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Abstract. The Vehicle Routing Problem with Time Windows is an im-
portant task in logistic planning. The expenditure on employing labor
force, i.e., drivers for vehicles, accounts for most of the costs in this do-
main. We propose an initialized Ant Colony approach, IACO-VRPTW,
with the primary goal (f1) to reduce the number of vehicle needed to
serve the customers and the second-priority goal (f2) of decreasing the
travel distance. Compared with methods that optimize f2, IACO-VRPTW
can reach or reduce f1 in 8 out of 18 instances of the Solomon benchmark
set, at the cost of increasing travel distance slightly. IACO-VRPTW can
effectively decrease the number of vehicles, travel distance and runtime
compared with an ACO without initialization.

1 Introduction

The Vehicle Routing Problem with Time Windows (VRPTW) is a common and
important task in logistic planning. Here, the goal is to use capacity-restricted
vehicles to serve several customers that require certain amounts of a product.
Most related works try to minimize either first the number f1 of these vehicles
and then the distance these vehicles travel (f2), or only focus on f2.

In this paper, we present the results of a new Ant Colony Optimization
(ACO) [2] approach – IACO-VRPTW – for solving VRPTWs. IACO-VRPTW
can be distinguished from the related works by three main differences:

1. It does not follow a two-step approach, but optimizes both goals f1 and f2
all the time during its run (but not in a Pareto fashion).

2. It gives f1 strict priority over f2, i.e., a solution which requires fewer vehicles
is better and amongst solutions with the same f1-values, the one with the
shortest travel distance f2 is best. This approach is closer to practice, as
costs for drivers are usually higher than costs for travel distance.

3. It applies an initialization procedure of the transition matrix in order to
achieve better results earlier.

We will first outline the VRPTW in the next section and then discuss related
works in Section 3. In Section 4 we describe our new approach. Experimental
results are given in Section 5 and in Section 6, we conclude our paper and list
our plans for future work.
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2 Problem Definition

The Vehicle Routing Problems with Time Windows (VRPTW) is an extension
of the VRP. Given are a set V of m = |V | vehicles vi, each having the same fixed
capacity k ∈ N and being parked at the central depot c0. Additionally, there is
a set C with n = |C| cities ci to be serviced (i ∈ 1..n).

Each city ci has a demand for a certain amount wi ∈ N of a product and
must be serviced by exactly one vehicle. The delivery of the product must begin
between the earliest arrival time ei ∈ N and latest arrival time li ∈ N of that
city and takes the service time si ∈ N. Vehicles cannot leave the depot before e0
or arrive back at the depot after l0.

The travelling cost is the distance di j between two cities ci and cj. In the
available benchmark cases, this usually is the Euclidean distance and city loca-
tions are points in the two-dimensional plane. The travel time is the distance
divided by speed. In benchmark cases usually speed = 1.

A solution r = (r1, r2, . . . , rm) of a VRPTW describes which city should
be serviced by which vehicle. For each vehicle vi with i ∈ 1..m, it provides an
ordered set ri ⊆ 1..n describing the sequence of cities to visit. It is implied that
vehicles start at the depot and return to it after finishing their schedule.

n =

m
∑

i=1

|ri| (1)

∀i, j : 1 ≤ i 6= j ≤ m ⇒ ri ∩ rj = ∅ (2)

feasible solution ⇒ ∀i : 1 ≤ i ≤ m ⇒ k ≥
∑

∀c∈ri

wc (3)

For any valid solution r, a set of conditions must hold, i.e., all customers must
be serviced (Eq. 1), be serviced only once (Eq. 1 ∧ 2), and no vehicle’s capacity
must be exceeded (Eq. 3).

Each vehicle vi processes its tour ri step by step from the beginning. The
earliest service time bri,j for city ri,j , i.e., the jth city in schedule ri (for vehicle
vi) is then given as Eq. 4. It is determined by the earliest arrival time eri,j of
that city and the earliest service time bri,j−1

of the city ri,j−1 serviced before it,
or the earliest departure time of the depot c0, if it is the first city in schedule ri
(j = 1).

bri,j =

{

max{eri,j , e0 + t0 ri,j} if j = 1
max{eri,j , bri,j−1

+ sri,j−1
+ tri,j−1 ri,j} if j > 1

(4)

∀i : 1 ≤ i ≤ n ⇒ ei ≤ bi ≤ li (5)

Of course, in a feasible solution, all cities can be serviced within their respective
time windows, as shown in Eq. 5.

Solving VRPTW generally has three goals: (a) use as few vehicles as possible
(f1, Eq. 6), (b) aim for the lowest travel cost (f2, Eq. 7), and (c) minimize the
vehicles’ total waiting time. Yu et al. [3], Alvarenga et al. [4] choose the total
travel distance f2 as their objective. Homberger and Gehring [5] combined the
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number of vehicles f1 and f2 as weighted sum in the objective function, while Li
and Lim [6] include all three objectives as well as the schedule time. Common
are also two-step processes [7, 8, 9], as we will outline in Section 3.

In the real world, using fewer vehicles will greatly decrease the transportation
cost compared with more vehicles but slightly shorter distance. Thus, when we
compare two solutions a and b, the one with fewer tours f1 is considered as
better. If f1(a) = f1(b), then the one with the lower cost f2 will win.

f1(r) = |{∀i ∈ 1..m : |ri| > 0}| (6)

f2(r) =

m
∑

i=1



d0 ri,1 + dri,|ri| 0 +

|ri|
∑

j=2

dri,j−1 ri,j



 (7)

3 Related Work

Solomon [10] gives a detailed description of the VRPTW and the benchmark
set used in most of the related works (and here as well). This set consists of
six subsets: R1, C1, R2, C2, RC1, RC2. R2, C2, and RC2 are problems with a
long scheduling horizon compared with R1, C1, and RC1, i.e., its trucks have a
greater capacity and the time windows are broader.

As the VRPTW is NP-hard [10], meta-heuristics are used to approximately
solve them. In order to satisfy the multiple objectives of VRPTW, Gambardella
et al. [11] introduced a two-step approach, which then was used in many other
works: Firstly they minimize the number of tours and secondly, under the given
number of vehicles, minimize the total travel cost. Gambardella et al. [11] used
the same metaheuristic for both steps. Berger and Barkaoui [7] adopted a Genetic
Algorithm (GA) in both two phases. In the algorithm of Homberger and Gehring
[9], the number of vehicles is minimized with an evolution strategy and the
total distance by means of tabu search. Bent and Hentenryck [12] proposed a
robust heuristic approach for VRPTW, based on simulated annealing and linear
neighborhood spreads.

In our approach, both objectives are optimized at once. They are not com-
bined to a weighted sum, but prioritized. We try to find schedules requiring fewer
vehicles (f1) and, at the same time, lower total travel cost (f2).

We therefore use an ACO. The ACO idea has first been proposed in [2] and
is inspired by the way how ants find paths based on pheromone released by other
ants. In ACO, a solution is represented as pathes through a graph constructed
by simulated ants. Like in nature, these ants start at a certain location and move
forward, basing their decision of where to go on (a) pheromone τ (a dynamic
value that can be changed) and (b) a sensed distance d to food (i.e., a static
heuristic value). Ants that find good solutions may lay out additional pheromone
∆τ that supports later ants to find short path.

Qi and Sun [8] proposed an ACO for VRPTW that optimizes f1 and f2
separately and outperforms the algorithm by Gambardella et al. [11]. Yu et al.
[3] propose hybrid ACO algorithms that use local searches, such as tabu search
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and neighborhood search for VRPTW. Instead of a local search, we use a special
initialization procedure.

4 Approach: Initialized ACO

4.1 Preprocessing

The service beginning time bi of ci depends on the cities on the same tour visited
before ci. Thus, it is impossible to know the bi of a city ci until the cities visited
before it have been chosen. However, we can rule out certain cities that would
violate Eq. 5:

can visit cj after ci in schedule rk ⇒ lj ≥ ei + si + ti j (8)

Eq. 8 is one necessary condition for being able to reach cj in time after servicing
ci. For each city ci, we thus calculate the set of other cities that can be visited
afterwards in the same schedule. We call this set the domain of ci.

When searching for the next city to be visited, we just need to consider the
cities in the current city’s domain. This reduces the search space size and speeds
up the optimization process.

4.2 ACO Strategy

In our algorithm, we use an elitist pheromone update strategy of type ANT-
cycle [2]. Compared with ANT-quantity and ANT-density, ANT-cycle performs
better as it updates pheromone globally not locally [2]. The updating rule for
ANT-cycle is defined in Eq. 9, where ∆τ denotes the pheromone change after
one algorithm iteration:

τi j = ρτi j +∆τi j +∆τ⋆i j (9)

∆τi j =

a
∑

k=1

∆τki j (10)

∆τki j =

{

Q1

fk
2

if ant k travels from city i to city j

0 otherwise
(11)

∆τ⋆i j =

{

Q2

dijm⋆ if the elitist ant travels from city i to city j

0 otherwise
(12)

Here, ρ is the evaporation coefficient that reduces the impact of the previous
pheromone, a is the number of ants, Q1 is the total quantity of pheromone an
ant can leave on the way from ci to cj and fk

2 is the total travel distance of
ant k. Eq. 11 is the normal pheromone update definition of ANT-cycle. ∆τ⋆i j
in Eq. 12 is an extra prize for the elitist ant, i.e., the one that used the fewest
vehicles (if there exists multiple such ants, then it is the one with the shortest
travel distance). We modified the original formula of the update [2] to consider
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both, the number of vehicles required of the elitist ant and the travel distance
in Eq. 12.

The (n+1)× (n+1) pheromone matrix τ is used to calculate the transition
probability matrix P according to Eq. 13, where pi j is the probability of an ant
transferring from ci to cj .

P = {pij}, pij =

{

(τi j)
α∗(1/di j)

β

∑
j
(τi j)α∗(1/di j)β

if cj unvisited ∧ in domain of ci

0 otherwise
(13)

The index α determines the relative influence of the pheromone trails and β is the
influence of the visibility. The probability pi j increases with higher pheromone
density τi j and shorter distance di j .

In our algorithm, we have a certain number a of ants at the depot. Each of
them must visit all the cities under the capacity and time window constraints.
When an ant reaches its maximum capacity or has no next city to visit, it will
automatically return to the depot. In the former case, its capacity is replenished
and it begins the next tour.

4.3 Initialization Procedure

We use a simple directional selection to initialize the transition probability ma-
trix P for the first ACO iteration. When we start the search, we set the transition
probability from the depot to be higher for those cities which are close and have
an earlier earliest start time. The top m cities with the lowest h0 j-values (Eq. 14)
thus receive higher probabilities p0 i. The values γ1, γ2, δ1, and δ2 are weights.

h0 i = γ1d0 i + δ1ei (14)

hi j = γ2di j + δ2dj 0 (15)

For ants leaving a city i 6= 0, we use the similar equation 15, which incorporates
the distance back to the depot. The goal is to avoid that the ants end their
tours in cities very far away from the depot. From the domain of each city ci,
we chose the top-num1 cities according to Eq. 15. Amongst them, num2 cities
num2 < num1 are randomly chosen and receive higher probabilities.

5 Experiments

5.1 Experimental Setup

In our experiments, we use Solomon’s benchmark for VRPTW [10]. Each com-
plete solution r constructed by an ant will be counted as one function evaluation
(FE). We grant 20 000 FEs to runs on 25 and 50 city problems and 300 000 FEs
for 100 city problems. We use an Intel Core i3-3220 CPU with 3.30GHz.

The parameters of our algorithm have been introduced in Section 4. We set
Q1 = 4000, Q2 = 80, ρ = 0.9, num2 = 8, γ1 = 1, δ1 = 1, γ2 = 1.5 and
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(a) Progress in terms of f1. (b) Progress in terms of f2.

Fig. 1: Convergence diagrams over all runs.

δ2 = 0.5. Then we test all combinations of a ∈ {10, 20, 30, 40, 50}, α ∈ {0.5, 1},
and β ∈ {12, 3, 4}. For the 25-city problem, we set num1 ∈ {10, 20} and for the
50 and 100-city problems, we use num1 ∈ {15, 25, 45}. We run the experiments
with and without the initialization procedure discussed in Section 4.3, for 30
runs per setup.

5.2 Experimental Results

We compare the arithmetic means of the solution data over all configurations
and find that a = 50, β = 2, and α = 1 together with num1 = 20, num1 = 25,
and num1 = 45 for the 25, 50, and 100 city problems, respectively, perform best,
i.e., lead to lower f1 and f2 values.

In Fig. 1, we illustrate the progress of our algorithm with that configura-
tion for 100-city problem C101. The algorithm behaves similarly on the other
instances. While f1 decreases steadily, f2 sometimes increases. This happens
when new solutions with fewer vehicles appear that initially have a longer travel
distance.

We now compare our results obtained with the above settings with the so-
lutions from [3, 13] that were obtained by highly specialized algorithms. From
Table 1, we see that the mean number f1 of vehicles of 8 out of 18 problem types
are equal to or smaller than in [3, 13]. As our primary goal is to find solutions
with fewer vehicles and then minimize the total travel distance, the results show
that IACO-VRPTW is effective. It performs particularly well in problems with
longer scheduling horizon (C2, RC, and RC2). Our method has some problems
with the larger-scale instances. It can be seen that IACO-VRPTW finds good
solutions in short time (less than 150s) for 100-city problems. This is proba-
bly due to the very limited number of FEs granted to the experiments, but we
needed that setting for these first experiments to identify good configurations.

In Table 2, we compare our algorithm (IACO-VRPTW) to an algorithm ver-
sion without initialization (ACO-VRPTW ). The results of type C1, R1, and RC1
with 25 cities are aggregated under point 25 1, those of C2, R2, and RC2 under



Table 1: Comparision of IACO-VRPTW with the results published in [3, 13] in
terms of mean objective values (f1, f2) and mean runtime RT.

From [3, 13] IACO-VRPTW relative error ǫ Runtime

Instance f1 f2 f1 f2 ǫf1 ǫf2 RT in s

25 C1 3.00 190.59 3.00 195.27 0.00% 2.46% 0.87
25 R1 4.92 462.87 4.92 490.15 0.00% 5.89% 0.96
25 RC1 3.25 350.24 3.50 374.01 7.69% 6.79% 0.95
25 C2 2.00 214.46 1.63 221.34 -18.75% 3.11% 0.81
25 R2 2.73 382.17 1.64 434.12 -39.92% 13.59% 0.91
25 RC2 2.88 319.53 1.88 370.99 -34.78% 16.11% 0.86

50 C1 5.00 361.69 5.22 400.22 4.40% 10.66% 2.45
50 R1 7.75 766.13 8.25 878.89 6.45% 14.71% 3.60
50 RC1 6.50 729.24 7.38 837.84 13.46% 14.89% 2.63
50 C2 2.75 357.50 2.38 397.71 -13.64% 11.25% 2.32
50 R2 4.11 634.03 2.50 782.35 -39.19% 23.39% 2.64
50 RC2 4.29 585.24 3.71 841.90 -13.33% 43.86% 2.73

100 C1 10.00 826.70 10.78 1074.38 7.78% 29.96% 115.61
100 R1 12.75 1155.89 16 1506.22 25.49% 30.31% 130.39
100 RC1 12.38 1342.42 15.63 1719.98 26.26% 28.13% 122.35
100 C2 3.00 587.36 3.88 788.92 29.17% 34.31% 143.55
100 R2 3.73 906.28 4.45 1331.70 19.51% 46.94% 144.89
100 RC2 4.25 1049.57 5.38 1613.93 26.47% 53.77% 126.79

25 2, and so on. From the table, it is obvious that the initialization procedure
improves the result quality significantly and even the runtime.

6 Conclusions

In this paper, we proposed an initialized ACO – IACO-VRPTW – to solve
vehicle routing problems with time windows. Our primary goal was to reduce
the number of vehicles. We therefore adopt an elitist ANT-cycle model that
awards ants finding schedules with fewer of vehicles, which may also accelerate
the convergence speed.

In our experiments, we find that IACO-VRPTW can reach or reduce the
vehicle numbers in 8 out of 18 problem types, at the cost of increasing the travel
distance slightly. For practical considerations, however, that small cost increase
is far out-weighted by reduced personnel expenses. We find that our simple
directional selection-based initialization procedure is effective in decreasing the
vehicle number, total cost, and runtime.

In the near future, we will incorporate local search methods into our algo-
rithm in order to refine the solutions found by the ants.
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Table 2: Comparison of our method with initialization (IACO-VRPTW) to the
approach without (ACO-VRPTW ) in terms of mean objective values (f1, f2)
and mean runtime RT

ACO-VRPTW IACO-VRPTW relative error ǫ

Type f1 f2 RT/s f1 f2 RT/s ǫf1 ǫf2 ǫRT

25 1 4.29 396.47 1.08 4.27 396.76 0.93 -0.57% 0.07% -15.39%

25 2 2.12 372.42 1.10 2.11 371.79 0.87 -0.53% -0.17% -27.34%

50 1 7.79 782.76 2.91 7.82 785.33 2.73 0.40% 0.33% -6.74%

50 2 3.19 715.50 2.84 3.17 720.32 2.58 -0.47% 0.70% -10.31%

100 1 15.15 1500.26 9.36 15.13 1495.02 8.68 -0.14% -0.35% -7.91%

100 2 5.59 1260.77 9.70 5.57 1257.13 9.15 -0.53% -0.29% -6.00%
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