i.e., exact algorithms, may take too long.
e But we can find just some tour very quickly.
e Of course the quality of that tour will be lower: the tour will be longer
than the best one.
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Heuristic Optimization %\’

e In optimization, there exist exact and heuristic algorithms.

e Let's again look at the classical “Traveling Salesman Problem” (TSP).
o Clearly, there is (at least) one shortest tour.

Finding the best tour, i.e., exact algorithms, may take too long.

But we can find just some tour very quickly.

Of course the quality of that tour will be lower.

(Meta-)Heuristic optimization algorithms try to find solutions which are

as good as possible as fast as possible.

worse

(research on)
optimization

solution quality

lower e.g. solution cost higher

better

very little / fast consumed runtime very much / too(?) long
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