
SDGP: A Developmental Approach for

Traveling Salesman Problems

Jin Ouyang∗, Thomas Weise∗†, Alexandre Devert∗, and Raymond Chiong‡
∗Nature Inspired Computation and Applications Laboratory (NICAL),

Joint USTC-Birmingham Research Institute in Intelligent Computation and Its Applications,

School of Computer Science and Technology, University of Science and Technology of China; Hefei, Anhui, China, 230027.
†Corresponding author

§Faculty of Higher Education, Swinburne University of Technology,

50 Melba Avenue, Lilydale, Victoria 3140, Australia.

Abstract—This paper presents an Evolutionary Algorithm
using a new ontogenic approach, called Staged Developmental
Genetic Programming (SDGP), for solving symmetric Traveling
Salesman Problems (TSPs). In SDGP, a genotype-phenotype
mapping (gpm) is used to refine candidate solutions to a TSP
– these candidate solutions are represented as permutations. The
gpm performs several development steps, in each of which such
a permutation x is incrementally modified. In each iteration
within a development step, the process can choose to either
apply one of seven different modifications to a specific section
of x or to do nothing. The choice is made by the genotypes g,
which are functions assigning a real-valued rating to the possible
modifications. Smaller ratings are better and the best-rated
modification is then applied, if its rating is lower than a given
threshold. The genotypes are evolved using Genetic Programming
in the tree-based representation well known from Symbolic
Regression. Comprehensive numerical simulation experiments
show that our proposed algorithm scales well with the problem
size and delivers competitive results. It has an overall quadratic
runtime in the number of nodes in the TSPs.

This is a preview version of the paper [1] (see page 10 for the
reference). Read the full piece at
http://dx.doi.org/10.1109/CIPLS.2013.6595203.

I. INTRODUCTION

Traveling Salesman Problems (TSPs) are perhaps the most

well-known logistic planning tasks. In a TSP, a vehicle has to

visit a set of locations on the map and then return to its origin.

The goal is to find a cyclic path of minimal costs going through

all the locations [2–5]. TSPs are NP-hard [3], meaning that

it is not possible to guarantee finding the globally optimal

solutions within polynomially bounded runtime. The challenge

therefore, is to construct solvers that scale well, i.e., are able to

quickly find good solutions even for large problem instances.

In this paper, we introduce Staged Developmental Genetic

Programming (SDGP), an Evolutionary Algorithm (EA) apply-

ing a new ontogenic approach, for solving symmetric TSPs.

In SDGP, the candidate solutions are permutations of the

locations to visit. During an ontogenic genotype-phenotype

mapping (gpm), such a permutation x is modified according

to decisions made by a genotype g. The genotypes, which are

functions evolved with Genetic Programming (GP) in the tree-

representation well known from Symbolic Regression [6–8]),

rate modifications that may be applied to x.

We show that SDGP produces results comparable to state-

of-the-art approaches after only very few iterations. We also

show that the solution quality obtained with SDGP degenerates

gracefully and its runtime increases slowly with problem scale.

The remainder of this paper is organized as follows. In

Section II, we briefly outline the definition of the problems

(TSPs) for which SDGP is designed. After discussing related

work in Section III, we introduce SDGP in Section IV and

verify its properties experimentally in Section V. We conclude

our paper with a discussion and plans for future work in

Section VI.

II. PROBLEM DEFINITION

A TSP is a routing task in a street network, which can modeled

as connected graph G = (V,E). An instance of a symmetric

TSP is defined as a tuple of

1) a set V of n vertices v ∈ V ,

2) a list E = V × V of undirected edges e = vi vj ,

3) a function cost : E 7→ R+, which computes the cost of

traveling along an edge e ∈ E and where cost(vi vj) =
cost(vj vi), i.e., the cost is symmetric.

A candidate solution x ∈ X of a TSP can be represented as

permutation of the n nodes. x = (A,B,C), for example, would

mean to first visit node A, then node B, then node C, and then

to return back to A, in a n = 3-city TSP. The objective function

f , subject to minimization, is defined as follows:

f(x) = cost(xn x1) +

n−1
∑

i=1

cost(xi xi+1) (1)

III. BACKGROUND

A. Related Work on TSPs

TSPs have been considered by researchers for more than 150

years [2]. Although they are NP-hard, today’s computing

power and modern algorithms together allow us to solve

instances of tens of thousands of cities [3, 9]. One of the

state-of-the-art solvers is the Concorde system [9, 10]. Such

algorithms involving linear programming basically can solve

most instances to optimality.

http://dx.doi.org/10.1109/CIPLS.2013.6595203


However, their runtime increases steeply with the problem

scale [10] and thus, they need to be massively parallelized

to become feasible. Additionally, being able to solve many

instances does not mean to be able to solve all. The well-

known benchmark suite TSPLIB [11], for instance, contains

the hard-to-solve instance ts225 with only 225 cities [12].

Metaheuristic solvers are therefore being developed, on one

hand, to obtain more robust optimization capabilities on one

hand and, on the other hand, to provide good approximate

solutions in much shorter time on the other. The aim of our

work is to propose a metaheuristic approach that can quickly

find such good approximations, even for large scale problems,

on off-the-shelf personal computers.

To the best of our knowledge, to date there exists no

other indirect representation approach to the TSP nor any

application of GP1. Here, we briefly describe the state-of-the-

art metaheuristics from the relevant literature.

Jung and Moon [13] introduced a method limited to TSPs

where nodes are points on a 2D Euclidean plane. Their

candidate solutions are graphical images of the tours in the

plane. A curve (cut) can divide such a plane into two different

areas that represent equivalence classes. A crossover operator

takes the edges from parent 1 that fully fall into class 1 and

those from parent 2 that full fall into class 2. This leads to a

disconnected tour which is re-connected in a greedy fashion.

The MAX-MIN ACS [14] is an example of Ant Colony

Optimization (ACO) applied to TSPs. Here, simulated ants

lay out pheromone on a graph depending on the length of

the arcs they pass. They are more likely to follow paths

with much pheromone and good heuristic values. The path

of the best ant is improved by local search. This is one of the

baseline algorithms for TSPs to which new methods should

be compared.

The inver-over EA is maybe the best pure permutation-

based Genetic Algorithm (GA) for TSPs. It is based on

the inver-over search operation which is similar to one of

the phenotypic update operators applied by the gpm in our

approach (see Section IV-A).

Two hybrid algorithms that combine permutation-based

GAs with ACO are the hybrid-GA [15] and the recent

p-ACGA [16]. Whereas hybrid-GA utilizes a pheromone

matrix to improve its crossover operator, p-ACGA uses ACO

to mine a set of good building blocks which can be injected

into a population as artificial genotypes.

Besides these notable state-of-art approaches, fundamental

research regarding GAs for TSPs can be found in [17], where

different search operators are assessed. This study comple-

ments our discussions in Section IV-A.

B. Related Work on Ontogenic Representations

In indirect representations, the search space G is signifi-

cantly different from the solution space X and a genotype-

phenotype mapping gpm : G 7→ X translates between

1except a direct encoding scheme where the cities are terminal nodes in
the program tree, which is not feasible for any non-trivial problem

them. At least two classes of indirect representations may be

distinguished [18, 19]: generative and ontogenic approaches.

In the generative method, the gpm is a one-shot functional

mapping from the genotypes to the phenotypes. The gpm
may be an arbitrarily complex decoder, but it only uses the

information given in the genotypes as input. One example for

such mappings in the area of GP is Grammatical Evolution

(GE) [20] with context-free grammars, where the genotypes

are integer strings and the candidate solutions are sentences

of a language defined by a given grammar. In GE the gpm
starts with the starting symbol of that static grammar as a

current variable. The first gene in the genotype identifies the

first rule of the grammar fitting to the current variable to be

expanded. This may result in new variables occurring, which

then are expanded by rules identified by the following genes.

A study on using different grammar rules to indirect encoding

of Neural Network structures is given in [21, 22].

Ontogenic (or developmental) mappings additionally in-

volve feedback from simulations or the process of computing

the objective values when building the phenotypes in an

iterative manner [18, 23]. Our work is a developmental,

ontogenic approach that refines an existing candidate solution

based on information obtained from the process of computing

the objective function.

Recently, it was shown that ontogenic mappings can yield

results similar to direct and generative ones but with lesser

computational effort despite the more complex solution cre-

ation and evaluation process on the example of the evolution

of rigid truss design optimization [18]. In a direct method, the

volume of the (up to 600) beams of a truss would be optimized

by a numerical optimization algorithm directly. The genotype

of a generative approach could be a function that translates

the coordinates of a beam to its thickness. In the ontogenic

method [18], the genotypes are functions that receive as a

parameter the mechanical stress on a beam and return how

much the cross section of the beam should be increased.

Beginning with a basic beam structure, the mechanical stress is

evaluated and the function is applied to each of the beams. The

updated truss is simulated again and the process is iterated a

couple of times. The resulting structure, the phenotype, has up

to 600 parameters whereas the genotypes in [18] are multilayer

perceptrons representing the modification function, encoded as

real vectors containing, e.g., only 12 neural weights.

IV. THE SDGP APPROACH

The population in our new SDGP for symmetric TSPs consists

of λ individuals p, each having a genotype p.g and a pheno-

type p.x. The candidate solutions p.x are node permutations

discussed in Section II and obtained from the corresponding

p.g by applying an ontogenic gpm.

This gpm performs τ̂ development steps, in each of which

a permutation p.x is incrementally modified, as defined in

Section IV-C. The initial value of p.x is set to x⋆
I , which, in

turn, is initially obtained with an initialization procedure de-

fined in Section IV-B. In each iteration within a developmental

step, SDGP can choose between either applying one of seven



different modifications (see Section IV-A) to a specific section

of p.x or doing nothing. The choice is made by the genotypes

p.g, which are functions assigning a real-valued rating to each

of the possible modifications. Smaller ratings are better and

the best-rated modification is then applied, if its rating is lower

than a given threshold. The overall SDGP procedure is defined

in Section IV-D.

A. Modification Operations for X

The search in SDGP takes place on two levels: The GP

procedure searches good genotypes (mathematical functions

p.g) which tell the gpm how to refine phenotypes p.x, i.e.,

search good permutations. For the latter case, SDGP can

utilize seven different modification operations, which can be

applied to candidate solutions x = (. . . , xi, . . . , xj , . . . ) for

two indices 0 ≤ i, j ≤ n:

• Swap. The swap operation swap(x, i, j) creates a new

permutation x′ by swapping the nodes at index i and j,

as illustrated in Figure 1.a.

• Inversion 1. The inversion operation invA(x, i, j) cre-

ates a new permutation x′ by inverting the sub-sequence

between index i and j (inclusive) and obtains x′ =
(. . . , xi−1, xj , xj−1, . . . , xi+1, xi, xj+1, . . . ), as sketched

in Figure 1.b. This operator is similar to the inver-over

operator in [24] without adaptation.

• Inversion 2. Since permutations x actually represent a

cyclic tour, we define invB(x, i, j) ≡ invA(x, j, i), as

illustrated in Figure 1.c.

• Rotate Left 1. The left rotation rolA(x, i, j) creates

a new permutation x′ by shifting the sub-sequence

between index i + 1 and j (inclusive) one step

to the left and places xi at index j and obtains

x′ = (. . . , xi−1, xi+1, xi+2, . . . , xj−1, xj , xi, xj+1, . . . ),
as sketched in Figure 1.d.

• Rotate Left 2. In Figure 1.e we sketch the sec-

ond left rotation operation, defined as rolB(x, i, j) ≡
rolA(x, j, i).

• Rotate Right 1. The right rotation rorA(x, i, j) cre-

ates a new permutation x′ by shifting the sub-sequence

between index i and j − 1 (inclusive) one step

to the right and places xj at index i and obtains

x′ = (. . . , xi−1, xi+1, xi+2, . . . , xj−1, xj , xi, xj+1, . . . ),
as shown in Figure 1.f.

• Rotate Right 2. rorB(x, i, j) is equivalent to

rorA(x, j, i) and illustrated in Figure 1.g.

We define the set Ops as Ops =
{swap,invA,invB,rolA,rolB,rorA,rorB}. All

operations op ∈ Ops have the feature that f(x′) for their

results x′ when applied to candidate solution x can be

computed in O(1) if f(x) is known. This is also exemplarily

illustrated in Figure 1. The application of actually carrying

out the inversion or rotation operations, however, has a

complexity of O(c) where c = (j − i) mod n.

B. Initialization

The initial best candidate solution x⋆
I in SDGP is constructed

Algorithm 1: (p.x, x⋆
B
′)←− gpm(p.g, τ̂ , x⋆

I , x
⋆
B)

In p.g: the genotype: a function rating search operation applications
In τ̂ : the maximum number of development steps
In x⋆

I : the initial candidate solution to be refined
InOut x⋆

B : the overall best candidate solution ever found
Out p.x: the phenotype belonging to genotype p.g, refined from x⋆

I
Var τ : the developmental step index
Var (i, j): the index tuple
Var op/op⋆: the currently tested/best rated search operation

begin

p.x←− x⋆
I

for τ ←− 1 up to τ̂ do // perform τ̂ developmental steps

for c←− n− 2 down to 1 do // iterate over s index pairs

j ←− τ // use different pairs in each step

for d←− ⌈n/c⌉ down to 1 do // more index pairs for small spans c

i←− 1 + [(j + 1) mod n] // all s pairs are adjacent

j ←− 1 + [(i+ c) mod n] // and have step-width c

op⋆ ←− swap // initialize op⋆ (but test swap anyway)

foreach op ∈ Ops do // find op
⋆ rated best by p.g among all op ∈ Ops

if p.g (op, p.x, i, j) < p.g (op⋆, p.x, i, j) then // rating?

op⋆ ←− op // . . . remember best rated operation

if f(op(p.x, i, j)) < f(x⋆
B) then // also: maybe new best solution?

x⋆
B ←− op(p.x, i, j) // if so, remember that solution

if p.g (op⋆, p.x, i, j) < 0) then // use with best-rated op iff rating < 0

p.x←− op⋆(p.x, i, j) // apply best rated operation

return (p.x, x⋆
B)

in a two-step process. First, the Double Minimum Spanning

Tree (DMST) method [25, 26] is applied. Here, a minimum

spanning tree over the graph G is created by using Prim’s

algorithm [27] in O
(

n2
)

. Each node of G is visited by

traveling along the edges of that tree with backtracking if a

dead end is reached. All repeated visits of a node are purged.

Thus, a permutation of nodes is created in time complexity

O
(

n2
)

. If the triangle equation holds in the TSP, the total

distance of this initial solution will not be worse than two

times the optimal distance [28], which thus also holds for the

final result of SDGP.

In the second step, exactly once for all index pairs (i, j)
with 1 ≤ i < j ≤ n, we iterate over the seven possible search

operation applications op ∈ Ops from the previous section.

If an operation would lead to an improvement in terms of

the objective function, it is immediately applied. This step

also has time complexity O
(

n2
)

, which means in total the

initialization, too, has time complexity O
(

n2
)

.

The initialization procedure yields a permutation x⋆
I that is

reasonably good in a relatively short time. It is also not too

good in order to leave room for improvement and learning in

the developmental gpm. x⋆
I is also used as the initial guess of

the best possible solution x⋆
B .

C. Genotype-Phenotype Mapping

The developmental genotype-phenotype mapping gpm is the

core of SDGP. It is defined in Algorithm 1 and performs τ̂

steps in each of which a phenotype p.x may be modified

by several search operation applications. p.x is initialized as

x⋆
I , the candidate solution first generated by the initialization



Fig. 1: Examples of the different operations for modifying a candidate solution x available to our system, along with efficient

methods for computing the objective value f(x′) of the resulting new permutation x′.

We provide examples of the application of the search operations available
to our system for two indices 0 ≤ i < j ≤ n. The nodes are represented
by literals A to I. The cost f(x′) of the new candidate solution x′ can be
computed in O(1) if f(x) is known. Some elements of this cost update only
play a role if (j − i)n > 1 or (j − i) > 2 and are marked correspondingly.

1.a: “Swap” operation: swap(x, i, j).

x = (A,B|C|D,E,F|G|H,I) =⇒ x
′ = swap (x, 3, 7) = (A,B|G|D,E,F|C|H,I) (2)

f
(

x
′) = f(x) −cost(BC )−cost(CD )−cost(FG )− cost(GH )

+cost(BG )+cost(GD )+cost(FC ) + cost(CH )
(3)

1.b: “Inversion” operation 1: invA(x, i, j).

x = (A,B|C,D,E,F,G|H,I) =⇒ x
′ = invA (x, 3, 7) = (A,B|G,F,E,D,C|H,I) (4)

f
(

x
′) = f(x) −cost(BC )− cost(GH )

+cost(BG ) + cost(CH )
(5)

1.c: “Inversion” operation 2: invB(x, i, j) ≡ invA(x, j, i).

x = (A,B,C|D,E,F|G,H,I) =⇒ x
′ = invB (x, 3, 7) = (I,H,G|D,E,F|C,B,A) (6)

f
(

x
′) = f(x) −cost(CD )− cost(FG )

+cost(GD ) + cost(FC )
(7)

1.d: “Rotate Left” operation 1: rolA(x, i, j).

x = (A,B|C|D,E,F,G|H,I) =⇒ x
′ = rolA (x, 3, 7) = (A,B|D,E,F,G|C|H,I) (8)

f
(

x
′) = f(x) −cost(BC )− cost(CD )− cost(GH )

+cost(BD ) + cost(GC ) + cost(CH )
(9)

1.e: “Rotate Left” operation 2: rolB(x, i, j) ≡ rolA(x, j, i).

x = (A,B,C|D,E,F|G|H,I) =⇒ x
′ = rolB (x, 3, 7) = (B,C|G|D,E,F|H,I,A) (10)

f
(

x
′) = f(x) −cost(CD )− cost(FG )− cost(GH )

+cost(CG ) + cost(GD ) + cost(FH )
(11)

1.f: “Rotate Right” operation 1: rorA(x, i, j).

x = (A,B|C,D,E,F|G|H,I) =⇒ x
′ = rorA (x, 3, 7) = (A,B|G|C,D,E,F|H,I) (12)

f
(

x
′) = f(x) −cost(BC )− cost(FG )− cost(GH )

+cost(BG ) + cost(GC ) + cost(FH )
(13)

1.g: “Rotate Right” operation 2: rorB(x, i, j) ≡ rorA(x, j, i).

x = (A,B|C|D,E,F|G,H,I) =⇒ x
′ = rorB (x, 3, 7) = (I,A,B|D,E,F|C|G,H) (14)

f
(

x
′) = f(x) −cost(BC )− cost(CD )− cost(FG )

+cost(BD ) + cost(FC ) + cost(CG )
(15)

Fig. 2: Proof of quadratic complecity of gpm.

From Algorithm 1 it follows that:

s ≤
∑n−2

c=1

⌈

n
c

⌉

≤
∑n−2

c=1

(

1 + n
c

)

≤ n+ n
∑n

c=1
1
c
,

i.e., s ≤ n+ nHn ≈ n(1.6 + lnn)⇒ s ∈ Θ(n lnn).

With time(op) ∈ O(c), the worst-case time complexity of gpm is:

time(gpm−step) ≤
∑n−2

c=1 c
⌈

n
c

⌉

≤
∑n−2

c=1 c
(

1 + n
c

)

≤
∑n

c=1 (c+ n),
i.e., time(gpm−step) ≤ 1.5n2 + 0.5n⇒ time(gpm−step) ∈ O

(

n2
)

.

As can be seen in Figure 3.h, this is a worst-case complexity and the

actual runtime seems to grow less than quadratic. The reason may be

that not in all gpm-steps a modification operation is actually applied.

procedure.

The decision about which modification should be performed

is made by the genotype p.g ∈ G. p.g therefore represents a

function p.g : Ops × X × 1..n × 1..n 7→ R, which assigns a

rating to a potential application of a search operation op ∈
Ops to the candidate solution p.x for an index pair (i, j) :
1 ≤ i, j ≤ n.

In each of the τ̂ steps of gpm, s ∈ Θ(n lnn) such index

tuples are generated (see Figure 2) and all seven operations

op ∈ Ops are rated with p.g for a potential application to

p.x. Only the operation op⋆ that has received the lowest rating

value (under condition p.x, i, and j) is considered and it is only

applied if p.g (op⋆, p.x, i, j) is less than 0 (otherwise p.x is

left unchanged in this iteration of the inner loop). Considering

the linear complexity of the search operation application in c,

gpm has a time complexity of O
(

τ̂n2
)

as shown in Figure 2.

This complexity is the worst-case complexity, as there may be

some iterations in which no search operator is applied.

In Section IV-A we have shown that computing the new

objective values f(op(p.x, i, j)) of a solution modified by

operation op with parameters i and j can be done in O(1).
As this change in objective value is one of the constants made

available for p.g (see Table I), it makes sense to also check

whether the potential application of op would actually lead

to the discovery of a new overall best solution x⋆
B . If so, the

result of op will be stored in x⋆
B . p.x is left untouched, as

g may still decide to not apply op or to perform another

operation. This also means that it may be sufficient if the

gpm procedure touches the neighborhood of a local optimum

instead of producing it directly as a result, which relaxes the

search pressure to discover the exact best structure of p.g.

In initial, small-scale tests it turned out to be beneficial

to use a non-uniform variety of different index tuples (i, j),
many with i and j close to each other but also some with

rather large spans c = j − i mod n. We therefore chose to

create s different tuples according to a fixed scheme, where

the number of index pairs with a particular span c is roughly

inversely proportional c. The choice of s is mostly arbitrary,

but it allows us to balance between granting more runtime

to the single developmental gpms or testing more candidate

solutions via parameter τ̂ . As τ̂ is set independently from n,

we retain quadratic complexity of the gpm.

D. Genetic Programming

In Algorithm 2, we describe the overall optimization process

of SDGP. The approach starts with the initialization procedure

described in Section IV-B, which yields a first guess x⋆
B of

the best tour. This candidate solution is also used as input

x⋆
I = x⋆

B for the genotype-phenotype mappings.

The population of our GP procedure holds λ = 64 individ-



Algorithm 2: The overall Genetic Programming process.

1) Obtain first candidate solution x⋆
B = x⋆

I heuristically via initialization
(see Section IV-B)

2) Create λ = 64 individuals p with random genotypes p.g ∈ G via
Ramped-Half-and-Half and maximum tree depth 8.

3) In each of the t̂ = 16 384
λ∗τ̂

= 256
τ̂

generations. . .

a) For each of the λ = 64 individuals p in the population. . .

i) Obtain corresponding candidate solution
p.x ∈ X via genotype-phenotype mapping:
(

p.x, x⋆
B

′
)

= gpm
(

p.g, τ̂ , x⋆
I , x

⋆
B

)

.

ii) If f
(

x⋆
B

′
)

< f
(

x⋆
B

)

, set x⋆
B

= x⋆
B

′.

b) Select µ = 16 best individuals according to fitness v , discard the
rest.

c) Create λ = 64 new individuals (maximum tree depth 8) by using

i) sub-tree exchange crossover (with probability 0.25).
ii) sub-tree replacement mutation (with probability 0.75).

d) Set x⋆
I = x⋆

B .

4) Return best solution x⋆
B ever encountered.

uals p, which evolve according to a (µ, λ) scheme (µ being

16). Each individual holds a genotype p.g ∈ G, which is a

mathematical function in the well-known tree representation

from symbolic regression [6–8]. These trees have a maximum

depth of 8 and are composed of the functions and terminals

given in Table I. As discussed in Section IV-C, these genotypes

drive a gpm that iteratively refines x⋆
I and yields the phenotype

p.x corresponding to each function p.g. The gpm, in a loop,

presents several index pairs (i, j) to the genotype for each

search operation op ∈ Ops (see Section IV-A), along with

the current p.x. By using the six approach-specific terminal

symbols given in Table I, the genotypes rate these potential

applications and the best-rated one op⋆ is applied if its rating

is below 0. At each step during each gpm, it may be possible

to also discover a new best tour x⋆
B .

After all phenotypes have been built, the µ = 16 best

individuals are selected. Several small scale experiments have

revealed that using the fitness function v given in Equation 22,

which incorporates both the (normalized) objective value

f(p.x) of the phenotype p.x belonging to a genotype p.g, and

the total number of search operations applied, leads to the best

results.

v(p.x) =
f(p.x)

f(x⋆
I)

+
1

total number of search operator applications
(22)

At the end of each generation, we also set x⋆
I = x⋆

B . In

other words, the input candidate solution to the genotype-

phenotype mapping is always the best solution known before

the current generation. This is somewhat similar to the staged

development approach in our previous work [18]. It leads to

a salient improvement compared to always using the same

solution (produced by the initialization procedure).

If a new best solution x⋆
B is discovered, this is achieved

by a genotype modifying the current initial solution x⋆
I in a

way so that at least one candidate solution neighboring x⋆
B is

generated during the gpm.2. As the gpm receives the same

2x⋆
B

does not necessarily need to be directly traversed during the gpm, as
outlined in Algorithm 1.

TABLE I: The function and terminal set of the Genetic

Programming.

Approach-Specific Terminals: same value for each op ∈ Ops
TDS. A terminal TDS giving normalized information about index τ of the
current development step.

TDS = τ+0.5
τ̂

(16)

TBI. The scaled best improvement that could potentially be achieved with
any search operation for the given candidate solution p.x and index tuple
(i, j). Negative values are good.

TBI = 1
f(x⋆

I)
argminop′∈Ops

{

f
(

op′(p.x, i, j)
)

− f(p.x)
}

(17)

TCI. The scaled cost difference of the current candidate solution p.x to the
initial candidate solution x⋆

I
, i.e., the current improvement. Negative values

are good.
TCI = 1

f(x⋆
I)

(f(p.x)− f(x⋆
I )) (18)

Approach-Specific Terminals: different value for each op ∈ Ops
TOI. The scaled cost improvement that the currently rated operator op can
provide for candidate solution p.x and index tuple (i, j). Negative values
are good.

TOI = 1
f(x⋆

I)
(f(op(p.x, i, j))− f(p.x)) (19)

TRF. The relative frequency TRF with which operator op was applied
(selected by p.g) during the current call to gpm.

TRF = number of applications of op

max{1, total number of all search operator applications}
(20)

TMD. The mean difference TMD in terms of f that the past applications of
this operator made during the current call to gpm. Zero if operator was not
applied yet. Negative values are good.

TMD =

∑

∀applications of op

(f(p.x after application)−f(p.x before application))

max{1,number of applications of op}
(21)

Standard Functions and Terminals

+, −, ∗, ea, |·|, sin. Unprotected arithmetic operators, all results and
parameters are possible.

/,
√·. Protected operators arithmetic: NaN maps to 1,

√
a maps to −

√
−a

for a < 0.

ERC. Ephemeral random constant [6]: initialized with random number
uniformly distributed in [0, 1).

inputs x⋆
I for each genotype p.g, finding the same new (local)

optimum would mean they make the same modifications to

x⋆
I . By setting x⋆

I = x⋆
B at the end of each generation,

however, this is not necessary. Instead, x⋆
B becomes accessible

to all individuals in the next generation. Additionally, the

modifications leading to x⋆
B are no longer required in any

genotype and can be pruned by the search, literally making

room for new information, more decisions, and adaptions to

the new situation.

The overall time complexity of our method evaluates to

O
(

λt̂τ̂n2
)

and is the sum of the complexity O
(

n2
)

of the

initialization procedure (see Section IV-B) and λt̂ times the

complexity O
(

τ̂n2
)

of the gpm, where t̂ is the maximum

number of generations to perform.3. As τ̂ , t̂, and λ can be set

as constants independently of the number n of nodes of the

TSP, this results in an overall complexity of O
(

n2
)

.

V. EXPERIMENTS

With our experiments, we aim to answer the following three

research questions:

3The operations modifying the genotypes (trees) have time complexity
O(1), as the tree size is limited by a constant (maximum depth 8).



Fig. 3: Relative error error and runtime of SDGP in relation to the problem scale (number of nodes n).

3.a: Relative error (error) for τ̂ = 1. 3.b: Relative error (error) for τ̂ = 2. 3.c: Relative error (error) for τ̂ = 4.

3.d: Relative error (error) for τ̂ = 8. 3.e: Relative error (error) for τ̂ = 16. 3.f: Relative error (error) for τ̂ = 32.

3.g: Relative error (error) for τ̂ = 64. 3.h: Runtime rt in seconds.

1) How does SDGP scale with the number n of nodes in

TSPs?

2) How does its performance compare with other state-of-

the-art metaheuristics?

3) Which setting of τ̂ is good if the same total number of

development steps for the whole optimization process

is granted? Smaller values of τ̂ give less time to the

developmental gpm but allow for more generations of

GP, whereas higher values decrease the total number

of candidate solutions produced but allow for longer

refinement cycles.

In our experiments, we performed 30 runs on 85 symmetric

TSP instances from the well-known TSPLIB [11] benchmark

suite. SDGP was implemented in Java 1.7 and run on an

Intel Core i3-2120 CPU with 3.3GHz and 4 GB RAM with

Windows 7 and Java 1.7.0 03.

We applied GP in a (µ, λ)-fashion with λ = 64 and µ =
16 and set the number of generations to t̂ = 256

τ̂
. We tested

different numbers of development steps per gpm: τ̂ = 2i for

all i ∈ 0..6. The total number of development steps is thus

fixed at 256 ∗ 64 = 16 384.

In terms of the solution quality, we have used the difference

between the objective value of the best candidate solution x⋆
B

found in a run and the objective value f̆ of the known global

optimum, divided by f̆ , that is the relative error error(x⋆
B) =

f(x⋆
B)−f̆

f̆
. In Figure 3, we plot statistics on error for different

values of τ̂ over the problem scale n. Figures 3.a to 3.g all

show similar characteristics, meaning that SDGP is robust in

terms of different τ̂ settings. error increases slowly, usually

staying below 8% in median with the top-5% solutions often

coming close to 0. The solution quality provided by SDGP for

a fixed budget of development steps degenerates gracefully

with the problem scale n. The time per run rt in seconds

over all settings of τ̂ is plotted in Figure 3.h. From there and

Table II can be seen that it grows slowly with n. In a nutshell,

we find that SDGP scales well.

The best setting for τ̂ seems to be 16 (see Figure 3.e). Here,

the 95% and 5% quantile of error are closest together, i.e.,

the optimization process is robust. If we apply a two-tailed

Mann-Whitney U test with significance level 0.02 to compare

the seven τ̂ settings over all 85 benchmark instances, we find

that τ̂ = 16 outperforms 201 comparisons, loses 12, and does

not perform significantly different in 297. The second best

setting is τ̂ = 8, which can win 187 comparisons and loses

11.

In Table II, we list the objective values, mean, and median



TABLE II: Selected results of the τ̂ = 16 experiments in comparison with other methods. The first three columns list the

features of the benchmark instances. Next we provide the objective values of the best, mean, and median solutions resulting

from 30 runs of SDGP and give the median runtime rt measured in seconds over these runs (different from Figure 3.h which

is over all τ̂ settings). The last six comments list results taken from the literature cited in the columen headers.

TSP Instance Features Statistics on SDGP p-ACGA [16] EA [24] [15] [14]

instance n f̆ best mean median med. rt best mean mean best mean mean

eil51 51 426 426 434.3 435.0 36.7 427 430.3 426.0 428 428.5
berlin52 52 7542 7542 7668.4 7542.0 36.9 7542 7615.4

st70 70 675 680 683.4 683.0 56.0 675.0
eil76 76 538 538 555.2 557.5 54.9 538 548.4 538.0

kroa100 100 21 282 21 282 22 223.6 22 319.5 85.0 21 282.0 21 285 21 285.0 21 427.0
krob100 100 22 141 22 141 22 623.1 22 527.5 79.2 22 179 22 510.1
kroc100 100 20 749 20 749 21 460.5 21 652.0 84.3 20 749 21 064.6 20 749.0

krod100 100 21 294 21 294 21 851.7 21 803.5 82.5 21 330 21 779.1 21 294.0

kroe100 100 22 068 22 068 22 689.4 22 608.5 82.6 22 121 22 374.6

rd100 100 7910 7910 8223.1 8269.0 71.6 7910 8044.3
eil101 101 629 632 651.7 647.5 89.8 631 641.5 629.2

lin105 105 14 379 14 379 14 480.0 14 401.0 82.5 14 379 14 574.5 14 379.0

bier127 127 118 282 120 853 122 128.4 122 375.0 118.6 118 695 120 377.6
ch130 130 6110 6137 6392.3 6445.0 121.9 6137 6277.9

ch150 150 6528 6584 6791.1 6826.0 133.2 6549 6646.6

kroa150 150 26 524 26 792 27 200.3 27 231.0 133.3 26 714 27 302.9
krob150 150 26 130 26 187 27 484.4 27 517.0 135.0 26 310 26 760.7
d198 198 15 780 15 891 16 281.8 16 321.5 161.2 15 797 15 839.5 15 856.0
kroa200 200 29 368 29 868 30 721.7 30 624.5 177.1 29 471 30 118.8

krob200 200 29 437 30 189 31 076.1 31 371.5 185.6 29 743 30 366.0

pr299 299 48 191 49 059 50 017.2 49 923.5 300.4 48 995 50 019.1
lin318 318 42 029 43 349 44 647.6 44 483.5 325.4 42 820 43 550.1 42 334 42 605.3 42 426.0

pcb442 442 50 778 52 530 53 239.8 53 275.0 525.6 52 263 53 719.8 51 097.5 51 794.0
att532 532 27 686 28 765 29 524.4 29 495.5 640.2 28 233.0
rat575 575 6773 7062 7118.5 7122.5 632.5 7081 7152.0
rat783 783 8806 9286 9369.5 9366.5 886.2 9235 9374.2 9142.0

pr1002 1002 259 045 272 172 275 672.2 275 804.0 1149.0 274 828 277 906.7
pcb1173 1173 56 892 60 496 61 610.8 61 620.0 1413.5 60 910 61 184.0
rl1323 1323 270 199 289 545 294 883.3 295 508.5 1634.7 294 547 296 999.4
fl1400 1400 20 127 20 761 21 811.1 21 893.0 1716.1 21 037 21 117.8

d1655 1655 62 128 65 138 66 270.9 66 243.5 1961.4 65 484 66 078.4
u1817 1817 57 201 62 138 63 132.2 63 122.5 2305.3
rl1889 1889 316 536 342 947 349 416.3 350 347.0 2381.0
d2103 2103 79 952 83 363 83 906.7 83 851.0 2919.0
u2152 2152 64 253 68 786 70 449.2 70 492.5 2913.6

result quality obtained with setting τ̂ = 16 for selected

benchmark instances over 30 runs. We also provide the median

of the runtime rt obtained with this configuration (as opposed

to Figure 3.h, where the rt statistics are given over all τ̂

settings). We find that SDGP is not fast for small problem

instances. However, rt increases very slowly with the prob-

lem scale, only slightly super-linear (showing again that the

quadratic time complexity is a worst-case issue). Here rt

often tends to be close to the number n of nodes, just in

seconds, for small problems and close to 1.5n for larger ones.

Comparing the results of SDGP with the presented settings

to results of other methods published in the literature is

not easy. The reason is that these usually are obtained with

different termination criteria (and hence significantly more

iterations), with algorithms that have a time complexity in

at least O
(

n3
)

, for different numbers of runs, and often are

incomplete.

We still list the results of the approaches listed as related

work in Section III-A for the sake of completeness. SDGP

is comparable to p-ACGA [16], in terms of its performance.

However, the GA part of p-ACGA runs for 50n generations

with population size of 100, which avails to, e.g., 50 ∗ 51 ∗
100 = 255 000 evaluated candidate solutions for the small-

scale problem eil51, as opposed to the 16 384 development

steps in total used by SDGP for each problem. Still, SDGP is

generally on par with this method, sometimes providing better

best solutions, sometimes worse.

The inver-over EA can be said to outperform both

methods. However, the results reported in [24] stem from

experiments where this EA was run until stagnation. For

example, the number of applied search operations for the

small-scale problem eil51 were reported as 147 972. Our goal

was to find good solutions fast, within time complexity of

O
(

n2
)

.

The hybrid-GA [15] was run for 1000 generations with n

individuals, i.e., also for the eil51 problem the results are based

on at least 51 000 evaluated candidate solutions. Only results

for four instances are reported, in two of which SDGP finds

better best solutions. The results of MAX-MIN ACS [14]

were obtained by performing 100n steps with complexity



O
(

n2
)

, i.e., in O
(

n3
)

. Hence this system exhibits better mean

performance than SDGP.

The results provided by SDGP in our experiments are not

better than those of the related state-of-the-art methods. How-

ever, our results were obtained with much fewer iterations,

so they are actually very encouraging. From 54 statistical

values which can be compared with p-ACGA (which uses

significantly more iterations), it is better in 17 and not different

in 6, for example.

VI. CONCLUSIONS

In this paper we introduced SDGP, an indirect encoding

method for solving TSPs. As optimization algorithm, we have

applied GP where the genotypes are mathematical functions in

the common tree encoding. The phenotypes are permutations

representing the node sequences, i.e., the usual candidate

solutions for TSPs. The first such candidate solution is created

by an initialization procedure. In a genotype-phenotype map-

ping, the genotypes select potential modification operations to

be applied to the best phenotype known before the current

generation in order to refine it and to discover better results.

We have shown that SDGP has an overall quadratic time

complexity. Through extensive simulation experiments, we

found that the solution quality provided by it decreases slowly

with the problem scale n and its runtime increases slowly as

well.
It is not easy to compare our approach to results reported

in the literature, as these have been obtained with largely
different setups, in particular usually by granting the respective
algorithms significantly more iterations. As part of our future
work, it is therefore necessary to conduct experiments with
different algorithms in order to create a more sound basis for
algorithm comparisons.

Acknowledgements. This work has been supported by the National Natural

Science Foundation of China (NSFC) Grant Number 61150110488, the China

Postdoctoral Science Foundation Special Financial Grant number 201104329,

and the Chinese Academy of Sciences (CAS) Fellowship for Young Interna-

tional Scientists 2011Y1GB01.

REFERENCES

[1] J. Ouyang, T. Weise, A. Devert, and R. Chiong, “SDGP: A
Developmental Approach for Traveling Salesman Problems,” in
Proceedings of the 2013 IEEE Symposium on Computational
Intelligence in Production and Logistics Systems (CIPLS’13).
Singapore: Grand Copthorne Waterfront Hotel: Los Alamitos,
CA, USA: IEEE Computer Society Press, April 15–19, 2013,
pp. 78–85.

[2] B. F. Voigt, Der Handlungsreisende – wie er sein soll und was
er zu thun hat, um Aufträge zu erhalten und eines glücklichen
Erfolgs in seinen Geschäften gewiß zu sein – von einem alten
Commis-Voyageur. Ilmenau, Germany: Voigt, 1832, excerpt:
“. . . Durch geeignete Auswahl und Planung der Tour kann man
oft so viel Zeit sparen, daß wir einige Vorschläge zu machen
haben. . . . Der wichtigste Aspekt ist, so viele Orte wie möglich
zu erreichen, ohne einen Ort zweimal zu besuchen. . . . ”.

[3] D. L. Applegate, R. E. Bixby, V. Chvátal, and W. J. Cook,
The Traveling Salesman Problem: A Computational Study,
ser. Princeton Series in Applied Mathematics. Princeton, NJ,
USA: Princeton University Press, February 2007. [Online].
Available: http://books.google.de/books?id=nmF4rVNJMVsC

[4] F. Greco, Ed., Traveling Salesman Problem.
Vienna, Austria: IN-TECH Education and

Publishing, September 2008. [Online]. Available:
http://intechweb.org/downloadfinal.php?is=978-953-7619-10-7&type=B

[5] E. L. G. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan,
and D. B. Shmoys, The Traveling Salesman Problem: A
Guided Tour of Combinatorial Optimization, ser. Estimation,
Simulation, and Control – Wiley-Interscience Series in Discrete
Mathematics and Optimization. Chichester, West Sussex,
UK: Wiley Interscience, September 1985. [Online]. Available:
http://books.google.de/books?id=BXBGAAAAYAAJ

[6] J. R. Koza, Genetic Programming: On the Programming
of Computers by Means of Natural Selection, ser. Bradford
Books. Cambridge, MA, USA: MIT Press, December 1992,
1992 first edition, 1993 second edition. [Online]. Available:
http://books.google.de/books?id=Bhtxo60BV0EC

[7] R. Poli, W. B. Langdon, and N. F. McPhee, A Field Guide
to Genetic Programming. London, UK: Lulu Enterprises
UK Ltd, March 2008, with contributions by John R.
Koza. [Online]. Available: http://www.lulu.com/items/volume
63/2167000/2167025/2/print/book.pdf

[8] T. Weise, Global Optimization Algorithms – Theory and
Application. Germany: it-weise.de (self-published), 2009.
[Online]. Available: http://www.it-weise.de/projects/book.pdf

[9] W. J. Cook, D. G. Espinoza, and M. Goycoolea, “Computing
with Domino-Parity Inequalities for the TSP,” Atlanta,
GA, USA: Georgia Institute of Technology, Industrial and
Systems Engineering, Tech. Rep., 2005. [Online]. Available:
http://www2.isye.gatech.edu/∼wcook/papers/DP paper.pdf

[10] W. J. Cook, “Results of Concorde for TSPLib
Benchmark,” December 2003. [Online]. Available:
http://www.tsp.gatech.edu/concorde/benchmarks/bench99.html

[11] G. Reinelt, “TSPLIB,” 1995. [Online]. Available:
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/

[12] V. Chvátal, “The Traveling Salesman Prob-
lem,” October 2008. [Online]. Available:
http://users.encs.concordia.ca/∼chvatal/tsp/tsp.html

[13] K. Jung and B. Moon, “Toward Minimal Restriction of Genetic
Encoding and Crossovers for the Two-Dimensional Euclidean
TSP,” vol. 6, no. 6, pp. 557–565, December 2002. [Online].
Available: 10.1109/TEVC.2002.804321

[14] T. Stützle and H. H. Hoos, “MAX-MIN Ant System
and Local Search for the Traveling Salesman Problem,”
in Proceedings of the IEEE International Conference
on Evolutionary Computation (CEC’97), T. Bäck,
Z. Michalewicz, and X. Yao, Eds. Indianapolis, IN,
USA: Piscataway, NJ, USA: IEEE Computer Society,
April 13–16, 1997, pp. 309–314. [Online]. Available:
http://www.gta.ufrj.br/ensino/cpe717-2011/stutzle97-icec.pdf

[15] C. M. White and G. G. Yen, “A Hybrid Evolutionary Algo-
rithm for Traveling Salesman Problem,” in Proceedings of the
IEEE Congress on Evolutionary Computation (CEC’04), vol. 2.
Portland, OR, USA: Los Alamitos, CA, USA: IEEE Computer
Society Press, June 20–23, 2004, pp. 1473–1478.

[16] P. Chang, W. Huang, and Z. Zhang, “A Puzzle-Based
Genetic Algorithm with Block Mining and Recombination
Heuristic for the Traveling Salesman Problem,” Journal
of Computer Science and Technology (JCST), vol. 27,
no. 5, pp. 937–949, September 5, 2012. [Online]. Available:
http://jcst.ict.ac.cn:8080/jcst/EN/10.1007/s11390-012-1275-3

[17] X. Yao, “An Empirical Study of Genetic Operators in Genetic
Algorithms,” Microprocessing and Microprogramming, vol. 38,
no. 1-5, pp. 707–714, September 1993. [Online]. Available:
http://www.cs.bham.ac.uk/∼xin/papers/euro93 final.pdf

[18] A. Devert, T. Weise, and K. Tang, “A Study on
Scalable Representations for Evolutionary Optimization
of Ground Structures,” Evolutionary Computation,
vol. 20, no. 3, pp. 453–472, Fall 2012. [Online]. Available:
http://www.marmakoide.org/download/publications/devweita-ecj-preprint.pdf

http://books.google.de/books?id=nmF4rVNJMVsC
http://intechweb.org/downloadfinal.php?is=978-953-7619-10-7&type=B
http://books.google.de/books?id=BXBGAAAAYAAJ
http://books.google.de/books?id=Bhtxo60BV0EC
http://www.lulu.com/items/volume_63/2167000/2167025/2/print/book.pdf
http://www.it-weise.de/projects/book.pdf
http://www2.isye.gatech.edu/~wcook/papers/DP_paper.pdf
http://www.tsp.gatech.edu/concorde/benchmarks/bench99.html
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
http://users.encs.concordia.ca/~chvatal/tsp/tsp.html
10.1109/TEVC.2002.804321
http://www.gta.ufrj.br/ensino/cpe717-2011/stutzle97-icec.pdf
http://jcst.ict.ac.cn:8080/jcst/EN/10.1007/s11390-012-1275-3
http://www.cs.bham.ac.uk/~xin/papers/euro93_final.pdf
http://www.marmakoide.org/download/publications/devweita-ecj-preprint.pdf


[19] P. J. Bentley and S. P. Kumar, “The Ways to Grow Designs:
A Comparison of Embryogenies for an Evolutionary Design
Problem,” in Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO’99), W. Banzhaf, J. M.
Daida, Á. E. Eiben, M. H. Garzon, V. Honavar, M. J.
Jakiela, and R. E. Smith, Eds. Orlando, FL, USA:
San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., July 13–17, 1999, pp. 35–43. [Online]. Available:
http://www.cs.ucl.ac.uk/staff/ucacpjb/BEKUC1.pdf

[20] C. Ryan, J. J. Collins, and M. O’Neill, “Grammatical
Evolution: Evolving Programs for an Arbitrary Language,”
in Proceedings of the First European Workshop on
Genetic Programming (EuroGP’98), ser. Lecture Notes
in Computer Science (LNCS), W. Banzhaf, R. Poli,
M. Schoenauer, and T. C. Fogarty, Eds., vol. 1391/1998.
Paris, France: Berlin, Germany: Springer-Verlag GmbH,
April 14–15, 1998, pp. 83–95. [Online]. Available:
http://www.grammatical-evolution.org/papers/eurogp98.ps

[21] X. Yao and Y. Shi, “A Preliminary Study on Designing Artificial
Neural Networks Using Co-Evolution,” in Proceedings of 1st
IEEE Singapore International Conference on Intelligent Control
and Instrumentation (SICICI’95). Singapore: IEEE (Institute of
Electrical and Electronics Engineers), IEEE Singapore Section,
July 2–8, 1995, pp. 149–154, invited Paper. [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.55.6071

[22] X. Yao, “Evolving Artificial Neural Networks,”
Proceedings of the IEEE, vol. 87, no. 9, pp. 1423–
1447, September 1999, invited Paper. [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.14.793

[23] A. Devert, “Building Processes Optimization: Toward an Ar-
tificial Ontogeny based Approach,” Ph.D. dissertation, Paris,
France: Université Paris-Sud, Ecole Doctorale d’Informatique
and Orsay, France: Institut National de Recherche en Informa-
tique et en Automatique (INRIA), Centre de Recherche Saclay
– Île-de-France, May 2009.

[24] G. Tao and Z. Michalewicz, “Inver-over Operator for the
TSP,” in Proceedings of the 5th International Conference on
Parallel Problem Solving from Nature (PPSN V), ser. Lecture
Notes in Computer Science (LNCS), Á. E. Eiben, T. Bäck,
M. Schoenauer, and H. Schwefel, Eds., vol. 1498/1998.
Amsterdam, The Netherlands: Berlin, Germany: Springer-
Verlag GmbH, September 27–30, 1998, pp. 803–812. [Online].
Available: http://cs.adelaide.edu.au/∼zbyszek/Papers/p44.pdf

[25] D. S. Johnson and L. A. McGeoch, “Experimental
Analysis of Heuristics for the STSP,” in The Traveling
Salesman Problem and its Variations, ser. Combinatorial
Optimization, G. Z. Gutin and A. P. Punnen, Eds.
Norwell, MA, USA: Kluwer Academic Publishers, 2002,
vol. 12, ch. 9, pp. 369–443. [Online]. Available:
http://www2.research.att.com/∼dsj/papers/stspchap.pdf

[26] N. Christofides, “Worst-Case Analysis of a New Heuristic for
the Travelling Salesman Problem,” Pittsburgh, PA, USA: Carn-
egy Mellon University (CMU), Graduate School of Industrial
Administration, Management Sciences Research Group, Man-
agement Sciences Research Report 388 / CS-93-13, February
1976.

[27] R. C. Prim, “Shortest Connection Networks and Some
Generalizations,” Bell System Technical Journal, vol. 36,
no. 6, pp. 1389–1401, November 1957. [Online]. Available:
www.alcatel-lucent.com/bstj/vol36-1957/articles/bstj36-6-1389.pdf

[28] V. Jarnı́k, “O Jistém Problému Minimálnı́m: (Z Dopisu
Panu O. Borůskovi),” Práce Moravské Přı́rodovědecké
Společnosti: Acta Societatis Scientiarum Naturalium
Moravia, vol. 6, pp. 57–63, 1930. [Online]. Available:
http://books.google.de/books?id=GOc3HAAACAAJ

[29] T. Weise, R. Chiong, K. Tang, J. Lässig, S. Tsutsui, W. Chen,
Z. Michalewicz, and X. Yao, “Benchmarking Optimization

Algorithms: An Open Source Framework for the Traveling
Salesman Problem,” IEEE Computational Intelligence Maga-
zine (CIM), vol. 9, no. 3, pp. 40–52, August 2014.

http://www.cs.ucl.ac.uk/staff/ucacpjb/BEKUC1.pdf
http://www.grammatical-evolution.org/papers/eurogp98.ps
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.55.6071
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.14.793
http://cs.adelaide.edu.au/~zbyszek/Papers/p44.pdf
http://www2.research.att.com/~dsj/papers/stspchap.pdf
www.alcatel-lucent.com/bstj/vol36-1957/articles/bstj36-6-1389.pdf
http://books.google.de/books?id=GOc3HAAACAAJ


This is a preview version of the paper [1] (see below for the reference).

Read the full piece at http://dx.doi.org/10.1109/CIPLS.2013.6595203.

@inproceedings{OWDC2013SADAFTSP,

author = {Jin Ouyang and Thomas Weise and Alexandre Devert

and Raymond Chiong},

title = {{SDGP: A Developmental Approach for Traveling

Salesman Problems}},

booktitle = {Proceedings of the 2013 IEEE Symposium on

Computational Intelligence in Production and

Logistics Systems (CIPLS’13)},

publisher = {Los Alamitos, CA, USA: IEEE Computer Society

Press},

address = {Singapore: Grand Copthorne Waterfront Hotel},

pages = {78--85},

year = {2013},

month = apr # {˜15--19, },

doi = {10.1109/CIPLS.2013.6595203},

eiid = {20134116837899},

inspec = {13752116},

},

After this paper, we began to more seriously focus on benchmarking TSP
algorithms and presented TSP Suite, a holistic framework for TSP solver
development, testing, benchmarking, and comparison in [29]. Our results there
showed that the algorithm presented here (in this current paper) is actually
not good at all.

http://dx.doi.org/10.1109/CIPLS.2013.6595203

	Introduction
	Problem Definition
	Background
	Related Work on TSPs
	Related Work on Ontogenic Representations

	The SDGP Approach
	Modification Operations for 
	Initialization
	Genotype-Phenotype Mapping
	Genetic Programming

	Experiments
	Conclusions

