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Introduction: The VRPTW

Vehicle Routing Problem with Time Windows (VRPTW): well-known
NP-hard distribution logistics problem

Two optimization goals:

f1: number of vehicles needed to serve the customers (minimize)
f2: total travel distance (minimize)
f1 often considered as more important, since using more vehicles costs
more than driving a bit longer
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A permutation π = (ci, cj , . . . ) of the cities can be used to encode a
solutiion:

first vehicle leaves depot c0 and travels to ci servicing it at
bi = max {ei, e0 + t0 i},
then travels to cj , servicing it at bj = max {ej, bi + si + ti j}.
if vehicle capacity is exhausted or no other customer can be visited in
time-window restriction, vehicle returns to c0
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we optimize both objectives at once with a hierarchical approach:
Solution πi is better than π2 if f1(π1) < f1(π2) or f1(π1) = f1(π2)
and f2(π1) < f2(π2), which is closest to the nature of the problem.
we investigte the Min-Max Ant System (MMAS) [16], the Ant Colony
System (ACS) [17], our previously developed Initialized ACO (IACO) [18],
and the Population-based ACO (PACO) algorithm [19, 20]

we investigate and improve pheromone matrix initialization methods for
these methods
we hybridize the algorithm to further improve the result quality
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Instances with 25 customers Instances with 50 customers Instances with 100 customers Total

f1 f2 f1 f2 f1 f2 f1 f2
Algorithm 1 vs. 2 - + 0 - + 0 - + 0 - + 0 - + 0 - + 0 - + 0 - + 0

ACS IACO 0 40 16 0 52 4 0 40 16 1 51 4 0 44 12 0 54 2 0 124 44 1 157 10
ACS MMAS 0 49 7 1 51 4 0 41 15 9 36 11 2 36 18 35 7 14 2 126 40 45 94 29
ACS PACO-ABS 0 12 44 9 31 16 0 35 21 5 45 6 0 54 2 0 51 5 0 101 67 14 127 27
ACS PACO-EBS 0 47 9 0 54 2 0 48 8 0 54 2 0 55 1 0 52 4 0 150 18 0 160 8
ACS PACO-QBS 0 45 11 0 55 1 0 49 7 0 55 1 0 56 0 0 56 0 0 150 18 0 166 2
IACO MMAS 0 17 39 13 28 15 9 7 40 38 7 11 35 1 20 56 0 0 44 25 99 107 35 26
IACO PACO-ABS 0 12 44 9 31 16 0 35 21 5 45 6 0 54 2 0 51 5 0 101 67 14 127 27
IACO PACO-EBS 0 9 47 9 28 19 0 31 25 4 43 9 0 42 14 2 39 15 0 82 86 15 110 43
IACO PACO-QBS 0 13 43 8 34 14 0 37 19 4 49 3 0 54 2 0 52 4 0 104 64 12 135 21
MMAS PACO-ABS 5 1 50 15 12 29 0 31 25 1 49 6 0 54 2 0 56 0 5 86 77 16 117 35
MMAS PACO-EBS 3 1 52 19 12 25 0 29 27 0 49 7 0 53 3 0 56 0 3 89 82 19 117 3 2
MMAS PACO-QBS 3 1 52 16 15 25 0 33 23 0 52 4 0 55 1 0 56 0 3 83 76 16 123 29

PACO-ABS PACO-EBS 0 0 56 5 1 50 3 0 53 19 2 35 28 0 28 48 0 8 31 0 137 72 3 93
PACOABS PACO-QBS 0 0 56 0 3 53 0 1 55 0 13 43 0 1 55 1 28 27 0 2 166 1 44 123
PACO-EBS PACO-QBS 1 0 55 0 18 38 0 4 52 0 34 22 0 39 17 0 55 1 1 43 124 0 107 61

Mann-Whitey U test (α = 0.02) comparison results for ACO algorithms (− is better, + is worse).
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Existing ACO Methods

Solomon benchmark set [21]: 25-, 50-, and 100-customer instance sets

20 independent runs per instance, 300’000 FEs per run

ACS performs worst
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Pheromone Initialization

Utilize static information from problem instance to initialize
pheromones for PACO-QBS

Model service begin time bi as random variable PD (for PD, we test
normal, uniform, and power distribution PDFs)
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Pheromone Initialization

Utilize static information from problem instance to initialize
pheromones for PACO-QBS

Model service begin time bi as random variable PD

Define VE as a function which is larger if ci and cj are close and if cj
would be serviced at the end of its time window if visited directly
after ci
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Pheromone Initialization
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Experiments with PACO-QBS and the three different probability
distribution models show that phromone-initialized PACO performs
significantly better
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Utilize static information from problem instance to initialize
pheromones for PACO-QBS

Model service begin time bi as random variable PD

Define VE as a function which is larger if ci and cj are close

Set τ0i j ≈ max
{

1

n
,

∫ li

ei

PD(x) ∗ VE(i, j, x)dx

}

Experiments with PACO-QBS and the three different probability
distribution models show that phromone-initialized PACO performs
significantly better and power distributed b performs best
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Improved Initialization

Ideally, initialization should assign
pheromones such that the edges
with the strongest pheromones
form larger tour components
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form larger tour components

This works especially for instances
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not if customers and time windows
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Improved Initialization

Ideally, initialization should assign
pheromones such that the edges
with the strongest pheromones
form larger tour components

This works especially for instances
where customers are clustered, but
not if customers and time windows
are completely random

Method 1: Change VE to put
more pheromones on shorter edges
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Improved Initialization

Ideally, initialization should assign
pheromones such that the edges
with the strongest pheromones
form larger tour components

This works especially for instances
where customers are clustered, but
not if customers and time windows
are completely random

Method 1: Change VE to put
more pheromones on shorter edges

Method 2: Keep initialized
pheromone only on one edge per
node; two choices maximum or
difference selection (see paper)
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Hybridize with Local Search

Homberger and Gehring [12] proposed a hybrid metaheuristic that
randomly selects one neighborhood from
{N1−insert, N1−exchange, N2−opt} to refine solutions with local search
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Hybridize with Local Search

Homberger and Gehring [12] proposed a hybrid metaheuristic that
randomly selects one neighborhood from
{N1−insert, N1−exchange, N2−opt} to refine solutions with local search

We adopt this mechanism into PI-PACO.
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Type Goal Chen and
Ting [14]

Sodsoon and
Changyom [22]

hybrid PACO hybrid PI-PACO maximum
selection

hybrid PI-PACO difference
selection

R1 f1 12.83 13.83 12.83 12.92 12.75
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R2 f1 3.09 3.82 3.45 3.64 3.54

f2 932.23 980.98 1005.35 995.03 1006.38
C2 f1 3 3 3 3 3

f2 589.86 591.13 590.71 589.93 589.86

RC2 f1 3.75 4.5 4.13 4.38 4.13
f2 1079.81 1141.63 1113.59 1156.20 1109.8



Hybridize with Local Search

Homberger and Gehring [12] proposed a hybrid metaheuristic

We adopt this mechanism into PI-PACO.

Hybrid PI-PACO with difference selection achieves better results than
hybrid PACO without pheromone initialization

It outperforms the hybrid algorithm by Chen and Ting [14] on problem
type C1 and achieves similar results on problem type C2
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Hybridize with Local Search

Homberger and Gehring [12] proposed a hybrid metaheuristic

We adopt this mechanism into PI-PACO.

Hybrid PI-PACO with difference selection achieves better results than
hybrid PACO without pheromone initialization

It is similar to the MMAS-VRPTW [22] but outperforms it on all
except R2 instances in terms of the distance
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Summary
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Summary

PACO best ACO for VRPTW

Pheromone matrix initialization makes it better

Hybridization + pheromone matrix initialization is best

Concept should be tested in offer domains, such as quadratic
assignment poblems
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Caspar David Friedrich, “Der Wanderer über dem Nebelmeer”, 1818
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