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ABSTRACT

The Traveling Salesman Problem (TSP) is one of the most well-

known optimization problems. Ejection ChainMethods (ECM) and

the Lin-Kernighan (LK) heuristic are the state-of-art local search

(LS) algorithms for solving the TSP. Multi-Neighborhood Search

(MNS) is known to be especially suitable for hybridization with

Evolutionary Computation (EC). Hybridizing two di�erent LS al-

gorithms with each other (LS-LS) can combine their mutual ad-

vantages and lead to better performance. We introduce the new

concept of LS-LS-X hybrids, which combines two di�erent LS algo-

rithms with a crossover operator. We enhance the two best LS-LS

hybrids, ECM-LK and LK-MNS, with Order Based Crossover and

Heuristic Crossover. We hybridize these LS-LS-X algorithms with

an Evolutionary Algorithm, the most prominent EC method, and

obtain highly-e�cient (memetic) EC-LS-LS-X algorithms. We con-

duct a large-scale experimental study with many di�erent algo-

rithm setups on all 110 symmetric instances of the TSPLib bench-

mark set. We �nd that the LS-LS-X hybrids have signi�cantly bet-

ter performance than the original LS-LS and their component al-

gorithms. They even outperform several memetic EC-LS-LS and

EC-LS algorithm setups. The EC-LS-LS-X hybrids are the best hy-

brid EA-based TSP solvers by a largemargin in our experiment and

the wide range of algorithms available in the popular TSP Suite.
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1 INTRODUCTION

The Traveling Salesman Problem (TSP) [1, 14, 23] is maybe the

most prominent NP-hard problem, not only in terms of practical

applications, but also for being a test bed for novel optimization ap-

proaches [27]. Given a collection of n cities and the travel distance

between them, solving a TSP means to �nd the shortest round-

trip tour through all cities and back to the starting point. The TSP

can be formulated based on a cost matrix D = (Di, j ), where Di, j

is the cost of traveling from city i to j. The target then is to �nd

a permutation t of the integers from 1 to n minimizing the sum

Dt [1],t [2] + Dt [2],t [3] + · · · + Dt [n],t [1]. In this paper, we focus on

symmetric TSPs, where Di, j = Dj,i holds.

For all NP-hard problems [14, 40], any exact algorithm which

can guarantee to �nd the best solution has exponential worst-case

runtime complexity. Many approaches have thus been devised to

get good approximate solutions within acceptable runtime, includ-

ing Local Search (LS) algorithms [10, 24], and Evolutionary Algo-

rithms (EAs) [3, 7, 35]. The state-of-the-art LS approaches for the

TSP are the Lin-Kernighan (LK) heuristic [24] and Ejection Chain

Methods (ECM) [10]. Wu et al. [41] compared several hybrid and

http://www.acm.org/
http://dx.doi.org/10.1145/3071178.3071201
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pure versions of the LK heuristic with EAs [13]. Liu et al. [25] pro-

posed the Fundamental Stem and Cycle Method (FSM**), an im-
proved ECM based on the P_SEC algorithm [31]. Memetic Algo-
rithms (MAs) [29], combine the global search ability of an Evolu-
tionary Computation (EC) method such as an EAwith the exploita-
tion strength of a LS, are known to be especially e�cient [27]. Such
“EC-LS” algorithms usingMulti-Neighborhood Search (MNS) as LS
performed best in [36]. Only recently, researchers started to com-
bine di�erent LS algorithms to LS-LS hybrids in order to exploit
their mutual advantages [42].

With the present work, we make the following contributions:

(1) We introduce the new concept of LS-LS-X hybridiza-
tion, which combines two di�erent LS methods with a
crossover operator. The LS algorithms produce solutions
which are then recombined and serve as starting point for
the next LS iteration.

(2) We combine the two best known LS-LS hybrids, LK-MNS
and FSM**-LK [42], with Heuristic Crossover (HX) and
Order Based Crossover (OX2). We �nd that the resulting
LS-LS-X methods signi�cantly outperform their LS com-
ponents and the original LS-LS hybrids. It should be noted
that the state-of-the-art of metaheuristic TSP solving is
based on these outperformed component LS algorithms,
namely LK and FSM**, i.e., the new methods are very com-
petitive.

(3) We then hybridize our LS-LS-X hybrids with EAs. We �nd
that the end resulting EC-LS-LS-X algorithms perform bet-
ter and can solve more problem instances than any other
method in our experiments, in [25, 36, 41], and in the huge
algorithm portfolio of the popular TSP Suite.

(4) We conduct an in-depth statistically comparison of all
the above algorithms based on a large-scale experimen-
tal study, where 36 algorithm setups are applied to all 110
symmetric benchmark instances from TSPLib [32]. We ap-
ply runtime-behavior based statistics, which providemore
information than simple end-result comparisons.

(5) The LS-LS-X and EC-LS-LS-X concepts are very easy to
implement and, while we use the TSP as testbed, general-
ize to any kind of optimization problem.

The remainder of this paper is organized as follows. In Section 2,
we introduce the investigated algorithms LK, FSM**, and MNS, the
LS-LS hybrids, crossover operators, as well as our new LS-LS-X
and EC-LS-LS-X hybrids. We then present our experimental study
and discuss its results in Section 3. Finally, the paper ends with
conclusions and plans for future work in Section 4.

2 INVESTIGATED ALGORITHMS

2.1 Local Search

LS algorithms start at a random or heuristically-generated solution
(tour). They remember the best solution discovered so far and try
to improve it step by step by applying search operators.

A solution for a TSP is a tour and such a tour can be considered
as cyclic path consisting of n edges. Themost common search oper-
ators for the TSP are so-calledm-opt moves [36], which replacesm
of these n edges. The exchange of two cities in a tour corresponds
to the replacement of (at most) four edges (4-opt) [22, 28]. Rotating

a sub-sequence of cities to the left or right is a 3-opt [8, 22] move.
The reversal of a sub-sequence of a tour, the maybe most common
operator for the TSP, is a 2-opt move [19, 22].

If the LS cannot further improve its best tour, it may apply a
larger random modi�cation in order to escape from the local opti-
mum, while remembering the best overall solution in an additional
variable. This process is repeated until a termination criterion is
reached.

2.2 The Lin-Kernighan Algorithm

The LK heuristic is a LS approach published by Lin and Kernighan
[24] in 1973. Its derivatives dominate today’s TSP research and
many improvements have been proposed. When the Chained Lin-
Kernighan (CLK) algorithm [2] arrives at a local optimum from
which it cannot escape, it generates a new solution by a random
4-opt move instead of restarting at a random solution. CLK per-
forms particularly well on TSPs with a large number n of cities.
The Lin-Kernighan-Helsgaun (LKH) algorithm [17, 18] may be the
most e�cient LK variant.

We use the LK implementation from [41, 42] in our experiments.
It applies the �rst improving move discovered instead of scan-
ning a larger neighborhood for the best improving move, as the
original LK heuristic does. This was found to be more e�cient
in [17, 41]. We furthermore use candidate sets [24], i.e., limit the
choices of neighbors for any city in a tour to speed up the algo-
rithm.When reaching a local optimum, the algorithm uses the soft
restart approach described in [36, 41], where a randomly chosen
sub-sequence of the current tour is randomly shu�ed.

An in-depth description of the LK heuristic used in our investi-
gation can be found in [41], while [17, 18] provides further explana-
tions of the standard LK heuristic and its improvements. From [42],
we know that LK with a candidate set of size 10, in the following
abbreviated with LK10, is the most suitable version for hybridiza-
tion.

2.3 Ejection Chain Method: FSM**

The Ejection Chain Method (ECM) was introduced by Glover in
1992 [10]. Unlike other LS directly searching in the space of candi-
date solutions, ECMs work with Stem-and-Cycle (S&C) reference
structure. The structure consists of a path (called stem) attached to
a cycle of nodes. The root r marks one end of the stem, and another
end is called the tip t . The two neighboring nodes of r on the cycle
are called sub-roots (s1 and s2).

If the stem is degenerated to become a single node (i.e., r = t ),
the S&C structure becomes a tour. Otherwise, the S&C structure
can be transformed to two candidate tours by removing the edge
between one of the sub-roots si and the root r , and then re-
connecting si to the tip t . The better one of these two trial solutions
can be chosen.

During the search, the S&C structure is iteratively re�ned by
two search operators (called “rules”) [11, 31], which leave the root
r unchanged:

(1) Choose a node j on the cycle. Let the two nodes adjacent
to it be q1 and q2. Select one of them and refer to it as q.
Delete the edge between q and j and then add edge (t , j).
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(2) Choose a node j on the stem. Let the node adjacent to j

and farther away from r than the other adjacent node be
called q. Connect t to j and delete edge (j,q).

P_SEC is a particularly e�cient ECM proposed by Rego [31]. Here,
in each step, both rules and all possible node j are tested and the
combination which minimizes the overall edge length of the S&C
is applied. In our experiments, we use FSM** [25], which improves
P_SEC in several aspects. It does not allow an edge to be deleted a
second time during the search, i.e., being deleted, added, and then
deleted again from the S&C. The root of the S&C is changed af-
ter 0.45n steps and after 0.15n nodes have been used as root, the
algorithm applies the same soft restart method as the tested LK im-
plementation [36]. Each of these modi�cations has been con�rmed
to improve the overall performance [25].

2.4 Multi-Neighborhood Search

Another LS approach for the TSP is theMult-Neighborhood Search
(MNS). In each iteration, MNS performs an O (n2) scan that investi-
gates four neighborhoods (city swap, sub-sequence rotate left, sub-
sequence rotate right, and reversal) of a tour at once. It tests all
pairs {i, j} as potential indexes for cities to swap or start and end
indexes of sub-sequence rotations and reversals. For each pair {i, j},
the gain is computed and all discovered improving moves enter a
queue. After the scan, the best discovered move is carried out. Do-
ing this may invalidate some other moves in the queue, e.g., if a
sub-sequence reversal that overlaps with a potential sub-sequence
left rotation was performed. After pruning all invalidated moves
from the queue, the remaining best move is carried out, if any. If
the queue becomes empty, another scan of the current solution is
performed, as new moves may have become possible. If no improv-
ing moves can be found anymore, a random sub-sequence of the
current tour is randomly shu�ed.

This algorithm has performed the best among all of the LS meth-
ods tested in [36]. It is outperformed by both LK and FSM** in their
pure form, but its hybrid versions with Ant Colony Optimization
outperform theirs [25, 41].

2.5 Hybrid Local Search: LS-LS

Research on hybrid (“Memetic”) algorithms is almost entirely fo-
cused on combining global search (e.g., EC) and local search algo-
rithms (EC-LS), as done in [25, 27, 36, 41, 43], for instance. How-
ever, LS algorithms can already exhibit di�erent behaviors which
might complement each other. Some LS approaches (like MNS) are
e�cient to �nd good solutions quickly but can easily get stuck in
local optima. Others (LK, FSM**) might initially be slower but �nd
better �nal results [25, 41]. ECMs are considered to be able to ex-
plore parts of the search space which cannot be reached by LK [9].
The idea to hybridized di�erent LS to combine their mutual advan-
tages leading to better overall performance, i.e., the LS-LS concept,
gained interest with the work of Wu et al. [42].

2.6 Crossover Operators

Crossover operators and populations for guarding against prema-
ture convergence are the two major innovations brought by EAs
to optimization [35]. The input of a crossover operator are two
di�erent solutions which have been selected, i.e., which are good.

Combining their building blocks should hopefully lead to a new,
better solution uniting the positive aspects of both parents.

The heuristic crossover operator (HX)was introduced in [12, 22]
and focuses on combining parental edges. It creates an o�spring
tour in the following way: A random city is selected to be the cur-
rent city of the o�spring. Then, the cheapest one of the at most
four (undirected) edges connecting the current city to an unvis-
ited city from the parent tours is chosen. If none of the parental
edges leads to an unvisited city a random edge is selected. This is
repeated until a complete tour has been constructed.

The order based crossover operator (OX2) selects at random sev-
eral positions in a parent tour, and the order of the cities in the se-
lected positions of this parent is imposed on the other parent [22].

2.7 Hybrid Local Search with Crossover
Operator: LS-LS-X

In LS-LS hybrids, the second LS re�nes result solution of the �rst
LS. If it can �nd an improvement, the �rst LS is applied to that
solution. If neither can improve the solution anymore, a soft restart
is applied [42]. The concept of LS-LS hybrids can be thought of a
generalization of Variable Neighborhood Search [16], as it not just
switches neighborhoods but complete search strategies.

In our LS-LS-X hybrids, we plug a crossover operator between
the two LS algorithms. The �rst local search produces a tour t1
which is re�ned by the second local search to t2. Both t1 and t2
become the input to the crossover operator which then hopefully
combines their building blocks in a meaningful way. This process
is described in Algorithm 1 in detail.

Algorithm 1 LS-LS-X Hybrid Algorithm

1: set best current tour t to a random initial tour
2: while no stopping criterion is reached do

3: apply �rst LS to tour t to get a new tour t1
4: if f (t ) ≤ f (t1 ) then

5: go to line 15
6: end if

7: store t1 in t

8: apply second LS to tour t to get a new tour t2
9: if f (t ) ≤ f (t2 ) then

10: go to line 15
11: end if

12: apply crossover operator to t1 and t2 and get tour t3
13: store t3 in t

14: go to line 2
15: conduct a soft restart method and go to line 2
16: end while

17: return t and stop

Two issues should be noted: Our LS-LS-X algorithm may “lose”
the best solution discovered so far due to the crossover operator
(Line 12) or soft restart (Line 15 in Algorithm 1). This does not
matter as the TSP Suite, our experimentation environment, always
keeps a copy of the best solution discovered. Second, all LS algo-
rithms are implemented to start at an input solution t and either
return an improved tour of shorter length or t itself, but never a
worse result.
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2.8 Evolutionary and Memetic Algorithms

EAs are the most well-known EC approaches [4, 6]. (µ + λ)-EAs
�rst generate a set of λ random solutions. Out of these, the best
µ ≤ λ solutions will be selected as “parents” of the second gener-
ation. λ o�spring solutions are created by applying either a unary
(mutation) or binary (crossover) operator to the parents. From then
on, the µ best individuals are selected from the joint set of λ o�-
spring solutions and their µ parents in each generation.

We investigate MAs which combine such (µ + λ)-EAs with LS,
LS-LS, and LS-LS-X algorithms, respectively. The �rst population
of our MAs is not generated randomly, but instead stems from the
Edge-Greedy, Double Minimum Spanning Tree, Savings, Double-
Ended Nearest Neighbor, and Nearest Neighbor Heuristic, in order
to improve their performance [36].

It does not make sense to use the same crossover operator in
the MA that we use in our LS-LS-X hybrids. We thus apply Edge
Crossover [39] in the MA, which generates a new solution by
picking edges belonging to either of its two parents, as recombi-
nation operator. It is considered to be one of the best crossover
operators for the TSP [36]. The crossover rate is set to 1. The
LS (or LS-LS or LS-LS-X) component of the MA is applied to ev-
ery solution generated, both by these initialization heuristics and
crossover. The LS-LS-X procedure is therefore modi�ed to work
on a solution coming from the MA instead of a random initial tour
(Line 1 in Algorithm 1) and similar modi�cations are introduced
to LS and LS-LS. We propose four families of MAs: MA(µ + λ)-LS,
MA(µ + λ)-LS-LS, and MA(µ + λ)-LS-LS-X.

3 EXPERIMENTS AND RESULTS

We conduct a large-scale experimental study in which we perform
30 independent runs for 36 di�erent algorithm setups on all 110
symmetric TSPLib [32] benchmark cases. The maximum computa-
tional budget is set to 1 hour per run.

Most metaheuristics, including EAs, MAs, as well as all LS ap-
proaches are anytime algorithms [5]. Even several exact algorithms,
such as BB [21], fall into this category. Anytime algorithms can
provide a best guess of what the optimal solution of a problem
could be at any time during their run. This means that there are
no “�nal” solutions, as the point in time when the algorithm is
stopped may be arbitrarily chosen (here: after 1h). Thus, anytime
algorithms cannot just be characterized by a �nal solution and run-
time requirement, but should be compared based on their whole
runtime behavior [36].

We use the TSP Suite [36] to execute our experiments, gather
data about algorithm runtime behavior, and to evaluate these data.
The TSP Suite also addresses the problem of properly measuring
the time consumed by an algorithm: Runtime measurements pre-
sented in terms CPU seconds can capture all the complexities and
the overhead of the algorithm implementations, but are strongly
machine-dependent and inherently incomparable. Even if normal-
ized runtimes (NT) are calculated based on machine performance
factors, they remain problem speci�c and may not represent the
utility of black-box metaheuristics in general. Counting the num-
ber of generated solutions, i.e., objective function evaluations, or
FEs in short, is the most-often used alternative in benchmarking.

However, it neglects the fact that one FE in Ant Colony Optimiza-
tion has quadratic complexity, in an EA many mutation steps have
linear complexity, whereas in a LS algorithm using 2-opt opera-
tions, a new solution may be created in O (1). The TSP Suite thus
measures runtime in four di�erent ways, CPU time, normalized
CPU time, FEs, and the number DE of accesses to the distance ma-
trix D, in order to provide a balanced overview on algorithm per-
formance.

The TSP Suite furthermore ranks algorithms according to their
overall performance. This ranking includes statistical comparisons
of results at di�erent runtimes, empirical cumulative distribution
functions (ECDFs) [15, 20, 34] for di�erent goal values (see the fol-
lowing section), the progress of algorithms over time, estimated
running time (ERT) [15] curves, �nal results, as well as the ex-
pected runtime to reach the optimum, amongst others. It therefore
represents algorithm performance and robustness from several dif-
ferent angles. The ranking of all algorithm setups investigated can
be found at the end of this section in Figure 4.

3.1 LS, LS-LS and LS-LS-X Performance

First we will investigate LS, LS-LS, and LS-LS-X hybrids. We there-
fore de�ne 3 LS setups, namely LK10, FSM**, and MNS. LK10-MNS
and FSM**-LK10 have been established as the best LS-LS hy-
brids in [42]. Therefore, we introduce the crossover operators
HX and OX2 into these algorithms and obtain LK10-MNS-HX,
LK10-MNS-OX2, FSM**-LK10-HX, and FSM**-LK10-OX2.

According to the automated ranking obtained from the TSP Suite
(see Figure 4 at the end of the experiment section), LK10-MNS-HX
and FSM**-LK10-OX2 have the best performance amongst the LS,
LS-LS and LS-LS-X hybrids. The LS-LS hybrids are better than pure
LS. In Figure 1, we plot the ECDFs of selected setups for di�er-
ent goal errors Ft and runtime measures. The ECDF illustrates
the fraction of runs that have discovered a (best) solution with
Fb ≤ Ft , where Fb corresponds to the relative excess length of
the tour length compared to the global optimum. Fb = 0.01 would
correspond to a tour which is 1% longer than the globally optimal
tour of a given benchmark instance. The illustrated ECDFs are ag-
gregated over all 110 benchmark instances. An algorithm is the
better the faster and higher its ECDF rises.

The ECDF of LK10-MNS-HX in Figure 1a, based on the nor-
malized CPU runtime measure NT, reaches 0.58 for Ft = 0. In
other words, a global optimum can be reached in about 58% of
all runs on all benchmark cases under the given computational
budget. Initially, the ECDF curve of FSM**-LK10-OX2 rises quicker
than any others, but is overtaken by LK10-MNS-HX at end. Both
LK10-MNS-OX2 and FSM**-LK10-HX are a little bit slower com-
pared to the LS-LS hybrids at the beginning, but eventually out-
perform them. The LS-LS-X hybrids are very obviously better than
LS-LS hybrids, which in turn are very obviously better than pure
LS. This con�rms that hybridizing two LS algorithms by using a
crossover operators can improve the performance.

In Figure 1b, we change the runtime measure from normalized
CPU time NT to the number of objective function evaluations, i.e.,
FEs. This measure counts the search steps but disregards their al-
gorithmic complexity. Here, the hybrids starting with LK10 look a
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(a) ECDF for NT and Ft = 0.0 (b) ECDF for FEs and Ft = 0.0 (c) ECDF for NT and Ft = 0.01

Figure 1: ECDF diagrams of LS versions for di�erent (log-scaled) runtime measures and goal errors

bit slower, but there is no big di�erence to Figure 1a, i.e., between
the theoretical and the actual runtime behavior of the algorithms.

In Figure 1c, we increase the goal error Ft to 0.01. This goal can
be reached more often. The LK10-MNS-HX hybrid, for instance,
reaches 0.855, i.e., can �nd a solution not more than 1% longer than
the global optimum in 85% of its runs. The curves of FSM**-LK10,
FSM**-LK10-HX, and FSM**-LK10-OX2 initially behave the same,
probably due to the fact that all of them start with executing FSM**.
However, the LK10-MNS-HX algorithm again outperforms the oth-
ers eventually.

Additionally, we con�rm that di�erent LS-LS hybrids have dif-
ferent suitable crossover operator. For LK10-MNS hybrids, using
HX is better than OX2, but OX2 is a right choice for FSM**-LK10.
When Ft is a little bigger such as 0.01, the curves of LS-LS-X hy-
brids aremuch similar with corresponding LS-LS, but increase faster
and higher at the end. The reason may be that pure local search
algorithms such as LK10 and FSM** are already e�cient in �nd-
ing approximate solution of that quality. Crossover operators can
de�nitely help LS-LS hybrids to �nd high-quality approximate so-
lutions.

In Figure 2, we plot the ECDF over the normalized run-
time NT and Ft=0.0 about for problems of di�erent scale. The
ECDF of LK10-MNS-HX in Figure 2a reaches 1, meaning that
LK10-MNS-HX can solve all the benchmark problems with 128
to 255 cities. FSM**-LK10-OX2 can solve 98% of them. The best
LS-LS hybrid, FSM**-LK10, solves 72%. In Figure 2b, we extend
the problem scale to the range 256 . . . 511. 73% of these instances
can be solved by LK10-MNS-HX, while the best LS-LS hybrid,
again FSM**-LK10, can only solve 28%. FSM**-LK10-OX2 can solve
nearly twice as many problems. This is overwhelming evidence
that crossover very signi�cantly improves the capability of LS-LS
hybrids to solve problems, which already are much better than
pure LS algorithms.

3.2 EC-LS and EC-LS-LS Hybrids

After con�rming that LS-LS-X hybrids outperform pure LS and
LS-LS algorithms and knowing that EC-LS hybrids outperform

both pure EC and LS from [25, 36, 41], we now investigate combi-
nations of a EC and our new LS-LS-X algorithms, i.e., EC-LS-LS-X
hybrids.

For each of LK10-MNS-HX, LK10-MNS-OX2, FSM**-LK10-HX,
FSM**-LK10-OX2, LK10-MNS, FSM**-LK10, MNS, LK10, and
FSM**, three additional setups were evaluated: namely MA(2+4),
MA(2+8) and MA(16+64). This resulted in 27 setups of EC-LS,
EC-LS-LS and EC-LS-LS-X algorithms.

We �nd that di�erent setups of the same component algorithms,
e.g., MA(2+4) and MA(2+8), have relatively similar behavior for all
time measures. We choose representative setups from all di�erent
EC-LS-LS-X, EC-LS-LS and EC-LS combinations for illustration to
get less cluttered charts.

From the ECDF plots in Figure 3a, we observe an
improvement of performance in the EC-LS-LS-X meth-
ods compared to the LS-LS-X and EC-LS-LS algorithms.
MA(16+64)-LK10-MNS-HX �nds the optimal solutions
(Ft = 0) in 61% of its runs while the best MA-LS-LS hybrid,
MA(16+64)-LK10-MNS, succeeds in only 58% of its runs. Ini-
tially, MA(16+64)-FSM**-LK10, MA(16+64)-FSM**-LK10-HX and
MA(16+64)-FSM**-LK10-OX2 are faster than the other algorithms.
However, MA(16+64)-FSM**-LK10-HX (end ECDF is 0.59) over-
takes MA(16+64)-FSM**-LK10. MA(16+64)-FSM**-LK10-OX2 is
slower compared with MA(16+64)-FSM**-LK10. Furthermore,
the setups MA(16+64)-LK10-MNS, MA(16+64)-LK10-MNS-HX,
and MA(16+64)-LK10-MNS-OX2 have lower ECDF curves
than those which utilize FSM**-LK10 at beginning. Still,
MA(16+64)-LK10-MNS-HX defeats all the others in the end
and solves the most problems.

From this �gure the importance of collecting and evaluating
complete runtime behaviors becomes obvious, since here we clearly
observe that the right choice of algorithm depends on the available
runtime.

In Figure 3b, we use the number of objective function eval-
uations, i.e., FEs, instead of the normalized CPU time NT as
time measure. The ECDF curves of MA(16+64)-FSM**-LK10 and
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(a) ECDF for NT, Ft = 0.0 and 128 ≤ n < 255 (b) ECDF for NT, Ft = 0.0 and 256 ≤ n < 511

Figure 2: Although we conduct experiments with benchmark instances with between 14 and 85900 cities, here we present

ECDF diagrams for subsets of our experiments selected by problem scale, using the normalized runtime NT and Ft = 0.0.

(a) ECDF for NT and Ft = 0.0 (b) ECDF for FEs and Ft = 0.0

Figure 3: ECDF diagram of hybrid EC versions for di�erent (log-scaled) runtime measures and goal errors

MA(16+64)-FSM**-LK10-HX now rise much faster than other algo-
rithms and their end results are only slightly worse than the best
compared to MA(16+64)-LK10-MNS-HX.

Comparing the two �gures, we �nd that, although the
FSM**-LK10-based hybrids can make bigger advances with the
same amount of FEs for most of their course, this does not translate
1:1 to actually faster execution. Although they do have an advan-
tage if we measure runtime in terms of (normalized) clock time, it
is much smaller than what one would expect when only consider-
ing the algorithm steps. This emphasizes the importance of using
di�erent time measures to get a clear picture when benchmarking
optimization algorithms.

3.3 Summary

In Figure 4, we present an abridged algorithm performance rank-
ing of the representative setups obtained with the TSP Suite. This
ranking combines a variety of di�erent performance measures,
ranging from areas under the ECDF and ERT curves to statistical
tests comparing end results and expected runtimes to reach cer-
tain goal tour lengths. We observe that MA(2+4)-LK10-MNS-HX is
the overall best, most robust, and versatile algorithm in the exper-
iment, which complies with our other observations. Interestingly,
the second-best method is an EC-LS-LS hybrid. The three best al-
gorithms all employ a combination of MNS and LK10.
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MA(2+4)-LK10-MNS-HX (rank 1), MA(16+64)-LK10-MNS-HX (2.5), MA(2+8)-LK10-MNS-HX (2.5),
MA(16+64)-LK10-MNS-OX2 (4), MA(16+64)-LK10-MNS (5), MA(16+64)-FSM**-LK10-HX (6.5),
MA(2+8)-LK10-MNS-OX2 (6.5), MA(2+4)-LK10-MNS-OX2 (8), MA(16+64)-FSM**-LK10 (9),
LK10-MNS-HX (10), MA(16+64)-LK10 (11), MA(2+8)-FSM**-LK10 (12.5),
MA(2+4)-FSM**-LK10-OX2 (12.5), MA(2+8)-FSM**-LK10-HX (14), MA(2+8)-FSM**-LK10-OX2 (15),
MA(16+64)-FSM**-LK10-OX2 (16), MA(2+8)-LK10 (17), MA(2+4)-LK10-MNS (18),
MA(2+8)-LK10-MNS (19), MA(2+4)-FSM**-LK10 (20.5), MA(2+4)-LK10 (20.5),
MA(2+4)-FSM**-LK10-HX (22), MA(16+64)-FSM** (23), MA(2+8)-FSM** (24), MA(2+4)-FSM** (25),
FSM**-LK10-OX2 (26), LK10-MNS-OX2 (27), MA(16+64)-MNS (28), FSM**-LK10-HX (29),
MA(2+8)-MNS (30), LK10-MNS (31), FSM**-LK10 (32), FSM** (33.5), LK10 (33.5), MA(2+4)-MNS (35),
MNS (36).

Figure 4: Algorithm ranking from best to worst, based on

various performancemeasures and statistics (see [36] for de-

tails). The di�erent algorithm types pure local search, LS-LS

hybrid, LS-LS-X hybrid, EC-LS hybrid, EC-LS-LS hybrid and

EC-LS-LS-X hybrid are highlighted.

4 CONCLUSIONS AND FUTURE WORK

In this work, we introduced the concept of hybridizing two LS
methods by combing them with a crossover operator. We ex-
plore the utility of this method on the example of the TSP. We
therefore pairwise combined the three state-of-the-art TSP solvers
FSM**, MNS, and the LK heuristic with Heuristic and Order Based
crossover. We then hybridized the new LS-LS-X algorithms further
with an EC method, namely an (µ + λ)-EA. We conducted a large-
scale experimental study applying 36 di�erent algorithm setups to
all of the 110 benchmark instances from TSPLib. Our experiments
have led us to four major conclusions:

(1) The new LS-LS-X hybrids are better than their pure LS al-
gorithm and LS-LS hybrid components. This means that
the new idea of combining two di�erent LS algorithms
with crossover operator is very promising.

(2) The new EC-LS-LS-X hybrids outperform the LS-LS-X
algorithms as well as EC-LS and EC-LS-LS hybrids.
MA(2+4)-LK10-MNS-HX becomes the new most powerful
hybrid EA algorithm in the huge collection of algorithms
and experimental results of the popular TSP Suite.

(3) Di�erent LS-LS hybrids have di�erent suitable crossover
operators. The setup LK10-MNS-HX, for instance, outper-
forms LK10-MNS-OX2, while FSM**-LK10-HX yields to
FSM**-LK10-OX2. Compared with OX2, the HX operator
is a better choice in MAs for EC-LS-LS-X hybrids (while
the MAs internally employ Edge Crossover).

In our future work, we will investigate other crossover operators
for hybridizing two LS algorithms: The two most e�cient opera-
tors, edge assembly crossover [30] and Generalized (Asymmetric)
Partition Crossover [33, 37, 38], have not been investigated in this
study. We will create implementations of them compatible to the
TSP Suite experimental procedure in the near future.

We will also construct LS-LS-X hybrids with the e�cient Tabu
Search-based TSP solvers introduced in [43].

Furthermore, instead of hard-wiring the choice of the LS algo-
rithms and crossover operators in our (EC-)LS-LS-X hybrids, we
will investigate choosing them according to a random distribution.
This choice will be adaptive and change according to the success
rate of such re�nements.

Finally, the concept of LS-LS-X and EC-LS-LS-X hybrid algo-
rithms is also promising for other problem domains. We will there-
fore explore its utility on several other well-known combinatorial
optimization problems.
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