

Hybrid PACO & Pheromone Initialization for VRPTWs

Wei Shi¹, Thomas Weise¹, Raymond Chiong², and Bülent Çatay³ ¹ University of Science and Technology of China, ² The University of Newcastle, Australia ³ Sabanci University, Turkey

2015-12-10, CIPLS @ SSCI @ Cape Town, South Africa

 Vehicle Routing Problem with Time Windows (VRPTW): well-known NP-hard distribution logistics problem

- Vehicle Routing Problem with Time Windows (VRPTW): well-known *NP*-hard distribution logistics problem
 - ${\scriptstyle \bullet }$ homogeneous fleet of m vehicles with capacity k

- Vehicle Routing Problem with Time Windows (VRPTW): well-known *NP*-hard distribution logistics problem
 - homogeneous fleet of *m* vehicles with capacity *k* serves *n* geographically dispersed customers.

- Vehicle Routing Problem with Time Windows (VRPTW): well-known *NP*-hard distribution logistics problem
 - homogeneous fleet of *m* vehicles with capacity *k* serves *n* geographically dispersed customers.
 - customer c_i has demand w_i

- Vehicle Routing Problem with Time Windows (VRPTW): well-known *NP*-hard distribution logistics problem
 - homogeneous fleet of *m* vehicles with capacity *k* serves *n* geographically dispersed customers.
 - customer c_i has demand w_i and service time s_i required for satisfying the demand once a vehicle arrives

- Vehicle Routing Problem with Time Windows (VRPTW): well-known *NP*-hard distribution logistics problem
 - homogeneous fleet of *m* vehicles with capacity *k* serves *n* geographically dispersed customers.
 - customer c_i has demand w_i and service time s_i required for satisfying the demand once a vehicle arrives, which must happen in time window $[e_i, l_i]$

- Vehicle Routing Problem with Time Windows (VRPTW): well-known *NP*-hard distribution logistics problem
 - homogeneous fleet of *m* vehicles with capacity *k* serves *n* geographically dispersed customers.
 - customer c_i has demand w_i and service time s_i required for satisfying the demand once a vehicle arrives, which must happen in time window $[e_i, l_i]$
 - all vehicles must leave central depot c_0 after e_0 and arrive back before l_0

- Vehicle Routing Problem with Time Windows (VRPTW): well-known *NP*-hard distribution logistics problem
 - homogeneous fleet of *m* vehicles with capacity *k* serves *n* geographically dispersed customers.
 - customer c_i has demand w_i and service time s_i required for satisfying the demand once a vehicle arrives, which must happen in time window $[e_i, l_i]$
 - all vehicles must leave central depot c_0 after e_0 and arrive back before l_0
 - d_{ij} is the time required to get to c_j from c_i

- Vehicle Routing Problem with Time Windows (VRPTW): well-known *NP*-hard distribution logistics problem
 - homogeneous fleet of *m* vehicles with capacity *k* serves *n* geographically dispersed customers.
 - customer c_i has demand w_i and service time s_i required for satisfying the demand once a vehicle arrives, which must happen in time window $[e_i, l_i]$
 - all vehicles must leave central depot c_0 after e_0 and arrive back before l_0
 - d_{ij} is the time required to get to c_j from c_i
 - each customer must be visited exactly once

- Vehicle Routing Problem with Time Windows (VRPTW): well-known *NP*-hard distribution logistics problem
 - homogeneous fleet of *m* vehicles with capacity *k* serves *n* geographically dispersed customers.
 - customer c_i has demand w_i and service time s_i required for satisfying the demand once a vehicle arrives, which must happen in time window $[e_i, l_i]$
 - all vehicles must leave central depot c_0 after e_0 and arrive back before l_0
 - d_{ij} is the time required to get to c_j from c_i
 - each customer must be visited exactly once
 - vehicle capacity and time windows must not be violated

- Vehicle Routing Problem with Time Windows (VRPTW): well-known *NP*-hard distribution logistics problem
- Two optimization goals

- Vehicle Routing Problem with Time Windows (VRPTW): well-known NP-hard distribution logistics problem
- Two optimization goals:
 - f_1 : number of vehicles needed to serve the customers (minimize)

- Vehicle Routing Problem with Time Windows (VRPTW): well-known NP-hard distribution logistics problem
- Two optimization goals:
 - f_1 : number of vehicles needed to serve the customers (minimize)
 - f_2 : total travel distance (minimize)

- Vehicle Routing Problem with Time Windows (VRPTW): well-known *NP*-hard distribution logistics problem
- Two optimization goals:
 - f_1 : number of vehicles needed to serve the customers (minimize)
 - f_2 : total travel distance (minimize)
 - f_1 often considered as more important, since using more vehicles costs more than driving a bit longer

- Vehicle Routing Problem with Time Windows (VRPTW): well-known *NP*-hard distribution logistics problem
- Two optimization goals
- A permutation $\pi = (c_i, c_j, \dots)$ of the cities can be used to encode a solutiion

- Vehicle Routing Problem with Time Windows (VRPTW): well-known NP-hard distribution logistics problem
- Two optimization goals
- A permutation $\pi = (c_i, c_j, ...)$ of the cities can be used to encode a solutiion:
 - first vehicle leaves depot c_0 and travels to c_i servicing it at

$$b_i = \max\{e_i, e_0 + t_{0\,i}\}$$

- Vehicle Routing Problem with Time Windows (VRPTW): well-known NP-hard distribution logistics problem
- Two optimization goals
- A permutation $\pi = (c_i, c_j, ...)$ of the cities can be used to encode a solutiion:
 - first vehicle leaves depot c_0 and travels to c_i servicing it at $b_i=\max{\{e_i,e_0+t_0\,_i\}},$
 - then travels to c_j , servicing it at $b_j = \max \{e_j, b_i + s_i + t_{ij}\}$.

- Vehicle Routing Problem with Time Windows (VRPTW): well-known NP-hard distribution logistics problem
- Two optimization goals
- A permutation $\pi = (c_i, c_j, ...)$ of the cities can be used to encode a solutiion:
 - first vehicle leaves depot c_0 and travels to c_i servicing it at $b_i = \max \{e_i, e_0 + t_{0\,i}\},\$
 - then travels to c_j , servicing it at $b_j = \max \{e_j, b_i + s_i + t_{ij}\}$.
 - if vehicle capacity is exhausted or no other customer can be visited in time-window restriction, vehicle returns to $c_0\,$

- Vehicle Routing Problem with Time Windows (VRPTW): well-known NP-hard distribution logistics problem
- Two optimization goals
- A permutation $\pi = (c_i, c_j, ...)$ of the cities can be used to encode a solutiion:
 - first vehicle leaves depot c_0 and travels to c_i servicing it at $b_i = \max \{e_i, e_0 + t_{0\,i}\},\$
 - then travels to c_j , servicing it at $b_j = \max \{e_j, b_i + s_i + t_{ij}\}$.
 - if vehicle capacity is exhausted or no other customer can be visited in time-window restriction, vehicle returns to c_0
 - next vehicle is used

- Vehicle Routing Problem with Time Windows (VRPTW): well-known NP-hard distribution logistics problem
- Two optimization goals
- A permutation $\pi = (c_i, c_j, ...)$ of the cities can be used to encode a solutiion:
 - first vehicle leaves depot c_0 and travels to c_i servicing it at $b_i=\max{\{e_i,e_0+t_0\,_i\}},$
 - then travels to c_j , servicing it at $b_j = \max \{e_j, b_i + s_i + t_{ij}\}$.
 - if vehicle capacity is exhausted or no other customer can be visited in time-window restriction, vehicle returns to c_0
 - next vehicle is used, until all customers are satisfied

Related Work

- Related Work:
 - exact method: mainly focus on minizing distance, only feasible on small-scale problems

- Related Work:
 - exact method: mainly focus on minizing distance, only feasible on small-scale problems
 - metaheuristics ^[1]: GAs ^[2, 3], ACO ^[4], SA ^[5, 6], TS ^[7–9], Adaptive Large Neighborhood Search ^[10], Variable Neighborhood Search ^[11], and hybrid methods ^[12–14]

- Related Work:
 - exact method: mainly focus on minizing distance, only feasible on small-scale problems
 - metaheuristics ^[1]: GAs ^[2, 3], ACO ^[4], SA ^[5, 6], TS ^[7–9], Adaptive Large Neighborhood Search ^[10], Variable Neighborhood Search ^[11], and hybrid methods ^[12–14]
 - two-stage approaches very common ^[12, 15]: first reduce number of vehicles, then reduce distance

- Related Work:
 - exact method: mainly focus on minizing distance, only feasible on small-scale problems
 - metaheuristics ^[1]: GAs ^[2, 3], ACO ^[4], SA ^[5, 6], TS ^[7–9], Adaptive Large Neighborhood Search ^[10], Variable Neighborhood Search ^[11], and hybrid methods ^[12–14]
 - two-stage approaches very common ^[12, 15]: first reduce number of vehicles, then reduce distance
- Contribution

- Related Work:
 - exact method: mainly focus on minizing distance, only feasible on small-scale problems
 - metaheuristics ^[1]: GAs ^[2, 3], ACO ^[4], SA ^[5, 6], TS ^[7–9], Adaptive Large Neighborhood Search ^[10], Variable Neighborhood Search ^[11], and hybrid methods ^[12–14]
 - two-stage approaches very common ^[12, 15]: first reduce number of vehicles, then reduce distance
- Contribution:
 - we optimize both objectives at once with a hierarchical approach

- Related Work:
 - exact method: mainly focus on minizing distance, only feasible on small-scale problems
 - metaheuristics ^[1]: GAs ^[2, 3], ACO ^[4], SA ^[5, 6], TS ^[7–9], Adaptive Large Neighborhood Search ^[10], Variable Neighborhood Search ^[11], and hybrid methods ^[12–14]
 - two-stage approaches very common ^[12, 15]: first reduce number of vehicles, then reduce distance
- Contribution:
 - we optimize both objectives at once with a hierarchical approach: Solution π_i is better than π_2 if $f_1(\pi_1) < f_1(\pi_2)$ or $f_1(\pi_1) = f_1(\pi_2)$ and $f_2(\pi_1) < f_2(\pi_2)$

- Related Work:
 - exact method: mainly focus on minizing distance, only feasible on small-scale problems
 - metaheuristics ^[1]: GAs ^[2, 3], ACO ^[4], SA ^[5, 6], TS ^[7–9], Adaptive Large Neighborhood Search ^[10], Variable Neighborhood Search ^[11], and hybrid methods ^[12–14]
 - two-stage approaches very common ^[12, 15]: first reduce number of vehicles, then reduce distance
- Contribution:
 - we optimize both objectives at once with a hierarchical approach: Solution π_i is better than π_2 if $f_1(\pi_1) < f_1(\pi_2)$ or $f_1(\pi_1) = f_1(\pi_2)$ and $f_2(\pi_1) < f_2(\pi_2)$, which is closest to the nature of the problem.

- Related Work:
 - exact method: mainly focus on minizing distance, only feasible on small-scale problems
 - metaheuristics ^[1]: GAs ^[2, 3], ACO ^[4], SA ^[5, 6], TS ^[7–9], Adaptive Large Neighborhood Search ^[10], Variable Neighborhood Search ^[11], and hybrid methods ^[12–14]
 - two-stage approaches very common ^[12, 15]: first reduce number of vehicles, then reduce distance
- Contribution:
 - we optimize both objectives at once with a hierarchical approach: Solution π_i is better than π_2 if $f_1(\pi_1) < f_1(\pi_2)$ or $f_1(\pi_1) = f_1(\pi_2)$ and $f_2(\pi_1) < f_2(\pi_2)$, which is closest to the nature of the problem.
 - we investigte the Min-Max Ant System (MMAS) ^[16], the Ant Colony System (ACS) ^[17], our previously developed Initialized ACO (IACO) ^[18], and the Population-based ACO (PACO) algorithm ^[19, 20]

- Related Work:
 - exact method: mainly focus on minizing distance, only feasible on small-scale problems
 - metaheuristics ^[1]: GAs ^[2, 3], ACO ^[4], SA ^[5, 6], TS ^[7–9], Adaptive Large Neighborhood Search ^[10], Variable Neighborhood Search ^[11], and hybrid methods ^[12–14]
 - two-stage approaches very common ^[12, 15]: first reduce number of vehicles, then reduce distance
- Contribution:
 - we optimize both objectives at once with a hierarchical approach: Solution π_i is better than π_2 if $f_1(\pi_1) < f_1(\pi_2)$ or $f_1(\pi_1) = f_1(\pi_2)$ and $f_2(\pi_1) < f_2(\pi_2)$, which is closest to the nature of the problem.
 - we investigte the Min-Max Ant System (MMAS) ^[16], the Ant Colony System (ACS) ^[17], our previously developed Initialized ACO (IACO) ^[18], and the Population-based ACO (PACO) algorithm ^[19, 20]
 - we investigate and improve pheromone matrix initialization methods for these methods

- Related Work:
 - exact method: mainly focus on minizing distance, only feasible on small-scale problems
 - metaheuristics ^[1]: GAs ^[2, 3], ACO ^[4], SA ^[5, 6], TS ^[7–9], Adaptive Large Neighborhood Search ^[10], Variable Neighborhood Search ^[11], and hybrid methods ^[12–14]
 - two-stage approaches very common ^[12, 15]: first reduce number of vehicles, then reduce distance
- Contribution:
 - we optimize both objectives at once with a hierarchical approach: Solution π_i is better than π_2 if $f_1(\pi_1) < f_1(\pi_2)$ or $f_1(\pi_1) = f_1(\pi_2)$ and $f_2(\pi_1) < f_2(\pi_2)$, which is closest to the nature of the problem.
 - we investigte the Min-Max Ant System (MMAS) ^[16], the Ant Colony System (ACS) ^[17], our previously developed Initialized ACO (IACO) ^[18], and the Population-based ACO (PACO) algorithm ^[19, 20]
 - we investigate and improve pheromone matrix initialization methods for these methods
 - we hybridize the algorithm to further improve the result quality

• Solomon benchmark set [21]: 25-, 50-, and 100-customer instance sets

Existing ACO Methods

- Solomon benchmark set ^[21]: 25-, 50-, and 100-customer instance sets
- 20 independent runs per instance, 300'000 FEs per run

- Solomon benchmark set [21]: 25-, 50-, and 100-customer instance sets
- 20 independent runs per instance, 300'000 FEs per run

	In	Instances with 25 customers						Instances with 50 customers						ance	es w	ith 1	00 c	ustomers	Total						
			f_1		f_2				f_1				f_2	f_1					f_2	f_1			f_2		
Algorithm 1 vs. 2		-	+	0	-	+	0	-	+	0	-	$^+$	0	-	+	0	1	$^+$	0	-	+	0	-	+	0
ACS	IACO	0	40	16	0	52	4	0	40	16	1	51	4	0	44	12	0	54	2	0	124	44	1	157	10
ACS	MMAS	0	49	7	1	51	4	0	41	15	9	36	11	2	36	18	35	7	14	2	126	40	45	94	29
ACS	PACO-ABS	0	12	44	9	31	16	0	35	21	5	45	6	0	54	2	0	51	5	0	101	67	14	127	27
ACS	PACO-EBS	0	47	9	0	54	2	0	48	8	0	54	2	0	55	1	0	52	4	0	150	18	0	160	8
ACS	PACO-QBS	0	45	11	0	55	1	0	49	7	0	55	1	0	56	0	0	56	0	0	150	18	0	166	2
IACO	MMAS	0	17	39	13	28	15	9	7	40	38	7	11	35	1	20	56	0	0	44	25	99	107	35	26
IACO	PACO-ABS	0	12	44	9	31	16	0	35	21	5	45	6	0	54	2	0	51	5	0	101	67	14	127	27
IACO	PACO-EBS	0	9	47	9	28	19	0	31	25	4	43	9	0	42	14	2	39	15	0	82	86	15	110	43
IACO	PACO-QBS	0	13	43	8	34	14	0	37	19	4	49	3	0	54	2	0	52	4	0	104	64	12	135	21
MMAS	PACO-ABS	5	1	50	15	12	29	0	31	25	1	49	6	0	54	2	0	56	0	5	86	77	16	117	35
MMAS	PACO-EBS	3	1	52	19	12	25	0	29	27	0	49	7	0	53	3	0	56	0	3	89	82	19	117	32
MMAS	PACO-QBS	3	1	52	16	15	25	0	33	23	0	52	4	0	55	1	0	56	0	3	83	76	16	123	29
PACO-ABS	PACO-EBS	0	0	56	5	1	50	3	0	53	19	2	35	28	0	28	48	0	8	31	0	137	72	3	93
PACOABS	PACO-QBS	0	0	56	0	3	53	0	1	55	0	13	43	0	1	55	1	28	27	0	2	166	1	44	123
PACO-EBS	PACO-QBS	1	0	55	0	18	38	0	4	52	0	34	22	0	39	17	0	55	1	1	43	124	0	107	61

Mann-Whitey U test ($\alpha = 0.02$) comparison results for ACO algorithms (– is better, + is worse).

- Solomon benchmark set ^[21]: 25-, 50-, and 100-customer instance sets
- 20 independent runs per instance, 300'000 FEs per run

	In	Instances with 25 customers						Instances with 50 customers						Instances with 100 customers							Total					
			f_1		f_2			f_1					f_2	f_1					f_2	f_1			f_2			
Algorithm 1 vs. 2		-	+	0	-	+	0	-	+	0	-	+	0	-	+	0	-	+	0	-	+	0	-	+	0	
ACS	IACO	0	40	16	0	52	4	0	40	16	1	51	4	0	44	12	0	54	2	0	124	44	1	157	10	
ACS	MMAS	0	49	7	1	51	4	0	41	15	9	36	11	2	36	18	35	7	14	2	126	40	45	94	29	
ACS	PACO-ABS	0	12	44	9	31	16	0	35	21	5	45	6	0	54	2	0	51	5	0	101	67	14	127	27	
ACS	PACO-EBS	0	47	9	0	54	2	0	48	8	0	54	2	0	55	1	0	52	4	0	150	18	0	160	8	
ACS	PACO-QBS	0	45	11	0	55	1	0	49	7	0	55	1	0	56	0	0	56	0	0	150	18	0	166	2	
IACO	MMAS	0	17	39	13	28	15	9	7	40	38	7	11	35	1	20	56	0	0	44	25	99	107	35	26	
IACO	PACO-ABS	0	12	44	9	31	16	0	35	21	5	45	6	0	54	2	0	51	5	0	101	67	14	127	27	
IACO	PACO-EBS	0	9	47	9	28	19	0	31	25	4	43	9	0	42	14	2	39	15	0	82	86	15	110	43	
IACO	PACO-QBS	0	13	43	8	34	14	0	37	19	4	49	3	0	54	2	0	52	4	0	104	64	12	135	21	
MMAS	PACO-ABS	5	1	50	15	12	29	0	31	25	1	49	6	0	54	2	0	56	0	5	86	77	16	117	35	
MMAS	PACO-EBS	3	1	52	19	12	25	0	29	27	0	49	7	0	53	3	0	56	0	3	89	82	19	117	32	
MMAS	PACO-QBS	3	1	52	16	15	25	0	33	23	0	52	4	0	55	1	0	56	0	3	83	76	16	123	29	
PACO-ABS	PACO-EBS	0	0	56	5	1	50	3	0	53	19	2	35	28	0	28	48	0	8	31	0	137	72	3	93	
PACOABS	PACO-QBS	0	0	56	0	3	53	0	1	55	0	13	43	0	1	55	1	28	27	0	2	166	1	44	123	
PACO-EBS	PACO-QBS	1	0	55	0	18	38	0	4	52	0	34	22	0	39	17	0	55	1	1	43	124	0	107	61	

Mann-Whitey U test ($\alpha = 0.02$) comparison results for ACO algorithms (– is better, + is worse).

ACS performs worst

- Solomon benchmark set ^[21]: 25-, 50-, and 100-customer instance sets
- 20 independent runs per instance, 300'000 FEs per run

		Lo	cton		with	25 4	ustomers	Lo	cton		with	F0 /	ustomers	Inc			+h 1	00 6	ustomers	r –		T	otal		
			SLall	ces i	WILII	25 0	uscomers		SLan	Les V	with	30 0	Lustomers	IIIS	anc	es w	1111 1	00 0	uscomers			П	JLai		
			f_1				f_2		f_1				f_2		f_1				f_2		f_1			f_2	
Algorith	n 1 vs. 2	-	$^+$	0	-	+	0	-	$^+$	0	-	$^+$	0	-	+	0	-	$^+$	0	-	+	0	-	+	0
ACS	IACO	0	40	16	0	52	4	0	40	16	1	51	4	0	44	12	0	54	2	0	124	44	1	157	10
ACS	MMAS	0	49	7	1	51	4	0	41	15	9	36	11	2	36	18	35	7	14	2	126	40	45	94	29
ACS	PACO-ABS	0	12	44	9	31	16	0	35	21	5	45	6	0	54	2	0	51	5	0	101	67	14	127	27
ACS	PACO-EBS	0	47	9	0	54	2	0	48	8	0	54	2	0	55	1	0	52	4	0	150	18	0	160	8
ACS	PACO-QBS	0	45	11	0	55	1	0	49	7	0	55	1	0	56	0	0	56	0	0	150	18	0	166	2
IACO	MMAS	0	17	39	13	28	15	9	7	40	38	7	11	35	1	20	56	0	0	44	25	99	107	35	26
IACO	PACO-ABS	0	12	44	9	31	16	0	35	21	5	45	6	0	54	2	0	51	5	0	101	67	14	127	27
IACO	PACO-EBS	0	9	47	9	28	19	0	31	25	4	43	9	0	42	14	2	39	15	0	82	86	15	110	43
IACO	PACO-QBS	0	13	43	8	34	14	0	37	19	4	49	3	0	54	2	0	52	4	0	104	64	12	135	21
MMAS	PACO-ABS	5	1	50	15	12	29	0	31	25	1	49	6	0	54	2	0	56	0	5	86	77	16	117	35
MMAS	PACO-EBS	3	1	52	19	12	25	0	29	27	0	49	7	0	53	3	0	56	0	3	89	82	19	117	32
MMAS	PACO-QBS	3	1	52	16	15	25	0	33	23	0	52	4	0	55	1	0	56	0	3	83	76	16	123	29
PACO-ABS	PACO-EBS	0	0	56	5	1	50	3	0	53	19	2	35	28	0	28	48	0	8	31	0	137	72	3	93
PACOABS	PACO-QBS	0	0	56	0	3	53	0	1	55	0	13	43	0	1	55	1	28	27	0	2	166	1	44	123
PACO-EBS	PACO-QBS	1	0	55	0	18	38	0	4	52	0	34	22	0	39	17	0	55	1	1	43	124	0	107	61
				1		0 0	2								<hr/>				/ .						`

Mann-Whitey U test ($\alpha = 0.02$) comparison results for ACO algorithms (– is better, + is worse).

ACS performs worst

• PACO with QBS rule performs best

- Solomon benchmark set ^[21]: 25-, 50-, and 100-customer instance sets
- 20 independent runs per instance, 300'000 FEs per run

		In	stan	ces v	vith	25 c	ustomers	In	stan	ces v	with	50 c	ustomers	Inst	ance	es w	ith 1	00 c	ustomers			Т	otal		
			f_1				fa		f_1				fa		f_1				fa		f_1			f_2	
Algorithr	n 1 vs. 2	-	+	0	-	+	0	-	+	0	-	+	0	-	+	0	-	+	0	-	+	0	-	+	0
ACS	IACO	0	40	16	0	52	4	0	40	16	1	51	4	0	44	12	0	54	2	0	124	44	1	157	10
ACS	MMAS	0	49	7	1	51	4	0	41	15	9	36	11	2	36	18	35	7	14	2	126	40	45	94	29
ACS	PACO-ABS	0	12	44	9	31	16	0	35	21	5	45	6	0	54	2	0	51	5	0	101	67	14	127	27
ACS	PACO-EBS	0	47	9	0	54	2	0	48	8	0	54	2	0	55	1	0	52	4	0	150	18	0	160	8
ACS	PACO-QBS	0	45	11	0	55	1	0	49	7	0	55	1	0	56	0	0	56	0	0	150	18	0	166	2
IACO	MMAS	0	17	39	13	28	15	9	7	40	38	7	11	35	1	20	56	0	0	44	25	99	107	35	26
IACO	PACO-ABS	0	12	44	9	31	16	0	35	21	5	45	6	0	54	2	0	51	5	0	101	67	14	127	27
IACO	PACO-EBS	0	9	47	9	28	19	0	31	25	4	43	9	0	42	14	2	39	15	0	82	86	15	110	43
IACO	PACO-QBS	0	13	43	8	34	14	0	37	19	4	49	3	0	54	2	0	52	4	0	104	64	12	135	21
MMAS	PACO-ABS	5	1	50	15	12	29	0	31	25	1	49	6	0	54	2	0	56	0	5	86	77	16	117	35
MMAS	PACO-EBS	3	1	52	19	12	25	0	29	27	0	49	7	0	53	3	0	56	0	3	89	82	19	117	32
MMAS	PACO-QBS		1	52	16	15	25	0	33	23	0	52	4	0	55	1	0	56	0	3	83	76	16	123	29
PACO-ABS	PACO-EBS		0	56	5	1	50	3	0	53	19	2	35	28	0	28	48	0	8	31	0	137	72	3	93
PACOABS	PACO-QBS		0	56	0	3	53	0	1	55	0	13	43	0	1	55	1	28	27	0	2	166	1	44	123
	PACO-QBS	1	0	55	0	18	38	0	4	52	0	34	22	0	39	17	0	55	1	1	43	124	0	107	61

Mann-Whitey U test ($\alpha = 0.02$) comparison results for ACO algorithms (– is better, + is worse).

- ACS performs worst
- PACO with QBS rule performs best \Rightarrow use from now on

Hybrid PACO with Enhanced Pheromone Initialization for Solving the VRPTW, 2015-12-10, CIPLS Shi et al.

• Utilize static information from problem instance to initialize pheromones for PACO-QBS

- Utilize static information from problem instance to initialize pheromones for PACO-QBS
- Model service begin time b_i as random variable PD

- Utilize static information from problem instance to initialize pheromones for PACO-QBS
- Model service begin time b_i as random variable PD (for PD, we test normal, uniform, and power distribution PDFs)

- Utilize static information from problem instance to initialize pheromones for PACO-QBS
- Model service begin time b_i as random variable PD
- Define VE as a function which is larger if c_i and c_j are close and if c_j would be serviced at the end of its time window if visited directly after c_i

- Utilize static information from problem instance to initialize pheromones for PACO-QBS
- Model service begin time b_i as random variable PD
- Define VE as a function which is larger if c_i and c_j are close

• Set
$$\tau_{ij}^0 \approx \max\left\{\frac{1}{n}, \int_{e_i}^{l_i} PD(x) * VE(i, j, x)dx\right\}$$

- Utilize static information from problem instance to initialize pheromones for PACO-QBS
- Model service begin time b_i as random variable PD
- Define VE as a function which is larger if c_i and c_j are close

• Set
$$\tau_{ij}^0 \approx \max\left\{\frac{1}{n}, \int_{e_i}^{l_i} PD(x) * VE(i, j, x)dx\right\}$$

• Experiments with PACO-QBS and the three different probability distribution models show...

- Utilize static information from problem instance to initialize pheromones for PACO-QBS
- Model service begin time b_i as random variable PD
- Define VE as a function which is larger if c_i and c_j are close

• Set
$$\tau_{ij}^0 \approx \max\left\{\frac{1}{n}, \int_{e_i}^{l_i} PD(x) * VE(i, j, x)dx\right\}$$

• Experiments with PACO-QBS and the three different probability distribution models show...

		In	star	ices	wit	h 25	customers	In	star	nces	wit	h 50	customers	In	stan	ces \	with	n 100) customers			То	otal		
			f_1				f_2		f_1				f_2		f_1				f_2		f_1			f_2	
Algorith	m 1 vs. 2	-	+	0	-	+	0	1	$^+$	0	-	+	0	-	+	0	1	+	0	-	+	0	-	+	0
Nolni	Normal	0	2	54	4	26	26	4	7	45	6	32	18	8	14	34	4	32	20	12	23	133	14	90	64
Nolni	Power	0	3	53	1	33	22	2	7	47	3	35	18	5	13	38	4	34	18	7	23	138	8	102	58
Nolni	Uniform	0	2	54	1	39	16	1	7	48	4	40	12	3	15	38	2	42	12	4	24	140	7	121	40
Normal	Power	0	0	56	1	13	42	0	2	54	1	8	47	0	1	55	1	6	49	0	3	165	3	27	138
Normal	Uniform	0	0	56	0	19	37	0	3	53	1	13	42	0	3	53	0	15	41	0	6	162	1	47	120
Power	Uniform	0	0	56	4	0	52	0	0	56	3	1	52	0	0	56	9	0	47	0	0	168	16	1	151

- Utilize static information from problem instance to initialize pheromones for PACO-QBS
- Model service begin time b_i as random variable PD
- Define VE as a function which is larger if c_i and c_j are close

• Set
$$\tau_{ij}^0 \approx \max\left\{\frac{1}{n}, \int_{e_i}^{l_i} PD(x) * VE(i, j, x)dx\right\}$$

 Experiments with PACO-QBS and the three different probability distribution models show that phromone-initialized PACO performs significantly better

		In	star	nces	wit	h 25	customers	In	star	nces	wit	h 50	customers	In	stan	ces ۱	vitł	n 100) customers			To	otal		
			f_1				f_2		f_1				f_2		f_1				f_2		f_1			f_2	
Algorith	m 1 vs. 2			0	-	+	0	-	+	0	-	+	0	1	+	0	1	+	0	-	+	0	-	+	0
Nolni	Normal	0	2	54	4	26	26	4	7	45	6	32	18	8	14	34	4	32	20	12	23	133	14	90	64
Nolni	Power	0	3	53	1	33	22	2	7	47	3	35	18	5	13	38	4	34	18	7	23	138	8	102	58
Nolni	Uniform	0	2	54	1	39	16	1	7	48	4	40	12	3	15	38	2	42	12	4	24	140	7	121	40
Normal	Power	0	0	56	1	13	42	0	2	54	1	8	47	0	1	55	1	6	49	0	3	165	3	27	138
Normal	Uniform	0	0	56	0	19	37	0	3	53	1	13	42	0	3	53	0	15	41	0	6	162	1	47	120
Power	Uniform	0	0	56	4	0	52	0	0	56	3	1	52	0	0	56	9	0	47	0	0	168	16	1	151

- Utilize static information from problem instance to initialize pheromones for PACO-QBS
- Model service begin time b_i as random variable PD
- Define VE as a function which is larger if c_i and c_j are close

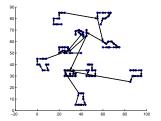
• Set
$$\tau_{ij}^0 \approx \max\left\{\frac{1}{n}, \int_{e_i}^{l_i} PD(x) * VE(i, j, x)dx\right\}$$

• Experiments with PACO-QBS and the three different probability distribution models show that phromone-initialized PACO performs significantly better and power distributed *b* performs best

		In	star	ices	wit	h 25	customers	In	star	nces	wit	h 50	customers	In	stan	ces v	vitł	n 100) customers			To	otal		
			f_1				f_2		f_1				f_2		f_1				f_2		f_1			f_2	
Algorith	m 1 vs. 2	-	$^+$	0	-	+	0	1	$^+$	0	-	+	0	-	+	0	-	+	0	-	+	0	-	+	0
Nolni	Normal	0	2	54	4	26	26	4	7	45	6	32	18	8	14	34	4	32	20	12	23	133	14	90	64
Nolni	Power	0	3	53	1	33	22	2	7	47	3	35	18	5	13	38	4	34	18	7	23	138	8	102	58
Nolni	Uniform	0	2	54	1	39	16	1	7	48	4	40	12	3	15	38	2	42	12	4	24	140	7	121	40
Normal	Power	0	0	56	1	13	42	0	2	54	1	8	47	0	1	55	1	6	49	0	3	165	3	27	138
Normal	Uniform	0	0	56	0	19	37	0	3	53	1	13	42	0	3	53	0	15	41	0	6	162	1	47	120
Power	Uniform	0	0	56	4	0	52	0	0	56	3	1	52	0	0	56	9	0	47	0	0	168	16	1	151

 Ideally, initialization should assign pheromones such that the edges with the strongest pheromones form larger tour components

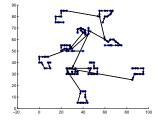
- Ideally, initialization should assign pheromones such that the edges with the strongest pheromones form larger tour components
- This works especially for instances where customers are clustered



中国科学技术大学

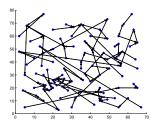
University of Science and Technology of China

- Ideally, initialization should assign pheromones such that the edges with the strongest pheromones form larger tour components
- This works especially for instances where customers are clustered, but not if customers and time windows are completely random

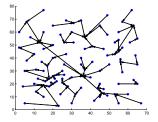


中国科学技术大学

University of Science and Technology of China

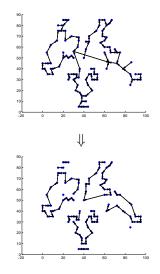


- Ideally, initialization should assign pheromones such that the edges with the strongest pheromones form larger tour components
- This works especially for instances where customers are clustered, but not if customers and time windows are completely random
- Method 1: Change VE to put more pheromones on shorter edges



中国神学技术大学

- Ideally, initialization should assign pheromones such that the edges with the strongest pheromones form larger tour components
- This works especially for instances where customers are clustered, but not if customers and time windows are completely random
- Method 1: Change VE to put more pheromones on shorter edges
- Method 2: Keep initialized pheromone only on one edge per node; two choices maximum or difference selection (see paper)

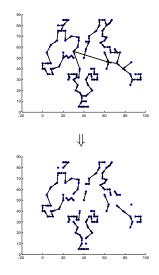


中国科学技术大学

Iniversity of Science and Technology of China

maximum selection

- Ideally, initialization should assign pheromones such that the edges with the strongest pheromones form larger tour components
- This works especially for instances where customers are clustered, but not if customers and time windows are completely random
- Method 1: Change VE to put more pheromones on shorter edges
- Method 2: Keep initialized pheromone only on one edge per node; two choices maximum or difference selection (see paper)

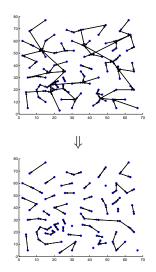


中国科学技术大学

University of Science and Technology of China

difference selection

- Ideally, initialization should assign pheromones such that the edges with the strongest pheromones form larger tour components
- This works especially for instances where customers are clustered, but not if customers and time windows are completely random
- Method 1: Change VE to put more pheromones on shorter edges
- Method 2: Keep initialized pheromone only on one edge per node; two choices maximum or difference selection (see paper)

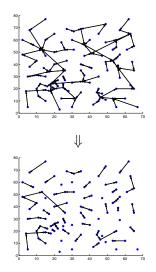


中国神学なお大学

University of Science and Technology of China

maximum selection

- Ideally, initialization should assign pheromones such that the edges with the strongest pheromones form larger tour components
- This works especially for instances where customers are clustered, but not if customers and time windows are completely random
- Method 1: Change VE to put more pheromones on shorter edges
- Method 2: Keep initialized pheromone only on one edge per node; two choices maximum or difference selection (see paper)



中国科学技术大学

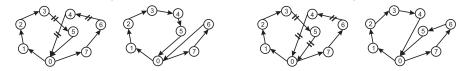
difference selection

Hybridize with Local Search

• Homberger and Gehring ^[12] proposed a hybrid metaheuristic that randomly selects one neighborhood from $\{N_{1-insert}, N_{1-exchange}, N_{2-opt}\}$ to refine solutions with local search

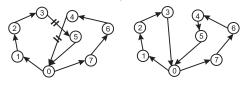
Hybridize with Local Search

• Homberger and Gehring ^[12] proposed a hybrid metaheuristic that randomly selects one neighborhood from $\{N_{1-insert}, N_{1-exchange}, N_{2-opt}\}$ to refine solutions with local search



 $N_{1-insert}$

 $N_{1-exchange}$



 N_{2-opt}

Hybridize with Local Search

- Homberger and Gehring ^[12] proposed a hybrid metaheuristic that randomly selects one neighborhood from $\{N_{1-insert}, N_{1-exchange}, N_{2-opt}\}$ to refine solutions with local search
- We adopt this mechanism into PI-PACO.

- Homberger and Gehring ^[12] proposed a hybrid metaheuristic that randomly selects one neighborhood from $\{N_{1-insert}, N_{1-exchange}, N_{2-opt}\}$ to refine solutions with local search
- We adopt this mechanism into PI-PACO.
- Hybrid PI-PACO with difference selection achieves better results than hybrid PACO without pheromone initialization

Туре	Goal	Chen and	Sodsoon and	hybrid PACO	hybrid PI-PACO maximum	hybrid PI-PACO difference
		Ting ^[14]	Changyom ^[22]		selection	selection
R1	f_1	12.83	13.83	12.83	12.92	12.75
	f_2	1203.56	1259.19	1204.06	1205.11	1203.67
C1	f_1	10	10	10	10	10
	f_2	828.76	838.12	828.61	828.60	828.55
RC1	f_1	12.50	12.63	12.75	12.63	12.38
	f_2	1363.84	1436.58	1381.42	1380.78	1380.54
R2	f_1	3.09	3.82	3.45	3.64	3.54
	f_2	932.23	980.98	1005.35	995.03	1006.38
C2	f_1	3	3	3	3	3
	f_2	589.86	591.13	590.71	589.93	589.86
RC2	f_1	3.75	4.5	4.13	4.38	4.13
	f_2	1079.81	1141.63	1113.59	1156.20	1109.8

Hybrid PACO with Enhanced Pheromone Initialization for Solving the VRPTW, 2015-12-10, CIPLS Shi et al.

- Homberger and Gehring ^[12] proposed a hybrid metaheuristic
- We adopt this mechanism into PI-PACO.
- Hybrid PI-PACO with difference selection achieves better results than hybrid PACO without pheromone initialization
- It outperforms the hybrid algorithm by Chen and Ting ^[14] on problem type C1 and achieves similar results on problem type C2

Туре	Goal	Chen and	Sodsoon and	hybrid PACO	hybrid PI-PACO maximum	hybrid PI-PACO difference
		Ting ^[14]	Changyom ^[22]		selection	selection
R1	f_1	12.83	13.83	12.83	12.92	12.75
	f_2	1203.56	1259.19	1204.06	1205.11	1203.67
C1	f_1	10	10	10	10	10
	f_2	828.76	838.12	828.61	828.60	828.55
RC1	f_1	12.50	12.63	12.75	12.63	12.38
	f_2	1363.84	1436.58	1381.42	1380.78	1380.54
R2	f_1	3.09	3.82	3.45	3.64	3.54
	f_2	932.23	980.98	1005.35	995.03	1006.38
C2	f_1	3	3	3	3	3
	f_2	589.86	591.13	590.71	589.93	589.86
RC2	f_1	3.75	4.5	4.13	4.38	4.13
	f_2	1079.81	1141.63	1113.59	1156.20	1109.8

Hybrid PACO with Enhanced Pheromone Initialization for Solving the VRPTW, 2015-12-10, CIPLS Shi et al.

- Homberger and Gehring ^[12] proposed a hybrid metaheuristic
- We adopt this mechanism into PI-PACO.
- Hybrid PI-PACO with difference selection achieves better results than hybrid PACO without pheromone initialization
- It is similar to the MMAS-VRPTW ^[22] but outperforms it on all except R2 instances in terms of the distance

Type	Goal	Chen and	Sodsoon and	hybrid PACO	hybrid PI-PACO maximum	hybrid PI-PACO difference
		Ting ^[14]	Changyom ^[22]		selection	selection
R1	f_1	12.83	13.83	12.83	12.92	12.75
	f_2	1203.56	1259.19	1204.06	1205.11	1203.67
C1	f_1	10	10	10	10	10
	f_2	828.76	838.12	828.61	828.60	828.55
RC1	f_1	12.50	12.63	12.75	12.63	12.38
	f_2	1363.84	1436.58	1381.42	1380.78	1380.54
R2	f_1	3.09	3.82	3.45	3.64	3.54
	f_2	932.23	980.98	1005.35	995.03	1006.38
C2	f_1	3	3	3	3	3
	f_2	589.86	591.13	590.71	589.93	589.86
RC2	f_1	3.75	4.5	4.13	4.38	4.13
	f_2	1079.81	1141.63	1113.59	1156.20	1109.8

Hybrid PACO with Enhanced Pheromone Initialization for Solving the VRPTW, 2015-12-10, CIPLS Shi et al.

PACO best ACO for VRPTW

- PACO best ACO for VRPTW
- Pheromone matrix initialization makes it better

- PACO best ACO for VRPTW
- Pheromone matrix initialization makes it better
- Hybridization + pheromone matrix initialization is best

- PACO best ACO for VRPTW
- Pheromone matrix initialization makes it better
- Hybridization + pheromone matrix initialization is best
- Concept should be tested in offer domains, such as quadratic assignment poblems

谢谢!

Thank you.

Wei Shi^1, Thomas Weise¹, Raymond Chiong², and Bülent $\mbox{\it Catay}^3$

¹ University of Science and Technology of China,

² The University of Newcastle, Australia

³ Sabanci University, Turkey

Bibliography I

- Olli Bräysy and Michel Gendreau. Vehicle routing problem with time windows, part ii: Metaheuristics. Transportation Science, 39(1):119–139, 2005.
- Jean Berger and Mohamed Barkaoui. A parallel hybrid genetic algorithm for the vehicle routing problem with time windows. Computers and Operations Research, 31(12):2037–2053, 2004.
- Jean-Yves Potvin and Samy Bengio. The vehicle routing problem with time windows part ii: Genetic search. INFORMS Journal on Computing, 8(2):165–172, 1996.
- Luca Maria Gambardella, Eric Taillard, and Giovanni Agazzi. Macs-vrptw: A multiple ant colony system for vehicle routing problems with time windows. In D. Corne, M. Dorigo, and F. Glover, editors, *New Ideas in Optimization*. McGraw-Hill, London, U.K., 1999.
- Haibing Li and Andrew Lim. Local search with annealing-like restarts to solve the VRPTW. European Journal of Operational Research, 150(1):115–127, 2003.
- Wen-Chyuan Chiang and Robert A. Russell. Simulated annealing metaheuristics for the vehicle routing problem with time windows. Annals of Operations Research, 63(1):3–27, 1996.
- Jörg Homberger and Hermann Gehring. Two evolutionary metaheuristics for the vehicle routing problem with time windows. Information Systems and Operational Research, 37:297–318, 1999.
- Philippe Badeau, François Guertin, Michel Gendreau, Jean-Yves Potvin, and Eric Taillard. A parallel tabu search heuristic for the vehicle routing problem with time windows. *Transportation Research Part C: Emerging Technologies*, 5(2):109–122, 1997.
- Robert A. Russell. Hybrid heuristics for the vehicle routing problem with time windows. Transportation Science, 29(2): 156–166, 1995.
- David Pisinger and Stefan Ropke. A general heuristic for vehicle routing problems. Computers and Operations Research, 34 (8):2403–2435, 2007.
- Louis-Martin Rousseau, Michel Gendreau, and Gilles Pesant. Using constraint-based operators to solve the vehicle routing problem with time windows. Journal of Heuristics, 8(1):43–58, 2002.
- Jörg Homberger and Hermann Gehring. A two-phase hybrid metaheuristic for the vehicle routing problem with time windows. European Journal of Operational Research, 162(1):220–238, 2005.
- Jörg Homberger and Hermann Gehring. A two-phase hybrid metaheuristic for the vehicle routing problem with time windows. European Journal of Operational Research, 162(1):220–238, 2005.

Bibliography II

- Chia-Ho Chen and Ching-Jung Ting. A hybrid ant colony system for vehicle routing problem with time windows. Journal of the Eastern Asia Society for Transportation Studies, 6:2822–2836, 2005.
- Fuh-Hwa Franklin Liu and Sheng-Yuan Shen. A route-neighborhood-based metaheuristic for vehicle routing problem with time windows. European Journal of Operational Research, 118:485–504, 1999.
- 16. Thomas Stützle and Holger H. Hoos. Max-min ant system. Future Generation Computer Systems, 16(8):889-914, 2000.
- 17. Marco Dorigo and Luca Maria Gambardella. Ant colony system: A cooperative learning approach to the traveling salesman problem. *IEEE TEVC*, 1(1), 1997.
- Wei Shi and Thomas Weise. An initialized aco for the vrptw. In Proc. of the 14th Intl. Conf. on Intelligent Data Engineering and Automated Learning, pages 93–100, Hefei, China, October 20–23, 2013. Springer.
- Michael Guntsch and Martin Middemdorf. A population based approach for aco. In Applications of Evolutionary Computing, volume 2279 of Lecture Notes in Computer Science, pages 72–81, Kinsale, Ireland, April 2002. Springer.
- Sabrina Oliveira, Mohamed Saifullah Hussin, and Thomas Stützle. A detailed analysis of the population-based ant colony optimization algorithm for the TSP and the QAP. Technical Report 006, Université Libre de Bruxelles, IRIDIA, Bruxelles, Belgium, 2011.
- Marius M. Solomon. Algorithms for the vehicle routing and scheduling problems with time window constraints. Operations Research, 35(2):254–265, 1987.
- Suphan Sodsoon and Preecha Changyom. Max-min ant system (mmas) for vehicle routing problem with time windows. KKU Engineering Journal, 38(3):313–323, 2011.