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ABSTRACT Image retrieval is becoming more and more important due to the rapid increase of the
number of images on the web. To improve the efficiency of computing the similarity of images, hashing
has moved into the focus of research. This paper proposes a Deep Attention-based Hash (DAH) retrieval
model, which combines an attention module and a convolutional neural network to obtain hash codes with
strong representability. Our DAH has the following features: The Hamming distance between the hash codes
generated by similar images is small and the Hamming distance of hash codes of dissimilar images has a
larger constant value. The quantitative loss from Euclidean distance to Hamming distance is minimized.
DAH has a high image retrieval precision: We thoroughly compare it with ten state-of-the-art approaches on
the CIFAR-10 dataset. The results show that the Mean Average Precision (MAP) of DAH reaches more than
92% in terms of 12, 24, 36 and 48 bit hash codes on CIFAR-10, which is better than what the state-of- art
methods used for comparison can deliver.

INDEX TERMS Content-based image retrieval, depth-wise separable convolution kernel, Hamming dis-
tance, pairwise loss.

I. INTRODUCTION
How to guarantee the efficiency and accuracy of image
retrieval is a very challenging problem. Content-Based Image
Retrieval (CBIR) [1], [2] is a promising computer vision
technique, used to implement queries based on content-based
visual similarity, for example, color, texture and shape.
In CBIR, image representations and similarity measures are
two critical design choices. How to quickly and accurately
retrieve images from large-scale image data sets is particu-
larly challenging. Traditional CBIR methods [3], [4] are not
efficient on a large-scale corpus because of their high compu-
tational cost. Hashing is a practical strategy to speed-up this
process [5], [6].
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A hash function is applied to arbitrary data and produces
data of a fixed, usually small, size. Hashing is being increas-
ingly used for approximating the nearest instances for image
retrieval, especially in large-scale scenarios. Hashing image
retrieval presents high-dimensional raw images as compact
low-dimensional codes, and calculates the similarity between
images according to their Hamming distance [1], [2]. With
the ability to represent richer information within little storage
capacity, hashing can effectively reduce the memory require-
ment and computational load. Hashing receives increasing
attention from the CBIR community and is widely used to
approximate nearest neighbor retrieval [7], [8].

Deep hashing has become a research hotspot due to
the advancement of deep learning and its ability to
learn the semantic features and hash encoding for images
simultaneously [9]–[14]. As the neural network deepens,
the semantic information that it can represent becomes more
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comprehensive. The emergence of the convolutional neu-
ral network (CNN) AlexNet [15] in 2012 was a signifi-
cant turning point in deep learning research. Subsequently,
VGGNet [16], GoogLeNet [17], and ResNet [18] have suc-
cessively increased the performance. Several CBIR methods
using deep learning based on CNNs [19]–[23] have been
proposed. By adopting CNNs to extract rich semantic features
from images and using hashing technology to obtain binary
codes for representing images, these methods provide high
image retrieval precision. Deep learning is powerful, but also
faces problems in terms of storage capacity and computing
efficiency [24]. Liu et al. [9] presented a shallow neural net-
work structure (DSH) for reducing the storage requirements
and improving the efficiency.

Noh et al. [10] developed DELF, using convolution to
strengthen the learning of local features, and Wei et al. [11]
proposed the SCDA method for extracting fine-grained fea-
tures. The improvement of the hash coding ability is mainly
reflected in the design of the loss function. The Siamese
Network [12] is a pair-based method, which encourages pos-
itive samples to approach and set apart the distance between
negative samples. The triplet network was proposed in [13]:
each triple contains a positive and a negative sample pair.
This triplet model aims to make sure that the similarity of the
negative pair is always lower than that of the positive pair.
Ge et al. developed the hierarchical triple loss (HTL) [14].
HTL constructs a three-level hierarchical tree of all image
categories and trains accordingly.

We propose to learn more effective hash functions and
hash codes by improving the unsupervised learning mod-
ule and loss function. Given the excellent performance of
attention in visual recognition [25]–[30], some existing meth-
ods [54]–[56] try to introduce the visual attention mechanism
into the deep model, so as to achieve more robust feature
learning. In [54], Shu et al. adopt an attention mechanism to
quantify the contribution of a certain motion by measuring
the consistency between itself and the whole activity under
the Global Context Coherence (GCC) constraint. Inspired by
this, we integrate an attention module into the neural network
and further study the problem of how to build a uniform and
deep framework for CBIR by combining a hashing and an
attention module.

We present the deep attention-based hash coding
method (DAH) with pairwise tag information for large-scale
image retrieval. Figure 1 illustrates the DAH framework.
We use a deep residual network as the backbone and integrate
the Convolutional Block Attention Module (CBAM) [30] to
enhance the feature representation. The images and labels
of the training set are organized into pairs. We train our
model using a logarithmic loss function under the supervised
information of paired images and labels. Finally, we build the
classification layer after the hash encoding layer. Our model
attains the ability of positive correlation optimization by
jointly solving these two tasks. We evaluate the performance
of DAH in a comprehensive experiment. We find that it has
significant advantages regarding the retrieval precision of the

n nearest neighbor images in comparison with the state-of-
the-art.

Our contributions are summed up as follows:

1. We construct the deep attention-based hash network
(DAH). The attention module is seamlessly integrated
into the neural network. The proposed method effec-
tively extracts the semantic features of the data, thus
significantly improving the image retrieval precision.

2. We organize paired batches of images as input sources,
which have both classified One-Hot tags and similarity
information. The semantic similarity representation and
classification recognition ability are interconnected and
optimized, such that the proposed model can improve
the level of classification while achieving strong hash
encoding capabilities.

3. We improve upon the original sigmoid activation func-
tion and design a logarithmic hash lossfunction. This
not only leads to a smooth gradient change between the
hash layer and the classification layer, but also allows
the trained model to produce similarity features.

The remaining sections of this paper is organized as fol-
lows. Section 2 provides a brief overview of the related work
on hash retrieval methods. In Section 3, we introduce our
novel deep attention-based hash retrieval model along with a
thorough theoretical analysis. Section 4 provides the perfor-
mance evaluation and discussion on the CIFAR-10 dataset.
Finally, the conclusions and outlook on future work are dis-
cussed in Section 5.

II. RELATED WORK
A. CONVENTIONAL HASHING
The representation of image similarity has always been a
hot spot for research, especially fast approximate nearest
neighbor search. Unsupervised retrieval method provides a
hash function that uses unlabeled samples for training. Local-
ity Sensitive Hashing (LSH) [3] is a characteristic unsu-
pervised neighbor hash search approach. LSH maps similar
image to similar binary codes by utilizing random projec-
tions. However, in order to obtain high retrieval precision,
LSH usually requires large codes, resulting in high memory
consumption. Spectral Hashing (SH) [31] combines hashing
and spectral analysis to produce compact binary codes by
thresholding with non-linear functions along the principal
component analysis directions of the image data. PCA-Hash
(PCA-H) [4] constructs a hash function by extracting the
intrinsic relationship between data. This hash function can be
continuously updated in order to minimize errors. Iterative
Quantization (ITQ) [32] minimizes the quantization error
between the binary code and the original data via a rotation
matrix.

Supervised retrieval methods generate a hash function by
labeling the samples, which usually produces a compact
binary-coded representation. Many studies have shown that
supervised models can obtain richer semantic information
from labeled samples, and have higher search precision than
unsupervised methods [33]–[35]. Supervised Hashing with

142230 VOLUME 8, 2020



X. Li et al.: Image Retrieval Using a DAH

FIGURE 1. Framework of the proposed DAH.

Kernels (KSH) [34] is a representative supervised learning
retrieval method. KSH minimizes the Hamming distance of
the binary codes representing similar image pairs. At the
same time, it also maximizes the Hamming distance between
different pairs. Supervised Discrete Hashing (SDH) [35] inte-
grates the generation of hash codes with the training of linear
classifiers and the expected retrieval effect is also improved.
Column Sampling Based Discrete Supervised Hashing
(COSDISH) [33], another discrete supervised hashing
approach, is implemented by iteratively sampling columns
from a similarity matrix and optimizing the sampled infor-
mation alternately.

B. DEEP HASHING
Hierarchical rich mid-level feature representation in deep
learning often can capture the semantic information of
images better than conventional algorithms. CNNH [19]
is an early-stage deep learning-based hashing algorithm
with excellent performance. It demonstrated the potential
of CNNs as hashing methods. Network In Network Hash-
ing (NINH) [20] preserves image similarity through triplet
ranking loss. Deep Supervised Hashing (DSH) [9] and Deep
Pairwise Supervised Hashing (DPSH) [36] are based on pair-
wise loss, which was shown to achieve high precision. Deep
Regularized Similarity Comparison Hashing (DRSCH) [23]
makes use of the similarity between image pairs as a reg-
ular term while also using triple loss. These methods are
proposed to provide a universal solution for CBIR tasks.
Deep hashing algorithms have received widespread attention.
The works [37], [38] propose supervised hashing for face
queries and fast image queries and [39], [40] conduct research
on deep hashing for cross-modal image queries. Supervised
Deep Hashing Perception (SDHP) [6] is a loss calculation
method combining paired loss and quantized loss, which
further improves the retrieval precision. The Deep Incre-
mental Hashing Network (DIHN) [41] is a hash method for

incremental retrieval. While maintaining retrieval precision
and reducing training time, Deep Saliency Hashing (DSaH)
[8] uses attention networks and combines semantic loss,
saliency loss, and quantization loss to give the model fine-
grained retrieval capabilities.

Recently, several advanced deep hash models have
appeared, such as [53], [57], [58]. Sun et al. [53] propose
an end-to-end supervised hierarchical cross-modal hashing
method, consisting of two key components: the hierarchical
discriminative learning and regularized cross-modal hashing.
In [57], Jin et al. develop deep ordinal hashing (DOH), which
learns ordinal representations to generate ranking-based hash
codes by leveraging the ranking structure of feature space
from both local and global views. Similar to [57], Lai
et al. [58] propose a deep-networks-based hashingmethod for
multi-label image retrieval, by incorporating automatically
generated region proposals and label probability calculations
in the hash learning process.

The goal of our new image retrieval method DAH is
to improve retrieval efficiency, precision, and stability by
using a high-quality hash coding. We propose to learn the
hash function by integrating an attention module into the
CNN model. We construct the backbone architecture of the
DAH model based on the RestNet50 structure, while reduc-
ing the amount of network parameters to decrease the time
consumption of model updates. By introducing an attention
module into the DAH, our model avoids excessive computa-
tional loads, while improving the retrieval precision. Finally,
we design a batch-based loss function for the end-to-end
learning mechanism, thus optimizing the model as a whole.

III. DEEP ATTENTION-BASED HASH MODEL FOR IMAGE
RETRIEVAL
We now discuss the details of our deep attention-based
hash model for image retrieval (DAH). The structure of
the DAH is the unified end-to-end CNN framework shown
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TABLE 1. ResNet30 backbone network structure (serving CIFAR-10 data set).

in Figure 1. First, an attention-based deep hash network is pre-
sented to learn a hash function from the training set. Second,
a batch-based logarithmic loss function is developed, with
the aim of making the Hamming distance of image hashes
of the same category as small as possible, while maintain-
ing a constant distances for hashes of images from differ-
ent categories. This improves the hash code quality. Finally,
the hyper-parameters of the model and our method are
explained.

A. FORWARD STRUCTURE
ResNet50 [18] shows excellent results in image recogni-
tion, detection and segmentation on the ImageNet [42] and
COCO [43] data set. This kind of network with residual
structure is often used and has achieved great performance
in CBIR tasks [5], [7], [44], [45]. However, a large number
of stacks at the network level will inevitably result in an
explosive growth of the number of parameters. This results
in greatly reduced computing efficiency. In our proposed
DAH network, we only use a core structure of 30 layers
of ResNet50 (see Table 1). Furthermore, DAH uses the

depth-wise separable convolution kernel from Xception [46]
to replace the traditional convolution structure. Xception has
a higher recognition accuracy on the ImageNet dataset than
Inception V3 [47], which uses the traditional convolution
kernel with the same number of parameters.

In order to complement the feature representation of our
model, we introduce the attention module CBAM [30] into
three important intermediate nodes in ResNet30. Through
emphasizing or suppressing intermediate features, the inter-
mediate feature map is adaptively refined along the spa-
tial and channel dimensions in CBAM. The number of
parameters of ResNet30 with attention module are reduced
by 87.48% compared to ResNet50. Therefore, the struc-
ture we used allows for a much faster computation of
hashes.

The top-level structure in the forward structure is a crucial
part in improving the precision of the hash search. We append
a fully-connected layer between the classification layer and
the global average pooling layer, to improve upon the orig-
inal top-level structure of ResNet50. The amount of nodes
in the added fully-connected layer is k , which is equal to
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TABLE 2. Comparison of DAH and state-of-the-art methods based on MAP. The highest indicator is bold and placed on the first line. ∗means that the
values are taken from the original papers.

the length of the hash code. We explore the performance
of DAH for 12, 24, 36, and 48 bits. The fully-connected
layer is used to calculate the output, i.e., the hash code,
and is also responsible for the model classification results,
especiallymatching the gradient descent in the back structure.
To attain a smooth distribution of the expected outcomes,
we modify the activation function of the hash layer shown as
follows:

shrink · sigmoid(x) =
1
4
+

1

2
(
1+ e−x

) (1)

Here, x stands for the output of the hash layer in the DAH
framework. The shrink sigmoid function above performs a
non-linear conversion on the output layer. Compare with the
original sigmoid version, the shrink sigmoid function reduces
the mapping transformation range from [0, 1] to [1/4, 3/4].
This modification is beneficial to the transfer of parameters.
Based on Equation (1), we enhance the dependency rela-
tionship between the hash layer and the classification layer.
There is a positive correlation gradient optimization direction
during the back propagation process in the output of these two
layers.

Our network with the default size as given in Table 1 can
represent RGB images of 32∗32 pixels, i.e., 3072 numbers
with 8 bits each (24576 bits in total), as hash codes of k bits
length. Of course, other input sizes are also possible.

B. BACK STRUCTURE
The back structure determines the direction of the model
change. It calculates partial derivatives of the loss function
in the opposite direction of the forward structure, thereby
iteratively tuning the parameters. In this procedure, the objec-
tive function implies the direction for the model update and
has a huge impact on the performance. With the aim to
get high-quality model parameters, we develop a novel loss
function based on the characteristics of the classification,
encoding, and quantization used in our scenario.

First, we utilize the softmax classification function in the
classification layer. We use the cross-entropy loss method,
which is often adopted in classification tasks.

Second, to obtain a high-quality binary encoding from the
training, we organize pairs of image samples as input of the
model. The output of the hash layer in the model is the source
for obtaining binary encoded information. Assuming that ω

represents the image space, then for the paired images I1, I2,
the Euclidean space obtained through the hash layer can be
expressed numerically as ω → [1/4, 3/4]k . The hash code
of each image can be represented as a vector of length k .
The output for the paired samples I1, I2 of the hash layer be
the vector x1, x2. Our design aims for assigning similar hash
codes to similar images, while the hash codes of dissimilar
images should have a larger constant Hamming distance.
To ensure the smoothness of the training transition, we adopt

VOLUME 8, 2020 142233



X. Li et al.: Image Retrieval Using a DAH

FIGURE 2. P-R curves with different hash bits. (1) 12 bits. (2) 24 bits. (3) 36 bits. (4) 48 bits.

a logarithmic loss function within (0.5, 1].

W1(x1, x2) =


‖x1 − x2‖2 S = 1∣∣∣∣∣t +

k∑
i=1

log(1− |x1 − x2|)

∣∣∣∣∣ S = 0
(2)

S =

{
1 I1 is similar to I2
0 I1 and I2 are not similar

(3)

Here t denotes the threshold value, which we set to k/4.8
in the experimental analysis. This Equation indicates that the
difference between two similar images in the output space
before quantization is measured in terms of the Euclidean
distance. When the Euclidean distance is smaller, the loss
function is smaller. Also, the distance of dissimilar images
is calculated by the logarithmic expression in Equation (2)
and the loss value is minimal only when this distance is equal
to the threshold t .
Finally, the real vectors x1, x2 need to be transformed to

the binary hash codes b1, b2. Ideally the transformed binary
codes b1, b2 over all images should be distributed uniformly
in order to increase the information capacity of the hash
function, which also reduces the quantization loss when map-
ping from the Euclidean to the binary space. With this in
mind, we re-defined the loss function in the original space
as follows.

W2(x1, x2) = (
2∑
i=1

j=k∑
j=1

(x ji − 0.5))2 (4)

Since the x1, x2 value range is [1/4, 3/4], Equation (4)
ensures that the variable output through the hash layer

fluctuates around 0.5. The mapping from x1, x2 to b1, b2 can
be expressed as follows.

bi =


1 if x i >

1
2

0 if x i <
1
2

(5)

Here i is the index of the bit to be encoded andW1,W2 are two
loss functions, which are used for the hash layer optimization.
W1 enables the training of the neural network for the simi-
larity features between images. W2 is an auxiliary function
to ensure the uniform distribution of the output results of
the hash layer, such that the learned coding information has
the maximum information capacity. We adopt the mini-batch
gradient descent method (MBGD) to ensure smooth improve-
ments when training the model.

C. TRAINING
Adopting the stochastic gradient descent method for train-
ing using single pairs of samples may result in a locally
optimal configuration. Therefore, we choose the general
mini-batch gradient descent method (MBGD) in the whole
hash network. The batch size is set to twice the number
of categories. Thus, each batch contains almost all possible
permutations and combinations of different categories. The
overall loss function of the hash layer can be expressed
as:

W =
1

A22n

2n∑
i=1

2n∑
j=1

[
ϕ1W1(xi, xj)+ ϕ2W2(xi, xj)

]
i 6= j (6)

142234 VOLUME 8, 2020



X. Li et al.: Image Retrieval Using a DAH

FIGURE 3. Precision curve regarding top-n with different hash sizes. (1) 12 bits. (2) 24 bits. (3) 36 bits. (4) 48 bits.

Here, ϕ1 and ϕ1 are the hyper-parameters to control the
influence of W1 and W2, respectively, and allow to establish
a trade-off between feature similarity and uniform hash code
distribution. We determined their appropriate values through
experimental cross-validation and found that setting both to 1
gives good results in our experiments. Since n denotes the
number of categories, the batch size value is 2n, and A22n
is the possible number of all combinations in the current
batch.

For training the model, we utilize the gradient optimization
method Adam [48] and follow the recommended settings:
We set the exponential decay rate of the first and the second
moment estimate in Adam to 0.9 and 0.999, respectively. The
initial learning rate is 0.001. Our initial experiments proved
that such a design has a positive effect on the training ofmodel
parameters.

IV. EXPERIMENTS AND DISCUSSIONS
In order to assess the performance of the proposed DAH
method, we perform a large number of evaluations on the
CIFAR-10 dataset. Of course, DAH is also applicable to other
data sets or retrieval tasks. We first present the basic informa-
tion and evaluation approach. Then we compare the proposed
DAH with several representative hashing image retrieval
models, such as LSH [3], SH [31], PCAH [4], ITQ [32],
SDH [35], and COSDISH [33] from the field of conven-
tional hashing, and the deep hashing models CNNH [19],
NINH [20], SDHP [6], BGAN [50], HashGAN [51], and
PGDH [52]. We also design experiments with and without
using the attention module in DAH.

FIGURE 4. Retrieval precision of Hamming distance within 2.

The hyper-parameters ϕ1, ϕ2, are both set to 1 using cross-
validation. The partition setting of CIFAR-10 is fixed. All the
results reported for the comparisonmethods are with the same
experimental setting. All the results reported in this paper
follow the protocol used in [6].

A. DATA SET AND EVALUATION METHODS
The CIFAR-10 [49] dataset contains 60,000 color images
with a size of 32 × 32 pixels. It is divided into ten cate-
gories, each of which contains 6000 images. The dataset has
50,000 images for training and the remaining 10,000 images
are to be used for testing. The complexity and diversity of this
data set are relatively high. If such a stress test shows good
results, it proves that the proposed DAH model is reliable.
In the CIFAR-10 dataset, two images are identified to be
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FIGURE 5. P-R curve regarding different number of bits. (1) 12 bits. (2) 24 bits. (3) 36 bits. (4) 48 bits.

FIGURE 6. Precision curves regarding the top-n indicator for different hash sizes. (1) 12 bits. (2) 24 bits. (3) 36
bits. (4) 48 bits.

semantically similar if they have the same label. Their hash
codes should then be similar as well. If two images have
different labels, they are semantically dissimilar and their
hash codes should have a larger constant Hamming distance.

We adopt four widely used evaluation criteria: (1) theMean
Average Precision (MAP), (2) the Precision-Recall (P-R)
curve based on Hamming distance ranking, (3) the Top-1000

precision rate based on Hamming distance ranking, and (4)
the search precision of the hashes within Hamming distances
of at most 2. We also list the performance indicators for our
DAH method without the attention module, which we call
NoneA-DAH. The two variants are compared and discussed
in detail in Section IV.C, while the following Section IV.B
focusses on DAH vs. the related work.

142236 VOLUME 8, 2020



X. Li et al.: Image Retrieval Using a DAH

TABLE 3. Comparisons in the top-1000 precision index. The highest indicator is bold and placed on the first line. ∗ means that the values are taken from
the original papers.

It should be noted that for BGAN [50], HashGAN [51], and
PGDH [52], only the MAP results on CIFAR-10 are reported
in their corresponding publications.

B. RESULTS ON THE CIFAR-10 DATASET
Table 2 demonstrates the MAP values of the algorithms
used in our experiment on the CIFAR-10 dataset. We set
the length of the hash code to 12, 24, 36, and 48 bits,
respectively. We find that DAH performs better than all
other approaches and beats BGAN, which ranks second,
by a 3% margin. The MAP of DAH is also 6.1% better in
average than SDHP, which also uses paired sample inputs.
This indicates that our DAH is feasible and has significant
advantages.

Figures 2 (1) to (4) show the P-R curves for hash sizes
of 12, 24, 36, and 48 bits, respectively. As can be seen,
the DAH method is again superior to the other methods,
especially on longer hash codes. We make four observations:
(1) As the recall rate increases, the precision of DAH shows
an overall upward trend. (2) Compared with the other meth-
ods, DAH has a clear lead in precision, especially when the
recall rate is high. (3) When the recall rate is not high, there
are several comparedmethods, such as SDHP and COSDISH,
which have higher precision. However, the gaps are not too
wide and still acceptable. In addition, good performance
does not only mean a high precision, but also a high recall.
(4) In terms of stability, our method performs best. With this,
we can argue that the ResNet30 model structure we designed
can extract image similarity features and the gradient opti-
mization of the mini-batch loss function can make better use
of the supervision information.

TABLE 4. Encoding time using different hashing methods for 48-bits hash
codes.

Table 3 illustrates the precision of the top 1,000 queries in
terms of Hamming on CIFAR-10. Here, DAH outperforms
SDHP by 8.87%, 4.72%, 4.29%, and 4.04% for 12, 24,
36, and 48 bits, respectively. Figure 3 demonstrates similar
results. The reason behind the high precision of DAH is
that it adopts the loss function shown in Equation (2). This
loss function reduces the distance between images of the
same category and maintains a constant distance between
dissimilar images. We can also see from Figure 3 that DAH
is more stable. The retrieval precisions at different hash sizes
all exceed 91%.

Figure 4 presents the retrieval precision for different hash
sizes on CIFAR-10 when the Hamming radius is 2. The time
complexity of such a Hamming ranking of n images is only
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FIGURE 7. Retrieval samples using NoneA-DAH.

O(n) [6], which makes it an efficient image retrieval tool. Our
DAH has basically the same retrieval precision for all hash
sizes. It outperforms the other methods for 12 bits and always
maintains a high precision of over 90%. This is attributable
to the shrink sigmoid activation function proposed in Equa-
tion 1, which leads to high precision even for small hash
sizes. On larger hash sizes, SDHP, PCAH, and COSDISH
perform slightly better in this performance metric. The per-
formance of our DAH method is very stable over different
hash lengths, which certainly is another important positive
feature.

C. IMPACT OF THE ATTENTION MODULE
We now implement a set of experiments to verify the effec-
tiveness of the attention module. For this purpose, we only
retain our novel loss function, our proposed training method,
and improved network structure — but remove the atten-
tion module. We refer to our method without the attention
module as NoneA-DAH. Table 2 also lists the MAP of
NoneA-DAH. We find that the attention module improves
the precision of DAH over NoneA-DAH by 0.43%, 0.13%,
0.32%, and 0.42% at 12, 24, 36, and 48 bits, respectively.
Even seemingly smaller improvements are important and
can have a tangible impact on larger datasets. On the other
hand, an MAP of 0.9267 is a very competitive result, even

compared with the latest state-of-the-art method [50]. At this
level, gaining another 0.5 percentage points can be considered
a valuable improvement. Similar results can be found in
Figure 5, which implies that the proposed attention mod-
ule plays a positive role in terms of the P-R curves, too.
It is noteworthy that the MAP values of both models peak
at hash lengths of 36 bits. This indicates that 36 bits are
more suitable for use in the hash-based image retrieval
task if we only consider retrieval precision, at least on the
CIFAR-10.

Table 3 also includes the top-1000 precision of NoneA-
DAH on the CIFAR-10 dataset. DAH has better precision
than NoneA-DAH in most cases (12, 36, and 48 bits). The
exception are 24 bit hashes, for which NoneA-DAH is better
than DAH, but only by 0.07%. Figure 6 shows the precision
curves regarding the top-n indicator for different hash sizes.
The precision of DAH is higher than NoneA-DAH in most
cases, but NoneA-DAH still outperforms the compared state-
of-the-art algorithms.

Inspired by the illustrations in [50], Figures 7 and 8 pro-
vide some visualized examples of image retrieval using
NoneA-DAH and DAH, respectively. Some false posi-
tives appear in Figure 7. The retrieval effect of DAH
is better than that of NoneA-DAH, for images with
birds.
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FIGURE 8. Retrieval samples using DAH.

FIGURE 9. Retrieval precision of within Hamming distance 2.

Figure 9 reports the retrieval precision when the Hamming
radius is 2. Overall, the precision of DAH is slightly better
than NoneA-DAH for hash codes of 12, 36, and 48 bits.

D. COMPUTATIONAL TIME
We now investigate the encoding time to assess the computa-
tional requirements of DAH. The encoding time is determined
as the average over the 50,000 training set images. Table 4

TABLE 5. Uniformity of the distribution of the binary codes.

illustrates the encoding time of all investigated hashing meth-
ods on CIFAR-10. Compared to traditional hash retrieval
algorithms, deep hash retrieval methods are generally slower.
The proposed DAH approach has significantly better perfor-
mance than similar methods such as SDHP +, which adopts
GoogLeNet [17] as backbone network. The encoding time
of NoneA-DAH is better than DAH. This indicates that in
some cases, NoneA-DAHmay be a good choice, as it already
can improve retrieval efficiency and maintain a high retrieval
precision.

E. UNIFORM DISTRIBUTION OF BINARY CODES
One important criterion for testing the quality of hash coding
procedures is whether they achieve a uniform distribution
of the generated binary codes. Having a uniform distribu-
tion indicates a high information representation capacity.
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We therefore compute the ratio of 1 and 0 values at each
bit index. A loss function is effective when distributing the
binary values evenly and the ratio approaches 1. The results
on CIFAR-10 are summarized in Table 5. For DAH, the result
approaches 1 more closely when larger hash sizes are used.
NoneA-DAH, on the other hand, achieves a slightly more
even distribution for shorter hash codes.

V. CONCLUSION
We presented a novel image retrieval model called Deep
Attention-based Hash (DAH) Network. Our DAH learns
supervised information end-to-end. We develop a pairwise
loss function for training the ability of capturing correla-
tion information between images. By this, we can obtain
discriminative binary codes for image retrieval. In addition,
we include an attention module into our network structure
to further improve the precision. Our experimental results on
the CIFAR-10 dataset show that our DAH method is supe-
rior to the state-of-the-art methods with respect to the most
important performance metrics. DAH reaches mean average
image retrieval precisions of 92.51%, 92.19%, 92.67%, and
92.31% for hash codes of sizes 12, 24, 36, and 48 bits,
respectively. This exceeds the best result of the conven-
tional methods, obtained by COSDISH with 54.93%, and
the best result attained by deep hashing methods, which is
89.4% (by BGAN). We also confirm experimentally that the
inclusion of the attention module in DAH is indeed helpful.
We plan to consider different model structures and analyze
the effects of these structures on the retrieval precision in
our future work. In addition, we will evaluate other modules
besides CBAM for inclusion and assess their impact on the
CBIR task.
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