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Optimization

• Many questions in the real world are optimization problems, e.g.,
• Find the shortest tour for a salesman to visit a certain set of cities
• How can I construct a truss which can hold a certain weight with at

most a certain amount of iron?
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Optimization

• Many questions in the real world are optimization problems, e.g.,
• Find the shortest tour for a salesman to visit a certain set of cities
• Construct a truss which can hold a certain weight
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• All metaheuristics are Anytime Algorithms.
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• Consequence: Most optimization algorithms produce approximate
solutions of different qualities at different points during their process.

• We can let them run arbitrarily long, there usually is no explicit,
natural end point
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Performance and Anytime Algorithms

“(Meta-)Heuristic optimization algorithms try to find solutions which are
as good as possible as fast as possible.”

• Algorithm performance has two dimensions [1, 2]: solution quality and
required runtime

• If we just compare “final” results, we may arrive at incomplete or
entirely wrong conclusions
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• We want to compare the performance of six different (trivial)
algorithm setups differing in two parameters

• We use ten groups with ten problem instances each from SATLib [8],
differing in two features (number k of clauses, number of variables n)

• We do 20 runs for each instance × algorithm setup combination

• We prescribe this folder structure of instance −→ algorithm

setup −→ run(s).txt, as it can be adopted for any kind
experiment in optimization.
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Obtained Data

• After the experiment. . .
• . . . we have 20 independent runs (log
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• for each of the 6 algorithm setups,
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Example of Log File Structure

• Example log file obtained from applying the 2-flip Hill Climber with
Restarts to the 2nd benchmark instance of set uf075.
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332 1732127 9

1082 5436999 8

1558 7670059 7

2008 9765759 6

2024 9830168 5

2809 13302012 4

5246 24105640 3

6330 28508740 2

17284 73166926 1

60865 238968738 0

log point

iterations
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• Example log file obtained from applying the 2-flip Hill Climber with
Restarts to the 2nd benchmark instance of set uf075.
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Metadata

• Metadata on the measured dimensions is represented as XML.

Listing: The description of the measured dimensions.

<?xml version="1.0" encoding="UTF -8"?>

<dimensions xmlns="http: //www.optimizationBenchmarking.org/formats /...">

<dimension name="FEs"

description="The number of function evaluations , i.e., the amount of generated 

candidate solutions."

dimensionType="iterationFE" direction="increasingStrictly" dataType="long"

iLowerBound="1" />

<dimension name="RT" description="The elapsed runtime in nanoseconds."

dimensionType="runtimeCPU" direction="increasing" dataType="long"

iLowerBound="0" />

<dimension name="F" description="The number of unsatisfied clauses."

dimensionType="qualityProblemDependent" direction="decreasing"

dataType="int" iLowerBound="0" iUpperBound="2000" />

</dimensions >
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Metadata

• Metadata on the measured dimensions and the benchmark instance
features is represented as XML.

Listing: The description of the benchmark instance features.

<?xml version="1.0" encoding="UTF -8"?>

<instances xmlns="http: //www.optimizationBenchmarking.org/formats /...">

<instance name="uf020 -01"

description="A uniformly randomly generated satisfiable 3-SAT instance with 20 variables and 91 clauses.">

<feature name="n" value="20" />

<feature name="k" value="91" />

</instance >

...

<instance name="uf050 -01"

description="A uniformly randomly generated satisfiable 3-SAT instance with 50 variables and 218 clauses.">

<feature name="n" value="50" />

<feature name="k" value="218" />

</instance >

....

<instance name="uf075 -01"

description="A uniformly randomly generated satisfiable 3-SAT instance with 75 variables and 325 clauses.">

<feature name="n" value="75" />

<feature name="k" value="325" />

</instance >

...

</instances >
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Metadata

• Metadata on the measured dimensions, the benchmark instance
features, and the algorithm setups is represented as XML.

Listing: The description of the parameters of one specific experiment setup.

<?xml version="1.0" encoding="UTF -8"?>

<experiment

xmlns="http://www.optimizationBenchmarking.org/formats /..."

name="1FlipHC" description="An experiment with a 1-flip Hill Climber without 

restarts.">

<parameter name="algorithm" value="HC" />

<parameter name="operator" value="1-flip" />

<parameter name="restart" value="false" />

</experiment >
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optimizationBenchmarking.org

• The optimizationBenchmarking.org framework is an example for
software accepting data in such common formats.

From Standardized Data Formats to Standardized Tools for Optimization Algorithm Benchmarking Thomas Weise 15/22

export
to text
files

C
o

n
fi

g
u

ra
ti

o
n

config
.xml

M
e

ta
d

a
ta

dimen-
sions
.xml

instan-
ces
.xml

experi-
ment
.xml

E
x

p
e

ri
m

e
n

ta
l

R
e

s
u

lt
s

log
file

log
file

log
file

optimizationBenchmarking
Framework

eval-
uation
.xml

XHTML

LTEXA

Document
Driver

Graphic
Driver

1
2

3
4

5
6

7
8

9
1

0
1

2
3

4
5

6
7

8
9

1
0

1 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 1000

Evaluation
Module

1
2

3
4

5
6

7
8

9
1

0
1

2
3

4
5

6
7

8
9

1
0

1 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 1000

Evaluation
Module

1
2

3
4

5
6

7
8

9
1

0
1

2
3

4
5

6
7

8
9

1
0

1 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 1000

Evaluation
Module

1
2

3
4

5
6

7
8

9
1

0
1

2
3

4
5

6
7

8
9

1
0

1 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 1000

Evaluation
Module

Input
Driver

http://www.optimizationBenchmarking.org


optimizationBenchmarking.org

• The optimizationBenchmarking.org framework is an example for
software accepting data in such common formats.

• It can be configured and launched via a web-based GUI and
researchers can select, transform, and group data based on the
meta-information.
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optimizationBenchmarking.org

• As result, it can produce human-readable reports with high-level
conclusions and publication-ready diagrams from this data.
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Evaluation Report on Six Experiments
Anne Anonymous

Abstract—This is the evaluation report on six experiments,
namely 1FlipHC, 1FlipHCrs, 2FlipHC, 2FlipHCrs, mFlipHC, and
mFlipHCrs on 100 benchmark instances. This report has been
generated with the version 0.8.4 of the Evaluator Component of
the Optimization Benchmarking Tool Suite.

I. INSTANCE INFORMATION

Experiments were conducted on 100 benchmark instances,
which can be distinguished by two features.

The benchmark instances are characterized by two features:

• n (ten values, ranging from 20 to 250)
• k (ten values, ranging from 91 to 1065)

In Figure 2 we illustrate the relative amount of benchmark
instances per feature value over all 100 benchmark instances.
The slices in the pie charts are the bigger, the more benchmark
instances have the associated feature value in comparison
to the other values. The more similar the pie sizes are, the
more evenly are the benchmark instances distributed over the
benchmark feature values, which may be a good idea for fair
experimentation.

II. PERFORMANCE COMPARISONS

A. Estimated Cumulative Distribution Function

We analyze the estimated cumulative distribution function
(ECDF) [1], [2], [3] computed based on F

k
over log

10
FEs. The

ECDF
(

FEs, F
k
≤ 0

)

represents the fraction of runs which

reach a value of F
k

less than or equal to 0 for a given ellapsed
runtime measured in FEs. The ECDF is always computed over
the runs of an experiment for a given benchmark instance.
If runs for multiple instances are available, we aggregate the
results by computing their arithmetic mean. The x-axis does
not represent the values of FEs directly, but instead log

10
FEs.

The ECDF is always between 0 and 1 — and the higher it is,
the better.

The corresponding plot is illustrated in Figure 1.

B. Estimated Cumulative Distribution Function

We analyze the estimated cumulative distribution function
(ECDF) [1], [2], [3] computed based on F

k
over log

10
RT.

The ECDF
(

RT, F
k
≤ 0.01

)

represents the fraction of runs

which reach a value of F
k

less than or equal to 0.01 for a
given ellapsed runtime measured in RT . The ECDF is always
computed over the runs of an experiment for a given bench-
mark instance. If runs for multiple instances are available,
we aggregate the results by computing their arithmetic mean.
The x-axis does not represent the values of RT directly, but
instead log

10
RT. The ECDF is always between 0 and 1 — and

the higher it is, the better. The instance run sets belonging
to instances with the same value of the feature n grouped
together.

The corresponding plots are illustrated in Figure 3.

C. Median of Medians

We analyze the median of medians (med med) of F over
log

10

(

FEs
n

)

. The med med(FEs,F) represents the median
of the F for a given ellapsed runtime measured in FEs. The
median is always computed over the runs of an experiment
for a given benchmark instance. If runs for multiple instances
are available, we aggregate these medians by computing
their median. The x-axis does not represent the values of
FEs directly, but instead log

10

(

FEs
n

)

. The instance run sets
belonging to instances with the same value of the feature k

grouped together.
The corresponding plots are illustrated in Figure 4.

D. Median of Standard Deviations

We analyze the median of standard deviations
(med stddev) computed based on F

k
over log

10
RT. The

med stddev
(

RT, F
k

)

represents the standard deviation of the
F
k

for a given ellapsed runtime measured in RT . The standard
deviation is always computed over the runs of an experiment
for a given benchmark instance. If runs for multiple instances
are available, we aggregate these standard deviations by
computing their median. The x-axis does not represent the
values of RT directly, but instead log

10
RT. The instance run

sets belonging to instances with the same value of the feature
n grouped together.

The corresponding plots are illustrated in Figure 5.
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Evaluation Report on Six Experiments

Anne Anonymous

No Institute Given

Abstract. This is the evaluation report on six experiments, namely

1FlipHC, 1FlipHCrs, 2FlipHC, 2FlipHCrs, mFlipHC, and mFlipHCrs

on 100 benchmark instances. This report has been generated with the

version 0.8.4 of the Evaluator Component of the Optimization Bench-

marking Tool Suite.

1 Instance Information

Experiments were conducted on 100 benchmark instances, which can be distin-
guished by two features.

The benchmark instances are characterized by two features:

– n (ten values, ranging from 20 to 250)

– k (ten values, ranging from 91 to 1065)

In Figure 2 we illustrate the relative amount of benchmark instances per
feature value over all 100 benchmark instances. The slices in the pie charts are
the bigger, the more benchmark instances have the associated feature value in
comparison to the other values. The more similar the pie sizes are, the more
evenly are the benchmark instances distributed over the benchmark feature val-
ues, which may be a good idea for fair experimentation.

2 Performance Comparisons

2.1 Estimated Cumulative Distribution Function

We analyze the estimated cumulative distribution function (ECDF) [2,3,1] com-

puted based on F
k

over log
10

FEs. The ECDF
(

FEs, F
k
≤ 0

)

represents the frac-

tion of runs which reach a value of F
k

less than or equal to 0 for a given ellapsed
runtime measured in FEs. The ECDF is always computed over the runs of an
experiment for a given benchmark instance. If runs for multiple instances are
available, we aggregate the results by computing their arithmetic mean. The
x-axis does not represent the values of FEs directly, but instead log

10
FEs. The

ECDF is always between 0 and 1 — and the higher it is, the better.

The corresponding plot is illustrated in Figure 1.
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Evaluation Report on Six Experiments

Anne Anonymous

ABSTRACT

This is the evaluation report on six experiments, namely
1FlipHC, 1FlipHCrs, 2FlipHC, 2FlipHCrs, mFlipHC, and
mFlipHCrs on 100 benchmark instances. This report has
been generated with the version 0.8.4 of the Evaluator Com-
ponent of the Optimization Benchmarking Tool Suite.

1. INSTANCE INFORMATION
Experiments were conducted on 100 benchmark instances,

which can be distinguished by two features.
The benchmark instances are characterized by two fea-

tures:

• n (ten values, ranging from 20 to 250)

• k (ten values, ranging from 91 to 1065)

In Figure 2 we illustrate the relative amount of bench-
mark instances per feature value over all 100 benchmark
instances. The slices in the pie charts are the bigger, the
more benchmark instances have the associated feature value
in comparison to the other values. The more similar the pie
sizes are, the more evenly are the benchmark instances dis-
tributed over the benchmark feature values, which may be
a good idea for fair experimentation.

2. PERFORMANCE COMPARISONS

2.1 Estimated Cumulative Distribution Func-
tion

We analyze the estimated cumulative distribution func-
tion (ECDF) [2, 3, 1] computed based on F

k
over log10 FEs.

The ECDF
(

FEs,
F

k
≤ 0

)

represents the fraction of runs which

reach a value of F

k
less than or equal to 0 for a given ellapsed

runtime measured in FEs. The ECDF is always computed
over the runs of an experiment for a given benchmark in-
stance. If runs for multiple instances are available, we ag-
gregate the results by computing their arithmetic mean. The
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permission and/or a fee.
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x-axis does not represent the values of FEs directly, but in-
stead log10 FEs. The ECDF is always between 0 and 1 —
and the higher it is, the better.

The corresponding plot is illustrated in Figure 1.

2.2 Estimated Cumulative Distribution Func-
tion

We analyze the estimated cumulative distribution func-
tion (ECDF) [2, 3, 1] computed based on F

k
over log10 RT.

The ECDF
(

RT,
F

k
≤ 0.01

)

represents the fraction of runs

which reach a value of F

k
less than or equal to 0.01 for a

given ellapsed runtime measured in RT . The ECDF is al-
ways computed over the runs of an experiment for a given
benchmark instance. If runs for multiple instances are avail-
able, we aggregate the results by computing their arithmetic
mean. The x-axis does not represent the values of RT di-
rectly, but instead log10 RT. The ECDF is always between
0 and 1 — and the higher it is, the better. The instance
run sets belonging to instances with the same value of the
feature n grouped together.
The corresponding plots are illustrated in Figure 3.

2.3 Median of Medians
We analyze the median of medians (med med) of F over

log10
(

FEs

n

)

. The med med(FEs,F) represents the median of
the F for a given ellapsed runtime measured in FEs. The
median is always computed over the runs of an experiment
for a given benchmark instance. If runs for multiple in-
stances are available, we aggregate these medians by com-
puting their median. The x-axis does not represent the val-
ues of FEs directly, but instead log10

(

FEs

n

)

. The instance
run sets belonging to instances with the same value of the
feature k grouped together.

The corresponding plots are illustrated in Figure 4.

2.4 Median of Standard Deviations
We analyze the median of standard deviations (med stddev)

computed based on F

k
over log10 RT. The med stddev

(

RT,
F

k

)

represents the standard deviation of the F

k
for a given el-

lapsed runtime measured in RT . The standard deviation is
always computed over the runs of an experiment for a given
benchmark instance. If runs for multiple instances are avail-
able, we aggregate these standard deviations by computing
their median. The x-axis does not represent the values of
RT directly, but instead log10 RT. The instance run sets
belonging to instances with the same value of the feature n

grouped together.
The corresponding plots are illustrated in Figure 5.
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Evaluation Report on Six Experiments

Abstract. This is the evaluation report on six experiments, namely 1FlipHC, 1FlipHCrs,
2FlipHC, 2FlipHCrs, mFlipHC, and mFlipHCrs on 100 benchmark instances. This report
has been generated with the version 0.8.4 of the Evaluator Component of the Optimization
Benchmarking Tool Suite.

by Anne Anonymous
on 2015-09-14

1. Instance Information

Experiments were conducted on 100 benchmark instances, which can be distinguished by two features.
    The benchmark instances are characterized by two features:

n (ten values, ranging from 20 to 250)
k (ten values, ranging from 91 to 1065)

Fig. 1.1.1. Feature k Fig. 1.1.2. Feature n

Fig. 1.1. The fractions of instances with specific feature values.

    In Figure 1.1 we illustrate the relative amount of benchmark instances per feature value over all 100 benchmark instances. The slices in the pie charts are the bigger, the more
benchmark instances have the associated feature value in comparison to the other values. The more similar the pie sizes are, the more evenly are the benchmark instances distributed
over the benchmark feature values, which may be a good idea for fair experimentation.

2. Performance Comparisons

2.1. Estimated Cumulative Distribution Function

We analyze the estimated cumulative distribution function (ECDF) [1], [2], [3] computed based on 

F

k over log10FEs. The 
ECDF(FEs, 

F

k
≤0)

 represents the fraction of runs which reach a

value of 

F

k less than or equal to 0 for a given ellapsed runtime measured in FEs. The ECDF is always computed over the runs of an experiment for a given benchmark instance. If runs for

multiple instances are available, we aggregate the results by computing their arithmetic mean. The x-axis does not represent the values of FEs directly, but instead log10FEs. The ECDF is
always between 0 and 1 ‒ and the higher it is, the better.
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Conclusions

• Experimentation with optimization algorithms is complicated and
involves much data if we want to do it right.
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Conclusions

• Experimentation with optimization algorithms is complicated and
involves much data if we want to do it right.

• We therefore need tool support.

• The existing tool support is limited to specific problems, i.e., there is
1:1 relationship between tool and problem.

• A general data format would lift this boundary, general tools could
evolve.

• We define such a format and give an example for a tool using it
(optimizationBenchmarking.org).
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Caspar David Friedrich, “Der Wanderer über dem Nebelmeer”, 1818
http://en.wikipedia.org/wiki/Wanderer_above_the_Sea_of_Fog

谢谢谢谢谢谢
Thank you

Thomas Weise [汤卫思]
tweise@hfuu.edu.cn

http://iao.hfuu.edu.cn

Hefei University, South Campus
Institute of Applied Optimization

Hefei, Anhui, China

From Standardized Data Formats to Standardized Tools for Optimization Algorithm Benchmarking Thomas Weise 18/22

mailto:tweise@hfuu.edu.cn
mailto:http://iao.hfuu.edu.cn


Bibliography

From Standardized Data Formats to Standardized Tools for Optimization Algorithm Benchmarking Thomas Weise 19/22



Bibliography I

1. Nikolaus Hansen, Anne Auger, Steffen Finck, and Raymond Ros. Real-parameter black-box optimization benchmarking
2010: Experimental setup. Rapports de Recherche 7215, Institut National de Recherche en Informatique et en Automatique
(INRIA), March 9, 2010. URL http://hal.inria.fr/docs/00/46/24/81/PDF/RR-7215.pdf.
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• In optimization, there exist exact and heuristic algorithms.
• Let’s again look at the classical “Traveling Salesman Problem” (TSP).

• Clearly, there is (at least) one shortest tour.
• Theory proofs that the time to find this tour may grow exponentially

with the number of cities we want to visit.
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Heuristic Optimization

• In optimization, there exist exact and heuristic algorithms.
• Let’s again look at the classical “Traveling Salesman Problem” (TSP).

• Clearly, there is (at least) one shortest tour.
• Finding the best tour, i.e., exact algorithms, may take too long.
• But we can find just some tour very quickly.
• Of course the quality of that tour will be lower.
• (Meta-)Heuristic optimization algorithms try to find solutions which are

as good as possible as fast as possible.
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