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Abstract. Local search such as Ejection Chain Methods (ECMs) based
on the stem-and-cycle (S&C) reference structure, Lin-Kernighan (LK)
heuristics, as well as the recently proposed Multi-Neighborhood Search
(MNS), are among the most competitive algorithms for the Traveling
Salesman Problem (TSP). In this paper, we carry out a large-scale exper-
iment with all 110 symmetric instances from the T'SPLtb to investigate
the performances of these algorithms. Our study is different from previ-
ous work along this line of research in that we consider the entire run-
time behavior of the algorithms, not just their end results. This leads to
one of the most comprehensive comparisons of these algorithms to date.
We introduce a new, improved S&C-ECM that can outperform LK and
MNS. We then develop new hybrid versions of our ECM implementations
by combining them with Evolutionary Algorithms and Population-based
Ant Colony Optimization (PACO). We compare them to similar hybrids
of LK and MNS. Our results show that hybrid PACO-S&C, PACO-LK
and PACO-MNS are all very efficient. We also find that the full runtime
behavior comparison provides deeper and clearer insights, while focusing
on end results only would have led to a misleading conclusion.

Keywords: Traveling Salesman Problem, Ejection Chain Methods, Lin-Kernighan
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1 Introduction

The Traveling Salesman Problem (TSP) [1, 14, 22] is a well-known N P-hard
problem in the field of combinatorial optimization. The problem can be stated
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as follows: Given n cities (named from 1 to n) and the distances D;; (with
i,j € 1,2,...n) between them, a salesman starts from one city, visits each of
the cities once, and then returns to the original city. The assignment is to find
the order in which the salesman should visit the cities with the shortest overall
travel distance. A tour, i.e., a candidate solution to the TSP, can be defined as
permutation t = (1, ta,...,t,) of the cities to visit. The task is to find a ¢ that
minimizes the sum Dy1y412) + Dyp),e3) + - - - + Dyn),e1)- We focus on symmetric
TSP instances in which D; ; = D;; holds.

The TSP is N'P-hard, therefore any existing exact TSP algorithms have
exponential worst-case runtime complexity. To get good approximate solutions
within acceptable time, many approaches have been introduced, including Lo-
cal Search (LS) algorithms, Evolutionary Algorithms (EAs) [3, 5, 30], and Ant
Colony Optimization (ACO) [6, 7, 9]. The state-of-the-art algorithms are two LS
families: The more well-known is the Lin-Kernighan (LK) heuristic [23], while
the other is the Ejection Chain Method (ECM) based on a stem-and-cycle (S&C)
structure. ECMs are reported to provide better results than (pure) LK in several
studies [26-28], but at the cost of more runtime. Recently, another competitive
LS algorithm, the Multi-Neighborhood Search (MNS) [31], was introduced and
found to be particularly suitable for hybridization [33].

In this paper, we introduce a new, improved ECM working on the S&C
structure. We compare it with two existing S&C-ECMs and show that it signifi-
cantly outperforms them. An in-depth and statistically sound comparison of all
three S&C-ECMs with LK and MNS is then carried out, and the results show
that our improved ECM outperforms both LK and MNS in terms of results and
speed. We also hybridize S&C-ECMs with EAs and PACO, and compare them
to similar hybrids based on LK and MNS. We conduct a large-scale experimental
study and apply advanced, runtime-behavior based statistics that provide much
more performance information of these algorithms than simple end-result com-
parisons. We confirm that PACO-based hybrids are much better than EA-based
ones (i.e., Memetic Algorithms) and pure LS approaches. Interestingly, hybrid
MNS is shown to be the most suitable LS for hybridization in our experiments,
although it is outperformed by both LK and ECMs in its pure form. This study
provides more precise, comprehensive, and statistically sound evaluations than
any other previous work on this topic.

The remainder of this paper is organized as follows. First, we present the
investigated S&C-ECMs, LK heuristic and MNS, as well as their new hybrid
versions in Section 2. Since LK, ECMs based on the S&C structure and MNS
mark the state-of-the-art in terms of LS for the TSP, this section indirectly also
describes the related work. In Section 3, we discuss our experimental study and
analyze its results. The paper ends with conclusions and plans for future work
in Section 4.
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2 Investigated Algorithms

Today, the best known algorithms for the TSP are LS methods and in this pa-
per, we consider three of them. An LS algorithm maintains and iteratively tries
to improve a single candidate solution. The initial solution is often randomly
generated or stemmed from a simple heuristic. In each step, the LS explores
the neighborhood of the solution, which is spanned by possible applications of
a search operator. If it contains a better solution, then this solution is accepted
as the basis for the next iteration. If no better solution is found, the LS ei-
ther terminates or restarts. In the latter case, either a new, random solution
is used or the current solution is randomly modified in a way that is beyond
what the search operation could achieve. Restarts are necessary, because the
neighborhoods spanned by search operators are much smaller than the search
space. As a result, local optima, i.e., solutions that are not optimal but whose
neighborhoods only contain inferior solutions, exist.

In the TSP, the most common search operations are k-opt moves, which
delete k edges in a tour and replace them with k other edges [31]. A 2-opt move,
replacing two edges, corresponds to the reversal of a part of the tour [18, 21].
Rotating a part of the tour one step to the left or right corresponds to a 3-opt
move [8, 21]. Swapping two cities is a 4-opt move [21, 25].

2.1 ECMs

The ECM was introduced by Glover in 1992 [11]. ECMs provide k-opt moves
for discrete optimization problems. The basic component of an ECM is the data
structure it processes with its search operations. This structure can be different
from simple path or adjacency list representations.

We investigate the S&C reference structure, which consists of a path (called
stem) attached to a cycle of nodes, as illustrated in Figure la. The common
node of S&C is called root r and its two adjacent nodes on the cycle are called
sub-roots (s1 and s2). The root r marks one end of the stem. The other end is
the tip .

Only if the stem is degenerated to become a single node (i.e., r = t), the
S&C structure is a tour. Otherwise, the S&C structure can be transformed to
two candidate tours by removing the edge between one of the sub-roots si and
the root r, and then re-connecting si to the tip ¢. The better one of these two
trial solutions can be chosen.

The search does not take place in the space of possible tours, but directly on
the S&C structures, which are iteratively refined according to a set of rules.

2.2 Fundamental S&C Approaches

The Fundamental S&C (FSC) algorithm proposed by Rego [27] defines a complete
LS procedure including tabu criteria and concepts of limiting the search depth
to improve performance. The core of FSC is Glover’s two rules [12] for updating
the S&C, i.e., the search operations of FSC:
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(a) An example of (b) Rule 1 of the Fun- (¢) Rule 2 of the
a S&C reference damental S&C ECM. Fundamental S&C
structure. ECM.

Fig. 1: Examples of a S&C reference structure and the two rules of the Funda-
mental S&C ECM.

1. Choose a node j on the cycle. Let the two nodes adjacent to it be g1 and g2.
Select one of them and refer to it as ¢. Delete any edge adjacent to j and
then add edge (¢, 7).

2. Choose a node j on the stem. Let the node adjacent to j and farther away
from r than the other adjacent node be called gq. Connect ¢ to 7 and delete

edge (j,9)-

In both cases, ¢ becomes the new tip t (see Figures 1b and 1c). Each of their
applications ejects a sequence of edges from a tour and replaces them. Based on
these two rules, a S&C structure can be transformed to another one.

What Glover [10] did not specify, however, is how to choose j and how to
iterate the rule application. Rego [27] therefore defined the equation e = Dgqq —
Dgeiete, where Dy qq is the length of the edges to be added and Dgejete the length
of the deleted ones. FSC iterates over all the available j nodes in the S&C and
applies both rules 1 and 2. From these choices, it identifies the move with the
smallest corresponding value of e. By applying this move, a solution is changed
to another one.

It is worth noting that both rules never change the root node r. The LS is
iteratively applied to different roots. This is achieved by starting with a set R
containing all n nodes, randomly choosing one to be the root, and removing it
from R. Then, the search for minimal e values starts at “level 0”. Whenever the
solution is changed, the level increases. Glover [11] and Rego [27] found that
stopping the search at a relatively low level leads to better performance. After
that, another node from R is randomly extracted to be the root for the next
iteration.

Glover [11] and Rego [27] defined a “tabu” criterion to prevent generating
the same trial solutions repetitively, i.e., no deleted edge should be added back
to a S&C structure. This led to the algorithm defined by Rego as P_SEC in [27].
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Here, we add permutations out of P_SEC, refer to it as FSM and improve it in
several ways.

First, we propose a new criterion for permitting more moves in order to
increase the searchable neighborhood: no previously deleted edge can be deleted
again (after being re-inserted). This method is denoted as FSM*. We will show
that it can produce much better performance not only in terms of speed but also
in the quality of the end results. Second, in algorithm version FSM** we reduce
the number of redundant moves by more aggressively limiting the maximum
level to 0.45n and testing only 15% of the nodes in R as the root node to restart.

Finally, we apply the “soft restart” method defined in [31], where a randomly
chosen sub-sequence of the current tour is randomly shuffled. Thus, our FSM
algorithm is based on three nested loops:

1. The inner-most loop applies rule 1 and rule 2, utilizes the above-mentioned
“tabu” criterion, and records the best result during the process.

2. The middle loop iteratively chooses n nodes in the solution as the root and,
for each root, applies the inner-most loop.

3. The outer loop takes the best tour created by the middle loop, applies a
random change to it (in order to escape potential local optima), and then
executes the middle loop again (unless the termination criterion is reached).

2.3 LK Heuristics

Today, the domain of TSP solvers is “ruled” by derivatives of the LK heuris-
tic [23], which can either be considered as a variable k-op heuristic [2, 16, 17]
or as an ECM based on a detached stem reference structure [27]. The former
perspective is obviously more common.

For ascending values of k, the LK heuristic tries to obtain a shorter tour by
replacing k edges. It therefore proceeds as follows to improve a given tour 7.
Step by step, the algorithm builds two sets: X = {X7,..., X} of edges to be
deleted from T, and Y = {Y7,..., Y%} the set of edges to be added to T. Each
edge X; is chosen such that its start node is the end node of edge Y;_1, while
the start node of edge Y;41 is the end node of X;. By additionally ensuring that
the end of Y} is the start node of X7, deleting the edges X from 7" and inserting
those from Y will always yield a valid tour. This constitutes a k-opt move, of
which the result is accepted if it is shorter than 7.

The standard LK heuristic tries all possible choices of X and Y only for
1 < 2. While for larger i, no backtracking is allowed. We compare our ECMs
with the LK heuristic from [33], where the first improved tour is accepted in-
stead of searching the whole neighborhood, following the suggestion in [16]. This
implementation also applies the restart method from [31] used in our FSM.

2.4 MNS

While FSM and LK both investigate potentially very large neighborhoods, the
recently proposed MNS applies traditional fixed-k-opt moves. In each iteration,
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MNS performs a O(n?) scan, which investigates all possible 2-opt and a subset
of the possible 3- and 4-opt moves at once. It therefore tests all indexes 7 and j
as potential indexes for cities to swap or start and end indexes of sub-sequence
rotations and reversals. For each operation and pair {i, j}, the gain is computed
and all discovered improving moves enter a queue. The access to distance matrix
D is minimized by remembering (and updating) the lengths of all n edges in the
current tour and avoiding checking redundant moves (swapping the cities at
indexes i and i + 1 is equivalent to a reversal of the sub-sequence from i to
i + 1, for instance). After the scan, the best discovered move is carried out.
This may invalidate other moves in the queue, e.g., if a sub-sequence reversal
that overlaps with a potential sub-sequence left rotation was performed. After
pruning all invalidated moves from the queue, the remaining best move is carried
out, if any. If the queue becomes empty, another scan of the current solution is
performed, as new moves may have become possible. During this scan, only
moves that at least intersect with the previously modified sub-sequence(s) of
the current best solution need to be considered for additional speed-up. If no
improving moves can be found anymore, the same “soft restart” method as
discussed before is applied [31].

2.5 MAs

EAs are global optimization algorithms inspired by the natural processes of
selection and reproduction. They start with a set of A (usually random) solutions.
Among them, the best u < X solutions are chosen as “parents” of the second
generation, which is generated by applying a (unary) mutation or a (binary)
crossover operator to the “parents”. From then on, the parents are the p best
individuals from the joined set of parents and offspring [(u + A)-EA].

MAs are EAs hybridized with LS. In our MAs, the LS algorithm is applied to
every solution generated by crossover. We use Edge Crossover [32] at a crossover
rate of 100%. Edge Crossover is one of the best crossover operators for the TSP. It
generates a new solution by picking edges belonging to either of its two parents.

We introduce three different MAs, namely hMA (14 A\)ECM, hMA (4 A)LK
and hMA (g + A)MNS. The little h at the beginning of the name means that the
initialization of these MAs is generated by the Edge-Greedy, Double Minimum
Spanning Tree, Savings, Double-Ended Nearest Neighbor and Nearest Neighbor
heuristics, as in [31].

2.6 Memetic ACO

The ACO algorithm is inspired by the way ants find and enhance short paths
during foraging by using pheromones for communication [6]. PACO [13] is con-
siderably the best-performing ACO variant. Different from standard ACO, which
requires storing a pheromone matrix of size in O(n?), PACO has linear memory
requirements. PACO(k,m) maintains a population of k solutions and the amount
of pheromone on an edge of the TSP is proportional to how many solutions this
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edge has. For every algorithm iteration, m solutions are created and the “old-
est” solution in the entire population is replaced by the best solution in the new
generation. Similar to our MAs, our hybrid PACO algorithms are defined in a
way that each new solution generated is used as the starting point of a LS pro-
cedure whose output then competes to join the population. Such hybrids have
performed the best in [31]. Like in our MAs as well as our algorithms from [31],
we initialize the first population heuristically.

3 Experiments and Results

3.1 Experimentation with Anytime Algorithms

Most metaheuristics, including EAs, MAs, ACO, as well as all LS methods, are
anytime algorithms [4]. Anytime algorithms can provide a best guess of what the
optimal solution of a problem could be at any time during their run. Experiments
for analyzing the behavior of an algorithm over runtime are therefore essential,
but are rarely done due to the amount of data they generate and the amount of
work required in evaluating the data.

Our TSP Suite [31] focuses on investigation of TSP solvers, where data is
automatically collected during the evaluation of candidate solutions. Reports
showing results based on the data can be automatically generated and freely
configured. They contain in-depth descriptions of the experimental procedure
and provide several different statistical analyses such as statistical tests com-
paring the measured runtimes and end results, automated comparisons of the
estimated running time (ERT) [15] curves over goal objective values or problem
scales, and automated comparisons of empirical cumulative distribution func-
tions (ECDFs) [15, 19, 29]. All of the information is aggregated into human-
readable conclusions about the algorithm performance in the form of global
rankings.

The TSP Suite is the very first framework addressing the issue of measur-
ing runtime. Measuring runtime in CPU seconds produces machine-dependent
results. Even if normalized runtimes (NT) are calculated based on machine per-
formance factors, they remain problem specific and may not represent the utility
of black-box metaheuristics in general. Counting the number of generated solu-
tions (i.e., objective function evaluations or FEs in short) is the most-often used
alternative in benchmarking. To provide a balanced overview of algorithm per-
formance, the T'SP Suite evaluates runtime using four different measures: CPU
time, normalized CPU time, FEs, and the number DFE of accesses to the distance
matrix D of a TSP.

3.2 Experimental Setup

We conducted our experiments using the symmetric T'SPLib benchmark cases,
for which all optima are known. We can therefore define the quality of a solution
as relative error f, the factor by which a solution (tour) is longer than the
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optimum. Here, f = 0 stands for the optimal solution, and f = 1 indicates one
that is twice as long. We performed 30 independent runs for each setup on all of
the 110 symmetric instances in the TSPLib to deal with different hard and easy
instances [20], with scales n ranging from 14 to above 85900.

Related work usually focuses on fewer and smaller instances. Rego [27], for
example, reported results only for 66 instances with n up to 7397. In [26], 8
instances with n from 48 to 666 were used.

We compared the following algorithms: 1) FSM, 2) FSM*, 8) FSM** /) LK,
and 5) MNS. For each algorithm, seven setups were built: The original (pure)
algorithm, three hybrids with PACO and three MAs.

3.3 Pure Algorithm Performance

Let us first explore the performance of the three pure versions of FSM (FSM,
FSM*, FSM**) and compare them with pure LK and the pure MNS methods.
According to the automated ranking provided by the TSP Suite, FSM** has the
best performance among these algorithms.

In Figure 2, we plot the ECDF for different goal errors F; and runtime
measures. The ECDF illustrates the fraction of runs that have discovered a (best)
solution with Fj < F; up to a given amount of runtime. Hence, an algorithm is
good if its ECDF comes as close to 1 as possible in as soon a manner as possible.

The ECDF of FSM** in Figure 2a, based on the normalized CPU runtime
measure N7, increases quickly and approaches 0.4 for F; = 0. In other words, a
global optimum can been reached in about 40% (of the runs) of all benchmark
cases under the given computational budget. Although this does not seem to be
very good, FSM** is faster in solving the problems among all pure algorithm
settings, as its ECDF curve is always higher than the others. We can furthermore
see that the ECDF of FSM* increases a little faster than the one of LK at the
beginning, but is eventually overtaken by LK. The performance of FSM is similar
to that of FSM* at the beginning, but needs more and more time to solve harder
problems. The ECDF of MNS increases slightly faster than the one of FSM**
in the beginning, but later slows down and finally reaches a little more than 0.1.
For small time budgets, MNS solves more problems than the other methods.

In Figure 2c, we show results with the goal error F} increased to 0.01, i.e.,
to investigate the fraction of runs in finding a solution/tour that is no more
than 1% longer than the optimum. Again, the ECDF curves intersect. FSM**
now solves two thirds of the problems while LK can solve slightly less. For any
given time budget, FSM** can solve more instances than any other non-hybrid
method. FSM* and FSM are again overtaken by LK as the time goes on.

MNS can solve more problems with a small budget of accesses to the distance
matrix (Figure 2b). For more DEs, we see the same relationship between algo-
rithms as per NT. Finally, if we visualize the ECDF under time measure FFEs in
Figure 2d — again for F; = 0.01 — the performance of all three FSM algorithms
looks quite similar, except for the later part in the search, during which FSM**
can solve significantly more problems than the others.
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Fig. 2: ECDF diagrams for different (log-scaled) runtime measures and goal er-
rors.
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We thereby conclude that FSM** can solve more problems than the other
tested pure LS algorithm and that FSM* is better than FSM but worse than
LK. In terms of the design criteria discussed in Section 2.2, this means that
forbidding edges from being deleted twice is better than forbidding the deletion
of added edges (FSM* vs. FSM). Limiting the number of nodes to be tested as
the root aggressively further increases the chance of solving the problems faster
(FSM** vs. FSM*). We note that a better solution is more probably found at a
lower level, in agreement with [12, 27].

Next, we analyzed the relationship between algorithm performance and prob-
lem scale n. We grouped the problems by their scales according to the different
powers of two in Figure 3. This figure illustrates the best objective value F dis-

0.75 \ 1.05 {
hPACO(3,10)LK
0.6 |-\ ‘ — \ \
\ \ hPACO(B,10)FSM** 075
hPACO(5,10)FSM*
0.4 LK \ \

05 ——

[\ l\ MNS

02 [N 025 ——Hh
S — —
0 I = 0

2 3 4 5 6 log(NT) 7.5 2 3 4 5 6log(NT) 7
(a) Progress in F} over NT for 512 < (b) Progress in F, over NT for 1024 <
n < 1023. n < 2047.
8.5, 45 Fb

\\\ ——

0 - 0

2 3 4 5 1og(NT) 6 1 2 3 log(NT) 4
(c) Progress in Fj over NT for 2048 < (d) Progress in F;, over NT for 16384 <
n < 4095. n < 32767.

Fig.3: Progress diagrams for different (log-scaled) time measures and problem
scales.
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covered by an algorithm over runtime. We see that FSM and LK can find good
solutions for instances with n below 1024 quite rapidly. With the increasing of
instance scale, the performance of FSM and LK decreases, but they can still find
approximate solutions with F; < 0.05 for n < 32768.

In Figure 3c, we can see that FSM** is always better than LK when n < 4096.
For a higher scale, LK is better at the beginning but eventually overtaken. FSM*
behaves similar to FSM** at the beginning, but is overtaken by both LK and
FSM**. FSM is worse than FSM*. Compared to FSM and LK, MNS performs
better on small instances but worse for moderate and large-sized ones.

8 -
\ max {0, log|(med ERT,,) hPACO(.10}LK
7 v
. hPACO(3,10)FSM**
hPACO(5,10)FSM*
5 —— LI\
|
4 I
5 | MNS
2 4

0 0.2 0.4 0.6 0.8 F 1

Fig.4: (Log-scaled) ERT in terms of DE.

In Figure 4, we plot the ERT in terms of NT (y-axis) for a given solution
quality threshold F; (x-axis), i.e., the expected normalized runtime it will take
for an algorithm to reach F;. Obviously, the smaller F}, the higher the expected
time. In terms of the ERT measured by counting accesses to the distance matrix
as time unit (DEs, not illustrated), FSM** is always better than any other
pure algorithm in the test. FSM* (FSM) is only faster than LK when an F} of
more than 10% (20%) is acceptable. In terms of NT, the situation changes again
and there are two intersections of the ERT curves: MNS performs better for
0.1 < F; < 0.5 while the FSM and LK methods are faster otherwise (but goal
errors of 10% and above are of no practical relevance anyway). Thus, if different
time measures were used, different observations could be found.
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From all the above, we conclude that FSM** is the best LS in our exper-
iments. When the acceptable F; is big enough, even FSM* and FSM might
outperform LK, while pure MNS is the worst.

3.4 Hybrid Algorithm Performance

We also investigated our newly proposed hybridized versions of FSM with EAs
(i.e., MAs) and PACO and compared them to similar hybrids of LK and MNS.
From the complete ranking generated by the TSP Suite over all setups, it
can be seen that the different setups of the same corresponding algorithms
have relatively similar behaviors, no matter what kind of measure is consid-
ered (e.g., hPACO(3,10)MNS and hPACO(5,10)MNS have similar behaviors in
terms of ECDF, ERT and progress.). Hybrids with PACO are always better
than MAs. We chose the best five setups from the different algorithms, that is,
hPACO(5,10)FSM*, hPACO(3,10)FSM, hPACO(3,10)FSM** hPACO(3,10)LK
and hPACO(3,10)MNS,; for illustration in the figures. We omitted the MAs as
they did not perform as well as the PACO hybrids, even though they were able
to outperform the pure algorithms.

From the ECDF curves in Figure 2, we can see some significant improve-
ment of FSM and LK after being hybridized with PACO. hPACO(5,10)FSM*,
hPACO(3,10)FSM, hPACO(3,10)FSM** and hPACO(3,10)LK outperform the
pure algorithms in terms of both the number of problems they can solve as well
as the time they need to solve them. Same observations are made with the MNS
hybrids: hPACO(3,10)MNS solves 52% of the problems, which is five times as
many as the pure MNS.

hPACO(3,10)MNS is much faster than any other tested algorithms at
the beginning, but hPACO(3,10)LK can solve more problems in the end.
hPACO(3,10)FSM** is faster than hPACO(3,10)LK at the beginning but even-
tually overtaken by the latter. Its ECDF is always lower than the one of
hPACO(3,10)MNS. hPACO(5,10)FSM* is better than hPACO(3,10)FSM but
worse than the other algorithms.

When we set F; = 0.01 (Figure 2¢), the hybrid algorithms again outperform
the pure ones. Their ECDF curves increase earlier, more rapidly, and finally
reach higher end points. hPACO(3,10)FSM** is as fast as hPACO(3,10)MNS
and even better at some point, but is finally overtaken as hPACO(3,10)MNS
can reach solutions that are one percent longer than the optimum more
often. hPACO(3,10)FSM** and hPACO(3,10)MNS are always better than
hPACO(3,10)LK. hPACO(5,10)FSM* and hPACO(3,10)FSM can solve more
problems than hPACO(3,10)LK early on, but later hPACO(3,10)LK discovers
more solutions.

The ERT diagrams in terms of DFs for a given F; share similar trends with
those in Figure 4. When F; is over 0.05, hPACO(3,10)FSM* can be as good as
hPACO(3,10)FSM**. For better target tour lengths, hPACO(3,10)FSM** takes
over hPACO(3,10)FSM*, and only hPACO(3,10)MNS and hPACO(3,10)LK per-
form as well as hPACO(3,10)FSM**.
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From Figure 3, we again confirm that the FSM hybrids are initially faster
than the hybrid LK algorithms but slower than MNS hybrids, although these of
LK later on find better-quality solutions.

Regardless of what runtime is available, we confirm that hybrid algorithms
are better than pure LS. A more interesting observation, however, is that hy-
brid MNS methods tend to outperform both hybrid FSM and LK approaches,
although pure MNS is clearly much worse than pure FSM (which in turn is
better than pure LK). While an almost “additive” effect of hybridization was
observed in [31], i.e., a better LS algorithm hybridized with a better global search
method leads to a better hybrid approach, here we have a contrasting observa-
tion. Although hybrid FSM and LK can find better solutions on the long run,
the efficient main loop of MNS, which can be implemented in a compact way,
makes use of a (linear sized) cache and can discover several improvements at
once, therefore provides faster convergence. LK and FSM have been the two best
known LS approaches for the TSP, with decades of research behind them. Our
results, however, make MNS the best candidate for hybridization today.

The aggregated algorithm ranking provided by the TSP Suite when com-
paring all setups regarding ECDF, ERT, final results, expected runtime to the
optimum, and progress according to different runtime measures is:

hPACO(5,10)MNS, hPACO(3,10)MNS, hPACO(3,25)MNS,
hPACO(3,10)FSM**, hPACO(3,25)FSM** hPACO(5,10)FSM**,

hMA (2+4)FSM** hMA (16+64)FSM**, hMA (16-+64)MNS, hMA (2+4)MNS,
hMA (2+8)FSM** hPACO(5,10)LK, hPACO(3,25)LK, hMA (2+8)MNS,
hPACO(3,10)LK, hPACO(5,10)FSM*, hPACO(3,25)FSM*,
hPACO(3,10)FSM*, hMA (16+64)FSM*, hMA (16+64)LK, hMA (2+8)LK,
hMA (2+4)LK, hMA (2+4)FSM*, hMA (2+8)FSM*, hPACO(3,10)FSM,
FSM**, hPACO(5,10)FSM, hMA (16+64)FSM, hPACO(3,25)FSM,

hMA (2+8)FSM, hMA (2+4)FSM, LK, FSM*, FSM, MNS.

This ranking also reveals that PACO appears to be a better method to hybridize
with than an EA. This is exactly the same observation already made in [31].

4 Conclusions and Future Work

In this work, we have introduced a new and improved FSM (FSM**) which
can outperform the state-of-the-art of this algorithm family (FSM) as well as
the state-of-the-art in LS for the TSP in general (LK). We also introduced new
hybrid versions of these algorithms with both EAs and PACO. We compared
these hybrids with similar hybrids of LK and the best hybrid algorithms in
our TSP Suite, hybrid MNS. We conducted a large-scale experiment based on
all 110 symmetric instances from the T'SPLib, performing 30 runs per setting,
each limited to 1 hour of runtime. Our experiments have led us to four major
conclusions:

1. The new, pure FSM** algorithm works well on both small and large TSP
instances and outperforms LK and MNS.
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2. The restriction that no edge may be deleted twice from a solution is better
than the criterion that deleted edges cannot be added again as used in [12,
27].

3. Another measure to improve performance is restricting the number of levels
of the search, as pointed out by Glover [12] and Rego [27]. We additional
find that testing fewer root nodes also improves the performance.

4. Based on the same LS algorithm, the best setup of hybrid PACO is always
better than any setup of hybrid EAs (MAs). The hybrids of FSM** with
PACO are the best variants among other FSM-based algorithms.

5. Although pure FSM and LK is better than MNS, hybrid MNS outperforms
hybrid FSM and LK.

The last point is especially interesting and deserves more exploration. We will
investigate hybrid EC-LK/FSM/MNS methods, which can use either FSM, LK
or MNS as LS. Before refining a solution, we could randomly select which LS
algorithm to apply. The random distribution could change over time, starting
mainly with MNS and later switching more regularly to FSM and LK. This could
utilize the initial high speed of MNS hybrids while also leverage the better end
result quality provided by FSM and LK hybrids. At present, we are also inves-
tigating several Tabu Search variants and comparing them with the algorithms
presented here.
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