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Abstract—Assume that there was an accurate model which
can predict the solution quality that an optimization algorithm
will reach if granted a certain amount of runtime on a given
problem. Immediately, several applications in benchmarking,
performance comparison, algorithm selection, algorithm analysis,
and algorithm comparison arise. In this paper, two ways to obtain
such models are introduced. The first one is by fitting nonlinear
curves with fixed semantics and the second one is by training
artificial neural networks on benchmark results. To validate the
effectiveness of the models obtained by the two ways, a variety of
use cases are investigated, including: 1) the interpretation of fitted
curves in terms of their parameters using their fixed semantics
in order to better understand the algorithm performance and
problem hardness, 2) the classification of behavior data to
algorithms, i.e., the detection of which algorithm was used to
solve a given problem just according to its runtime behavior,
3) the prediction of how an algorithm may perform on a yet-
unseen problem instance with yet-unseen features, based on its
performance on other problems, and 4) the prediction of future
algorithm performance based on models fitted to an (earlier)
subset of the measured data. We present these use cases in a
case study on the Traveling Salesman Problem. The experiment
results show that all use cases are viable, easy-to-realize, and
reliable.

This is a preview version of paper [1] (see page 6 for the
reference). It is posted here for your personal use and not for
redistribution. The final publication and definite version is available
from IEEE (who hold the copyright) at http://www.ieee.org/. IEEE
2018, 978-1-5386-4362-4.
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I. INTRODUCTION

Most of the available optimization algorithms are anytime

algorithms [2]: Evolutionary Algorithms (EAs) [3], [4], Local

Search [4], Ant Colony Optimization [4], and even some exact

methods like Branch and Bound all belong to this category.

Anytime algorithms can provide an approximate solution for

a problem at any point during their execution. The quality

of this approximation may improve over time. Many machine

learning approaches such as backpropagation [5] or k-means

clustering also proceed in this manner.

In order to understand (and compare or benchmark) the

performance of such algorithms, information about their whole

* Corresponding author.

runtime behavior is needed [6]. When applying an algorithm

to a problem instance, such information can be collected as

a sequence of tuples (ti, qi) relating an elapsed amount ti of

time to the quality qi of the best solution discovered within

ti.
In this work, we show how such time-quality relation-

ships in form of raw data can be condensed and represented

as simple functional models. We show that this concept is

straightforward, can easily be realized, has many advantages,

and enables several important applications. We make the

following contributions:

1) We introduce two ways of modeling algorithm run-

time behavior into functional time-quality relationships,

namely function fitting and artificial neural network

(ANN) training.

2) We show that a classifier can be trained that, with high

accuracy, can determine which algorithm was used to

solve an unknown problem based on the parameters

of the (fitted-curve) model describing the algorithm

behavior and the model residuals.

3) We show how the complete runtime behavior of algo-

rithms can be predicted on yet unseen problem instances

by predicting the model parameters.

4) We show how the future behavior of an algorithm can be

forecasted by a model fitted to its behavior up to now.

5) All use cases are demonstrated on the Traveling Sales-

man Problem (TSP), which is one of the most well-

known classical optimization problems.

The remainder of this paper is organized as follows. In

Section II we discuss the related work on time-quality relation-

ships analysis. We then explain our two modelling procedures

in-depth in Section III. In Section IV, the modeling procedure

and subsequent analysis steps are applied to an example

experiment on the TSP. A summary and future work are given

in Section V.

II. RELATED WORK

If an anytime algorithm A provides a better final solution

than another anytime algorithm B, does this make A better?

The traditional answer would be yes, but what if the best guess

of B is better for a long time until A finally overtakes it?

Due to their nature, anytime algorithms should not only be
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assessed by a final solution and runtime requirement, but by

their entire runtime behavior. This realization is fundamental

for any benchmarking and experiments in this domain.

If we aim to compare the complete runtime behavior of

algorithms, more data needs to be collected in the experiments.

Several automated tools have been developed to compute

statistics and draw diagrams based on such comprehensive

datasets. None of them considers modeling the algorithm

runtime behaviors, although this has several striking benefits.

The TSP Suite [6] provides a complete tool chain for opti-

mization algorithm evaluation on the TSP. It allows for the im-

plementation, testing, experiment execution, to the generation

of freely-configurable reports with comprehensive algorithm

ranking. However, it cannot be used to model the behavior

of algorithms and thus does neither allow for predictions or

generalizations of the accumulated information.

In [7], a feature learning method based on Slow Feature

Analysis for analyzing the discriminative collective behavior

of EAs has been proposed. It turns out that algorithm runtime

behavior can be described with surprisingly few features and

that this description is stable and can be used to distinguish

both different algorithms and different problems. While our

approach models the algorithm behavior in terms of its ap-

proximation quality over time, [7] focuses on the progress in

the search space.

Hutter et al. [8] propose a novel approach for assessing

the importance of hyperparameters by computing marginals

of random forest predictions first and then qualifying the

importance of main effects and interaction effects through

functional ANOVA. We introduce a method for comparing any

set of entirely different algorithms with completely different

parameters. Hutter et al. [8] demonstrate that most of the

variability of algorithm performance is often caused by only

few hyperparameters. We first focus on modeling algorithm

performance and then, in a second step, extract various kinds

of information from these models.

In [9], Hutter at el.assess and advance the state of the art in

predicting the performance of algorithms for hard problems.

They propose new techniques for building predictive models,

with a particular focus on improving the prediction accuracy

for parameterized algorithms, and also introduce a wealth

of new features for three of the most widely studied NP-

hard problems, namely Satisfiability (SAT), Mixed Integer

Programming (MIP), and the TSP. Based on these models

obtained from experiments, we can predict the parameters

of models on entirely new problem instances based on the

instance features as well as how long it takes to solve them.

III. MODELING PROCEDURES AND APPLICATIONS

The progress of a run of an anytime algorithm on a

particular problem instance can be characterized by a sequence

((t1, q1), (t2, q2), . . . , (tns
, qns

)) of samples (ti, qi) of solution

quality values qi together with the runtime ti at which they

were attained. Assume that we perform several independent

runs with each of nA algorithms on nI problem instances. We

introduce two methods to condense the time-quality relation-

ships measured in our experiments as mathematical functions.

These methods need to meet three major challenges:

1) The models and data are highly non-linear and contain

exponential relationships.

2) The data may cover a wide range of scale, spanning

from large to very small objective values.

3) The overall runtime for the modeling procedures is

limited, as a user would probably not wait much longer

than one hour for it to finish for all models on a

reasonably-sized dataset.

Without limiting the generality, we assume that the inves-

tigated optimization algorithms perform minimization with

positive objective values, i.e., best-so-far objective values

which decrease over time but never reach below 01. As quality

metric for models, we use a scaled error sum Φ(M) in order to

ensure that all measure points equally contribute to the shape

of the model M . We refer to the values of this metric as

residuals. Without weights, the model shape would likely be

determined largely by the first few points in the datasets, which

usually have the largest objective values by far.

Φ(M) =
1

ns

ns∑

i=1

(M(ti)− qi)
2

qi
(1)

where M(ti) is the value calculated by the model for time step

ti. In case that qi = 0, we divide by 0.5 times the smallest

non-zero objective value.

For all of our implementations and analyses in the follow-

ing, we use out-of-the-box packages from the R language [10].

A. Curve Fitting

It is our experience that the time-quality relationships

in experiments with optimization methods often resemble

sigmoidal curves. After a certain setup time, the algorithm

may improve the solution quality rather quickly for some

period. Then, more and more time is required for smaller

and smaller improvements, similar to the law of diminishing

returns [11] in the economy. The exact nature of this

sigmoidal behavior may be different from situation to

situation. We therefore define four ∼-shaped models:

Logistic Model (LGM): α1 + α2/(1+α3∗x
α4 )

Decay Model (DCM): α1 + α2 ∗ exp (α3 ∗ t
α4)

Exp-Linear Model (ELM): α1 + α2 ∗ exp (α3 ∗ ln (t+ α4))
Gompertz Model (GPM): α1 + α2 ∗ exp (α3 ∗ exp (α4 ∗ t))

All models have four parameters α1 to α4. Each model has

two curve shapes resulting from the sign of parameter α2:

We call the shapes with positive α2-value P-shapes. In them,

α1 represents the asymptotic best objective value that the

modeled process would reach if infinite time was granted.

If α2 is negative (N-shapes), α1 represents the expected

objective value of the very first generated solution. The

1Some algorithms like Simulated Annealing may “lose” their best solution,
but we assume that reasonable implementations will nevertheless remember it
in an additional variable and always return the best-ever discovered solution
to the user.



selected model shape then determines the meaning of the

other parameters as well.
It is possible to compare the shapes of two instances of

the same model type based on their parameter values without
necessarily needing to plot them, which allows for automating
this process. Below we provide an example for interpreting the
model parameters of the positive-α2 shape of the Gompertz
model (GPMP).

α1: The vertical offset of the decreasing curve, i.e., the asymptotic
modeled quality of the best solution.

α2: The vertical range of the curve, and thus, together with α1, the
quality of the initial solution.

α3: Determines the steepness of the decreasing curve, the larger the
value, the deeper the curve, thus, the faster learning rates in
algorithm.

α4: Determines the horizontal translation of the decreasing curve,
i.e., when algorithms begins to find better solutions quickly: the
larger the value, the earlier this happens.

The standard approach for non-linear curve fitting is the

Levenberg-Marquardt (LM) algorithm [12]. Due to the special

characteristics of our models and data, multiple restarts of

the LM algorithm and an intelligent initialization strategy are

required to produce good fittings. First, we attempt to get a

crude estimate of the four parameters of a model as starting

point for the LM algorithm. We therefore numerically solve

a system of four non-linear equations of four unknowns (the

parameters), for which we randomly select four data points

from a data set.

In some situations this leads to bad results. In cases where

no reasonably good fitting is found within ten independent

trials, our system guesses the starting point by using the

semantics of the parameters, for instance, the knowledge that

α2 is the vertical range (in all models except ELMN) and

α1 either is the horizontal starting point at t1 or asymptote

for t → ∞ of the curves, which can easily be determined

from a dataset. If this strategy should also fail ten times in a

row, the initial model parameters are randomly sampled from

a Gaussian distribution (N (0, 1)).
In an automated fitting procedure, all four models can be

fitted to a given data set and from the fitting results, the fitting

with the smallest residual can be chosen automatically.

B. Artificial Neural Networks

The second modeling technique we investigate are artificial

neural networks (ANNs) [13]. Their advantage compared to

the curve-fitting approach is that they can represent a much

wider range of behaviors. Their disadvantages are that they

have significantly more parameters and that the semantics of

these parameters are too complex to be manually interpreted.

In our experiments, we use feed-forward ANNs with a

single hidden layer, i.e., 3-layer perceptrons. In a set of

preliminary experiments, ANNs with 6 neurons on the hidden

layer showed the best performance. As there is one input node

(for t-values) with a bias and connected to 6 hidden neurons,

each having a bias value and being in turn connected to the

single output neuron (for approximated q-values), there are

1 + 6 + 6 + 6 = 19 weights. We use the ANN package

nnet [14] from the R language for training the models. To

achieve stable results, for each instance we run the ANN

training 20 times with different random seeds and choose the

model with smallest residual Φ.

C. Algorithm and Instance Classification

If an optimization process is modeled with the curve fitting

approach, then we can assume that the parameter values of

the fitted models should be different for different algorithm

setups. This gives rise to the idea of behavioral forensics, to

the question Given the data points collected from a run of an

unidentified algorithm setup on an unknown problem instance,

is it possible to identify the algorithm which was used in the

run?

This question corresponds to a classification problem where

each of the previously obtained models is labeled with the

algorithm setup it belongs to. Each element to be classified

has five features, namely α1, α2, α3, α4, and the residual Φ,

which can be obtained from the raw experimental data without

knowing the original algorithm setup and problem instance.

We investigate three popular classification methods for this

purpose: Support Vector Machines (SVMs), Random Forests,

and XGBoost.

In our experiments, we use 80% of the models as training

data and the remaining 20% as test data. We then train the

classifiers discussed above using 10-fold cross-validation.

D. Model Parameter Prediction

The complementary question to data forensics is model

prediction. If the model parameters exhibit clear trends with

respect to instance features or algorithm parameters, these

trends can be used for prediction and interpolation.

In other words, we want to obtain an ANN which can

predict the parameters that a model representing the algorithm

performance would have on a yet unseen problem. With this,

it would be possible to estimate which solution qualities

the algorithm could produce for arbitrary points in their

runtime on the new problem. This way, we could predict the

full behavior of a particular setup of an algorithm on new

instances based on the measured algorithm behavior on already

investigated instances.

We employ the ANN implementation of R with a linear

activation function and use grid search for weight decay

and the number of neurons in the hidden layer, using the

metric Root Mean Square Error (RMSE) to choose the optimal

model. We train ANNs with 1 hidden layer of 6 neurons. If

this application is successful, the trained ANNs should be

able to compute parameter values close to the average of

the parameters that the actual fitted models would have on

instances with the same features.

E. Prediction of Future Progress

One nice feature of representing algorithm behavior as

function is that we can compute, for any point in time, which

solution quality the algorithm likely has obtained. This also

holds for the future. Assume that we have a (slowly-running)



optimization process solving a given problem. Based on the

models, we could try to predict how the algorithm will further

progress.2

Since the training data used in this application naturally

stems from the earlier phase of the optimization process, it

usually contains larger objective values whereas the solution

qualities in the test data stemming from the latter phase of the

search may approach or reach 0. This makes the residuals Φ
on the test data rather large, even if the predictions are just

slightly off. Thus, for the prediction application, we apply a

modified version of the residual formula, called the prediction

error Ψ:

Ψ(M) =
1

ns

ns∑

i=1

(M(ti)− qi)
2

max{1, qi}
(2)

In order to test our idea, we set two limit values for the

runtime t (here measured in FEs): traint and testt. All data

points with t ≤ traint of a run are used for training, those

with traint < t ≤ testt are used for testing, and those with

t > testt are ignored, if any. The prediction error Ψ on the

test data then determines how good the performance forecasts

are.

To improve the stability of the prediction, we introduce

a Weighted Model Combination (WMC) method: For each

model, we set a weight according to the residual in the training

data. If the sum of residuals over all eight models was
∑

Φ,

then the weight of a model M is 1 − Φ(M) /
∑

Φ. The

prediction by the overall model for a time step ti is then the

correspondingly weighted sum of the values computed by each

of the eight different fitted models.

IV. CASE STUDY: TRAVELING SALESMAN PROBLEMS

In a TSP, a salesman wants to visit n cities and return back

to the city he departed at. The task is to find the city visiting

order resulting in the minimal overall travel distance, which

is NP-hard. The most well-known benchmark dataset for the

TSP is the TSPLib [15], from which we chose the 22 smallest

symmetric instances to validate our method.

Tabu Search (TS) [16] is one of the most widely known

metaheuristics for combinatorial problems. We investigate six

simple setups of TS, which use objective value equality as

Tabu criterion. They differ in two parameters: They may either

accept the first improving non-tabu solution in each iteration

or scan the whole neighborhood of the current solution and

apply the best non-tabu move. The tabu list length is either 0,

10, or 107.

In the experiment, we conducted 20 runs for each setup,

i.e., 6 ∗ 21 ∗ 20 = 2 520 runs in total, and obtained 192 981
samples. We normalize the objective values such that q = 0
corresponds to the global optimum and a twice-as-long tour

has q = 1. In a manual analysis, we find that setups using the

first-improvement strategy performed generally better while

2As we propose to predict the future progress of an ongoing algorithm run,
the modeling and prediction needs to operate on single runs, whereas in the
previous applications, we could use the concatenated list of all samples from
all runs.

the tabu list length had less influence on the performance. It

should be noted that we do not aim to advance the state-of-

the-art on the TSP, but to investigate our proposed methods

for algorithm behavior modeling.

A. Suitable Modeling Technique

We found that the trained ANNs can better represent the

TSP dataset than the fitted curves. This is caused by the wider

range of behavior patterns and overall greater volatility of the

optimization processes in this dataset.

The number of algorithm/instance combinations where the
models fit best.

GPMP DCMP LGMP GPMP ANNs
without ANNs 117 4 3 2 —

with ANNs 29 0 2 1 94

As can be seen in the above table, the GPMP model is the

most suitable one among the curve models. We observe that

the value of parameter α2 of the fitted GPMP models becomes

extremely large in some instances. As parameters α2 indicates

the range of solution qualities covered by the optimization

process, outliers in this parameter can easily be detected, even

without any knowledge of the algorithm or problem instance.

We limited α2 to 30 times the largest q value in a dataset for

all models.

B. Model Parameters vs. Instance Features

We choose 22 benchmark instances which differ in the

number n of cities and a variety of other parameters, including

their geometry. Kotthoff et al, for instance, list 114 features

characterizing TSP instances. We visualize the trends for the

fitted parameters of model GPMP for the setup with a tabu list

length of 107 using the first improvement strategy in Figure 1.

Since the problem instances are usually solved and objective

value 0 is normally reached, we cannot expected the model

parameter α1 to exhibit any trend. Indeed, we can observe

that it always takes on very small values around 0. The other

parameters, however, do exhibit trends.

Parameter α2 rises, since the range of possible tour lengths

increases for larger problems. Parameters α3 and α4 decrease,

meaning that the time cost of finding the optima increases

with the problem scale. The development of the parameters is

a bit noisy, because the scale n of a TSP instance alone is not

enough to fully describe the problem hardness [17]. From this

perspective, the trends are surprisingly clear.

C. Algorithm and Instance Classification

We know that the algorithm setups using the first improve-

ment strategy solve the TSP more efficiently than those using

the best improvement strategy. In Figure 2, we plot the trends

of parameters α3 and α4 for the setups with first-improvement

(f) and best-improvement (b) strategy of the GPMP model over

the problem scale n.

We find that both trend lines are clearly distinguishable,

i.e., can confirm that the algorithm parameters and the model

parameters are related and post-optimization forensics should

be possible.
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Fig. 1: TRENDS FOR THE MEAN VALUES OF THE

FOUR PARAMETERS OF THE FITTED GPMP MODELS

OVER THE NUMBER n OF CITIES OF THE PROB-

LEM INSTANCES FOR TABU SEARCH PICKING THE

FIRST IMPROVING MOVE AND HAVING A TABU LIST

LENGTH 107.
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Fig. 2: THE TRENDS FOR THE PARAMETERS α3 AND

α4 OF THE GPMP IN THE TSP FOR THE SETUPS WITH

FIRST-IMPROVEMENT(f ) AND BEST-IMPROVEMENT(b
) STRATEGY.

We use the parameters α1, α2, α3, α4, and the residuals

Φ from the fitted GPMP models as features for classification.

We label all setups where the first improving moves were used

with 1 and those where the best improving modes were used

with 0. In the resulting binary classification problem, we use

80% of the fitted GPMP models for training and the remaining

20% for testing on this problem. We apply RF, XGBoost,

SVM. Below we show the classification accuracies on the

test data and find that all classifiers allow us to distinguish

the different algorithm parameter settings with a very high

confidence.

Accuracy: SVM: 1 RF: 1 XGBoost: 0.946

We now consider every single one of the 2520 runs as separate

sample and want to compute the number n of cities of the cor-

responding TSP instance. We fit all eight models to each run

and use their parameters as sample features. In the resulting

16-class classification problem, the best accuracy was obtained

with XGBoost and was 0.64. This is much lower than in the

binary algorithm parameter classification task above. However,

a mis-classification here has different semantics: Classifying

a 16-city problem as 17-city problem it is much less severe

than classifying it as 48-city problem. Thus, for each sample

classified to have m cities, we compute |m − n|/n, i.e., an

inaccuracy measure representing the numerical nature of the

classes. The arithmetic means over these values then reveal

that our classification procedure was actually very precise, as

the inaccuracy is below 6% for both RF and XGBoost.

Accuracy: SVM: 0.367 RF: 0.638 XGBoost: 0.648

Inaccuracy: SVM: 0.123 RF: 0.059 XGBoost: 0.059

In summary, we found that it is also possible, with high accu-

racy, to deduce both features of the problem and parameters

of the algorithm applied to it from the measured performance

data.

Figure 1 reveals that the fitted model parameters are related

to the number n of cities in a problem instance. This time,

the relationship is not as clear, for the reason that the problem

scale alone does not describe the hardness of a TSP instance

well. Nevertheless, we attempt to use this (noisy) relationship

to predict algorithm behaviors (model parameters) for unseen

instances.

We remove the instances with 48 and 90 cities to use them

as test data and train ANN model predictors (with one hidden

layer of 6 neurons) on the rest. For parameter α1, we obtain

a straight line around 0 which correctly and exactly describes

the algorithm behavior with noise removed, as the algorithms

always discover the optima. By visualization, we can see that

the predicted parameters α2 and α4 fit well to our data, and

α3 lies on a reasonable trend line although it deviates slightly

from the test data.

D. Prediction of Future Progress

From Table I, we can find that both prediction approaches

defined in Section III-E are astonishingly accurate. Both

methods work well with traint ∈ {50, 100}. The ANN method

has a smaller prediction error Ψ than the fitted curves. In the

settings with traint = 10, the prediction errors are nine times

larger in the test interval for both methods. This is reasonable,

since we only use the first ten algorithm steps to predict its

future progress.

V. CONCLUSION

We provide two easy and general methods to represent

the time-solution quality relationships of anytime algorithms:

function fitting and ANN training. We show that such per-

formance models have a wide variety of viable and easy-

to-implement applications on a detailed case study on the



TABLE I: THE MEDIAN PREDICTION ERROR Ψ
BOTH OF WMC AND ANN MODELS FOR SETTINGS

(traint, testt) OF TRAINING TIME LIMITS traint AND

TEST TIME INTERVALS (traint + 1). . .testt FOR THE

ALGORITHMS WITH BEST-IMPROVEMENT STRATEGY

AND A TABU LIST LENGTH OF 10, WITH THE BETTER

PREDICTOR MARKED IN Green.

WMC ANN

Instance (10, 100) (50, 100) (100, 1000) (10, 100) (50, 100) (100, 1000)
burma14 0.00257 0.00268 0.00268 0.00119 0.00210 0.00161

ulysses16 0.00024 0.00079 0.00192 0.00119 0.00060 0.00178

gr17 0.00036 0.00069 0.00082 0.00035 0.00109 0.00067

gr21 0.00182 0.00427 0.00427 0.00686 0.00488 0.00437

ulysses22 0.00419 0.00098 0.00154 0.00167 0.00096 0.00153

gr24 0.00671 0.00146 0.00183 0.00287 0.00095 0.00125

fri26 0.00710 0.00127 0.00188 0.00736 0.00100 0.00048

bayg29 0.03006 0.00186 0.00193 0.01200 0.00123 0.00144

bays29 0.02468 0.00147 0.00001 0.00850 0.00140 0.00005

dantzig42 0.04709 0.00127 0.00287 0.03903 0.00050 0.00051

swiss42 0.03742 0.00127 0.00154 0.04487 0.00057 0.00123

att48 0.13983 0.00115 0.00113 0.08355 0.00052 0.00059

gr48 0.10958 0.00219 0.00190 0.10147 0.00083 0.00140

hk48 0.07905 0.00186 0.00588 0.11502 0.00068 0.00147

eil51 0.07627 0.00085 0.00234 0.10236 0.00032 0.00139

berlin52 0.03497 0.00102 0.00101 0.09963 0.00044 0.00037

brazil58 0.15177 0.00046 0.00048 0.14491 0.00022 0.00020

st70 0.34998 0.00115 0.01992 0.97810 0.00050 0.00120

eil76 0.26825 0.00119 0.00082 0.68198 0.00025 0.00015

pr76 0.14406 0.00344 0.00195 1.21302 0.00091 0.00070

gr96 0.21258 0.01582 0.00694 2.79420 0.00514 0.00072

TSP. They are particularly suited as basic representation of

experimental data for benchmarking, performance comparison,

and algorithm behavior analysis.

We find that there is a very clear relationship between

the algorithm performance and the problem hardness and the

parameters of the fitted models. This relationship, learned from

models on available performance data, can be used to detect

which algorithm was used to solve a given problem and even

to predict how an algorithm will perform on a yet unseen

problem instance with yet unseen features. Both fitted curves

and ANNs can be used to forecast the future behavior of an

algorithm if trained on its progress so far.

In our future work, we will try to improve the curve-fitting

based models by fitting them in a transformed space. Our mod-

els all feature exponential relationships. We could log-scale the

data to remove this exponentiation and “translate” the models

back after fitting. We will also investigate applying stronger

continuous optimization methods for optimizing the model

parameters and hence improving the model quality. Finally,

we test our approach on a variety of different optimization

problems and algorithms in order to assess its utility on a

broader basis and to collect more experience and data.
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