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Abstract—Benchmarking is one of the most important ways
to investigate the performance of metaheuristic optimization
algorithms. Yet, most experimental algorithm evaluations in the
literature limit themselves to simple statistics for comparing
end results. Furthermore, comparisons between algorithms from
different “families” are rare. In this study, we use the TSP
Suite – an open source software framework – to investigate
the performance of the Branch and Bound (BB) algorithm for
the Traveling Salesman Problem (TSP). We compare this BB
algorithm to an Evolutionary Algorithm (EA), an Ant Colony
Optimization (ACO) approach, as well as three different Local
Search (LS) algorithms. Our comparisons are based on a variety
of different performance measures and statistics computed over
the entire optimization process. The experimental results show
that the BB algorithm performs well on very small TSP instances,
but is not a good choice for any medium to large-scale problem
instances. Subsequently, we investigate whether hybridizing BB
with LS would give rise to similar positive results like the hybrid
versions of EA and ACO have. This turns out to be true – the
“Memetic” BB algorithms are able to improve the performance
of pure BB algorithms significantly. It is worth pointing out
that, while the results presented in this paper are consistent with
previous findings in the literature, our results have been obtained
through a much more comprehensive and solid experimental
procedure.

This is a preview version of paper [1] (see page 9 for the

reference). It is posted here for your personal use and not for

redistribution. The final publication and definite version is

available from IEEE (who hold the copyright) at

http://www.ieee.org/. See also

http://dx.doi.org/10.1109/CIPLS.2014.7007174.

I. INTRODUCTION

The Traveling Salesman Problem (TSP) [2–4] is the most

well-known combinatorial optimization problem. It can be

described as follows: Given are n cities, indexed from 1
to n, and the distances Di,j ∈ N (with i, j ∈ 1, 2, . . . n)

between them. A salesperson aims to visit each city exactly

once and then return back to his original location. In which

order should this salesperson visit the cities to minimize the

total travel distance? A candidate solution to a TSP is a tour

t = (t1, t2, . . . , tn), and a permutation of the cities to visit.

The objective function f , subject to minimization, computes

the total round trip distance f(t) = Dtn,t1 +
∑n−1

i=1 Dti,ti+1

of such a tour.

This optimization version of the TSP is NP-hard [4], and

the worst-case runtime complexity of any existing exact TSP

solver is exponential [5]. In order to obtain close to optimal

solutions within feasible time, various approaches have been

proposed, ranging from metaheuristics such as Evolutionary

Algorithms (EAs) [6], Ant Colony Optimization (ACO) [7],

and Estimation of Distribution Algorithms (EDAs) [8], to

Local Search (LS) [9], Branch and Bound (BB) [10] and

cutting plane algorithms [11]. The problem is well-known,

easy-to-understand, and standard benchmarks with known

solutions (like the TSPLib [12]) are available. This makes

the TSP an ideal option for investigating and comparing the

performance of new algorithms. To date, however, not many

comparisons of members of different algorithm families have

been conducted (notable exceptions are [13, 14]). Moreover,

the experimental approaches and result comparisons in the

literature are often limited to simple key statistics about their

final results, ignoring the progress of algorithms over time.

In our recent work [15], a more rigorous experimental pro-

cedure has been introduced. Through an open source software

framework, the TSP Suite, we have been able to conduct com-

prehensive experimental analysis and show that Evolutionary

Computation (EC) methods such as EAs and EDAs do not

perform well on the TSP when compared to LS algorithms.

Yet, we found that hybridization of EC methods with LS

algorithms can lead to greatly enhanced performances. In this

paper, we use the same software framework to answer two

research questions: (1) How does the BB algorithm from [10],

which was created five decades ago, from a time where 40-city

problems were considered “large-scale”, compare to contem-

porary metaheuristics? and (2) Would hybridizing BB with LS



have similar positive effects like those observed through the

EC methods?”.

The contributions of this paper can be summarized as

follows:

1) An in-depth performance analysis of the BB algorithm

over time on 83 (smaller instances) of the 110 symmet-

ric TSPLib benchmark instances, according to several

different time measures such as function evaluations

(FEs), normalized CPU times and different performance

statistics.

2) A detailed comparison of the BB algorithm to modern

metaheuristics such as state-of-the-art EAs, ACO, and LS

algorithms.

3) The introduction of new hybrid forms of the investigated

BB algorithm based on the same hybridization scheme

used in [15].

4) A detailed comparison of the new hybrid BB algorithms

to hybrid variants of the above mentioned EC approaches.

5) The implementation of all the tested

algorithms will be provided online at

http://www.logisticPlanning.org/tsp/

as part of the open source framework TSP Suite.

6) The measured performance data will be provided online

too, contributing to probably the largest collection of

benchmark data on TSP solvers (with log files of already

more than 20GB in size, obtained from about 200 algo-

rithm setups).

The remainder of this paper is organized as follows. In the

next section, we discuss related work on automated experi-

mentation (Section II-A) and on solving TSPs (Section II-B)

respectively. We then describe the BB algorithm as well as its

new hybrid variants in Section III. The conducted experiments

are discussed in Section IV. Section V ends the paper with

conclusions and plans for future work.

II. RELATED WORK

A. Related Work on Experimentation

In the field of metaheuristic optimization, experimentation is

the most important tool to assess and compare the performance

of different algorithms. Even though this has been the case for

a long time, the experimentation approaches adopted in most

of the previous studies have relied mainly on the most basic

statistics, some of which are even flawed. The reason is that

proper experimentation itself is actually a cumbersome, time-

demanding and complex process.

The COmparing Continuous Optimisers (COCO) [16] sys-

tem for numerical optimization, used in the Black-Box Opti-

mization Benchmarking (BBOB) workshops, is one of the first

approaches aiming to reduce the workload of an experimenter

by automatizing most of the steps involved in an experimen-

tation process. Its evaluation procedure generates statically

structured papers that contain diagrams with runtime behavior

information. The necessary data is automatically collected

from executed experiments.

UBCSAT [17] is an experimental framework for satisfiabil-

ity problems. It focuses on a specific family of algorithms:

the stochastic local search [18]. In COCO, the objective

function will automatically gather log data before returning

its result to the algorithm. In UBCSAT, this is done through a

trigger architecture, which can also compute complex statistics

online and provide them to the running algorithm. COCO

and UBCSAT both explore algorithm behavior over runtime

instead of just comparing end results.

The TSP Suite [15] takes the idea one step further. First,

it provides software development support such as unit test-

ing. Second, the TSP Suite will take care of parallelization

or distribution of workload on a multi-processor system or

cluster. It does not require any additional support or third-party

software and the experimenter can implement their algorithm

in a normal, non-parallelized way. Third, like in COCO, an

algorithm performance report can be created automatically.

The difference is that it includes an in-depth description

of the experimental procedure and presents several different

statistical analyses, such as statistical tests comparing the mea-

sured runtimes and end results, automated comparisons of the

estimated running time (ERT) [16] curves over goal objective

values or problem scales and automated comparisons of em-

pirical cumulative distribution functions (ECDFs) [16, 17, 19].

Each of these statistics results in algorithm rankings, which are

later aggregated into a global ranking list. The global ranking

will provide some insights on the general performance of a

TSP solver.

To the best of our knowledge, the TSP Suite is the first

framework addressing the issue of runtime measures. Tra-

ditionally, runtime is either measured in CPU seconds or

the number of generated candidate solutions (i.e., objective

“function evaluations”, or FEs in short). The problem with

using CPU time is that results obtained on different machines

are inherently incomparable, while the number of generated

candidate solutions gives no information about the actual

runtime of an algorithm, since 1 FE may have different com-

putational complexities in different algorithms. For instance,

in a LS algorithm or a mutation operator in an EA, a new

solution may be obtained from an existing tour of known

length by swapping two cities, which has the complexity of

O(1). In ACO, the creation of one new solution has time

complexity O(n2). In the TSP Suite, these shortcomings have

been addressed by introducing two new time measures: the

normalized runtime (NT) and the number of times the distance

matrix D is accessed (distance evaluations, DEs). The NT

is the CPU time divided by a machine and problem in-

stance specific performance factor, thus rendering time results

(somewhat) machine independent. The DEs take into account

the different complexities of 1 FE in different algorithms.

Statistical analyses through the TSP Suite are all conducted

three times, based on the FE, NT, and DE respectively. The

algorithm rankings created therefore represent a more balanced

and fair perspective on an algorithm’s performance.

B. Related Work on the TSP

The first BB approach for solving the TSP was published

by Little et al. [10] in 1963. This algorithm is the basis of



our study. It is already 50 years old, and many improvements

have been made since then. For example, the efficient BB

algorithms designed by Zhang [20, 21] have been able to

provide good solutions. A myriad of other ideas have also

been tested. More details of the BB algorithm will be provided

in Section III. In this section, we focus on related work

using algorithms to which we would like to compare the BB

algorithm to, which include LS, EC and hybrid algorithms.

1) Solving TSPs with LS: LS algorithms maintain a single

solution and try to improve it iteratively by investigating its

“neighborhood”, i.e., the set of solutions that can be reached

by applying a single modification to it. Examples of operators

that can do the job include those that reverse a sub-sequence

of a tour, rotate a sub-sequence one step to the left or right,

or a swap move simply exchanging two nodes [15].

One of the most successful general LS approaches is

Variable Neighborhood Search (VNS) [22]. VNS investigates

a set of neighborhoods by searching the first neighborhood

until no further improvement is possible, then trying the

second neighborhood, the third, and so on. As soon as an

improvement is found, it reverts back to the first neighborhood.

In [15], a Random Neighborhood Search (RNS) algorithm that

randomly picks a different neighborhood in each step as well

as a Multi-Neighborhood Search (MNS) algorithm that scans

all neighborhoods of a given solution and collects multiple

improving moves at once were tested and found to have

produced good performances. In this paper, we apply these

three algorithms (i.e., VNS, RNS and MNS) with restarts,

exactly as defined in [15].

2) Solving TSPs with EC: EAs are the most well-known EC

approaches [23]. They manage a set (population) of solutions

by iteratively selecting its best members and creating new so-

lutions by mutation and crossover operations. Mutation means

to randomly generate a solution out of the neighborhood of

a parent solution. Crossover means to combine two solutions.

Several different mutation and crossover operators of EAs for

the TSP have been proposed [24]. In this paper, we investigate

an EA that uses the same four neighborhoods introduced in

[15] for mutation. We apply Edge Crossover [6], which tries

to create a new solution by using edges occurring in either of

its two parents and is considered to have performed well [24].

The Population-based ACO (PACO) [25], another member

of the EC family, is a variant of the ACO algorithm that

maintains a set (population) of k solutions. The edges present

in those solutions define the pheromones. In each iteration, m
solutions are generated as in standard ACO and the best of

them replaces the “oldest” solution in the population. PACO

is known to be amongst the best ACO approaches [25, 26]

and was the best tested pure EC method in [15] for the TSP.

3) Solving TSPs with Hybrid Algorithms: EC methods

can be hybridized with LS algorithms for improving their

performances: Memetic Algorithms (MAs) [27] are EAs where

a LS algorithm is applied to every new solution created. MAs

are known to have performed well on the TSP [15, 28]. Other

metaheuristics (like PACO) can be hybridized as well. In [15],

it was shown that LS outperforms pure EC methods, but

hybrid EC-LS algorithms are the best. While this is common

knowledge in the field of EC, only limited attempts, such

as [29], have been made to hybridize BB with LS. To the

best of our knowledge, the new hybrid BB introduced in this

paper is the first such approach for the TSP.

III. METHODS

A. BB in General

A BB approach for the TSP initially considers all possible

tours as potential solutions, i.e., a set TA of size (n− 1)!, in

the asymmetric case. A tour can be created either randomly or

by using a heuristic. The best tour t∗ known to the algorithm is

used as the starting solution. In the branch step, according to

some criterion ϕ, a set T (initially TA) of solutions is divided

into two subsets T1 and T2. A lower bound ℓ of the objective

function for each of these sets is calculated. Clearly, a set Ti

can only contain a better solution than t∗ if ℓ(Ti) < f(t∗).
Only those sets that may potentially contain better solutions

are considered in the further course of the algorithm.

B. BB by Little et al.

The BB algorithm by Little et al. [10] was designed for

solving asymmetric TSPs. In their algorithm, each set T of

solutions is defined by a corresponding set E of directed edges

that are allowed as part of the tours t ∈ T, i.e., E =⊆ {(i, j) :
i, j ∈ 1 . . . n ∧ i 6= j}.

Branching is done by choosing an edge e∗, which must

be included in the solutions of one subset and excluded from

those in the other subset. The branching criterion ϕ maps each

edge to a natural number. For a given edge (i, j), ϕ(i, j) equals

to the sum of the distances of the shortest allowed edge from

node i and the shortest allowed edge to node j. In the branch

step, ϕ is evaluated for each edge e ∈ E and the edge e∗ =
(k, l) with the maximal ϕ-value is selected. The current set of

allowed candidate solutions T is then divided into two subsets,

T1 and T2. All tours in T1 must contain e∗ while those in

T2 must not. When branching to T1, a new edge set E1 is

created as E1 = E \ {(i, l) : i 6= k} \ {(k, j) : j 6= l}, i.e.,

by removing all edges either starting in city k or ending in

city l. If branching to T2, the corresponding set of allowed

edges E2 is created as E2 = E \ {e∗}. The subset with the

best lower bound ℓ is investigated first, while the other subset

enters a queue. How ℓ is designed can be found in [10].

This process is recursively applied, until it arrives at sets

containing only a single solution. If such a solution is better

than t∗, t∗ is updated. Then, the queue of tour sets awaiting

investigation is pruned by removing all sets with a lower

bound ℓ greater than or equal to f(t∗). From the remaining

candidates, the one with the smallest corresponding lower

bound is extracted and used for the next branching step. We

will refer to this basic algorithm as BB from here on.

Given enough runtime, BB will always return the globally

optimal (shortest possible) tour. However, in a worst case

scenario, the branches may form a full binary tree with depth

of at least n. This leads to a worst-case time and memory

requirement in Ω(2n).



Like all common metaheuristics, BB algorithms are anytime

algorithms [30], i.e., algorithms that can provide an approx-

imate solution at any point during their course [21]. The

quality of the approximation should improve over runtime.

The difference between BB and other EC and LS methods

is that BB can guarantee in finding the optimum solution

eventually (unless terminated earlier). In our study, we thus

do not consider only the end result (in this case, success or

premature termination), but the progress an algorithm makes

over runtime.

C. New Hybrid BB

In Section II-B1, we introduced three LS algorithms: VNS,

RNS, and MNS. The hybrid PACO and the hybrid EA (i.e.,

MA) setups in [15] refine every constructed candidate solution

by applying one of these three. This straightforward scheme

can also be used to hybridize BB: whenever the algorithm

has branched to a set T containing only |T| = 1 solution, this

solution is passed to the selected LS algorithm, which proceeds

until it arrives at a (different) local optimum. The selected LS

algorithm is also applied to the initial solution in order to

provide a tight upper bound. We create three hybrid variants

of BB by combining it with VNS, RNS, and MNS, which we

abbreviate as BBVNS, BBRNS, and BBMNS respectively.

These hybrids retain the exact property of BB, but they have

a higher worst-case time complexity, since each “leaf” of the

search tree is additionally processed by LS where each search

step has (at least) quadratic complexity, leading to a worst-

case time complexity of Ω(n2 × 2n). The actual worst-case

complexity could be higher than this lower bound, since the

LS algorithm would usually perform several more steps. A

detailed theoretical analysis of the algorithm’s complexity is

out of the scope of this work. A potential benefit of the LS

is that it may be able to provide tighter upper bounds f(t∗),
which may allow the algorithm to skip more branches earlier,

and thus reduce the average runtime. In this paper, we aim

to investigate whether this is true. It is worth noting that the

aforementioned complexities would come into play only if the

algorithm is granted enough runtime to complete its search

steps. In our experiments, we apply it as an anytime algorithm

with a limited computational budget.

An alternative way to decrease the (initial) upper bound

without tangibly affecting the worst-case time complexity is

to not obtain it from a random solution but from a solution cre-

ated by a simple constructive heuristic. We tested this approach

with the Double Minimum Spanning Tree (name prefix M) and

Savings heuristics (name prefix S) [2]. These heuristics have

the time complexity of O(n2), which is negligible compared

to O(2n). We combine either of these heuristics with any of

the previous setups and signify this with the corresponding

name prefix, e.g., SBB is BB initialized with Savings, MBBMNS

is a MNS hybrid of the BB algorithm obtaining its initial

upper bound from a solution created by the Double Minimum

Spanning Tree heuristic, and so on. All in all, this leads to

4 · 3 = 12 BB setups.

IV. EXPERIMENTS AND RESULTS

We conducted experiments on the symmetric TSPLib bench-

mark cases for the 12 BB setups discussed in the previous sec-

tion using the TSP Suite introduced before. In our experiments,

30 runs were performed for each benchmark case. Initial

tests showed that the memory requirement of the algorithm

quickly increases with the problem scale, but seemingly not

exponentially as it would be the worst case scenario. We

could only obtain results for the 83 smaller problem instances

up to 3795 cities and therefore only consider these in the

evaluation (which are still about 100 times more than the

“largest-scale” original experiment [10]).

The comparison data for the pure LS and EC methods as

well as their hybrids are taken from [15], in which detailed

descriptions of the corresponding experiments can be found.

In particular, we compared the algorithm performance of BB

with the two best setups of pure EA and ACO found in that

paper. These are EA128+256e, an (128 + 256) EA with

truncation selection and Edge Crossover, and PACO3,25, a

population-based ACO with population size 3 and sample

size 25. From these two configurations, the best variants

having initial populations seeded with solutions obtained from

constructive heuristics, referred to as hEA128+256e and

hPACO3,25 respectively, are derived.

Finally, we also compared BB with the two best seeded

EA and ACO setups hybridized with MNS and RNS ac-

cording to [15]. For the EA, these are hMA16+64mnse, a

(16 + 64) EA with Edge Crossover hybridized with MNS,

and hMA2+8rnss, a (2+8) EA with Savings Crossover [15]

hybridized with RNS. For PACO, the best hybrid setups with

different LS algorithms are hPACO3,10mns, with population

size 3, sample size 10, and MNS, as well as hPACO3,10rns,

which uses RNS instead. Furthermore, we compared the

performance of the BB algorithms with the best setups of the

pure LS algorithms (MNS, RNS1, VNS1) and their best seeded

setups (MNSm, RNSbm, and VNSbm, all of which were seeded

with the Double Minimum Spanning Tree heuristic).

Different benchmark cases have different globally optimal

tour lengths f⋆. To ease the comparison and understanding of

results, we considered the algorithm’s progress in terms of the

relative error F = (f(t∗)−f⋆)/f⋆ instead of the best discovered

objective value f(t∗). If a run reaches F = 0, it has discovered

the global optimum. F = 1 means the best currently known

tour t∗ is twice as long as the optimal one.

Similarly, we introduced relative “goal errors”, denoted as

Ft, to compute several statistics: the ERT [16], for instance,

estimates the runtime needed to reach a solution with F ≤ Ft,

while the ECDF [16, 17, 19] estimates the probability to which

a run obtains a solution with F ≤ Ft within a given time

budget.

A. Pure Algorithm Performance

Let us first explore the performance of the pure BB al-

gorithm and compare it with the pure EC algorithms ini-

tialized with different heuristics. We found that BB and its

heuristically-initialized derivatives receive the worst ranking,



aggregated from a variety of statistics. The heuristically ini-

tialized SBB and MBB outperform BB.

We illustrate two ECDFs of these setups in Figure 1. The

ECDF of BB in Figure 1a, based on the normalized CPU

runtime measure NT, increases slowly and never reaches 0.5

for Ft = 0.1. In other words, even a 10% margin cannot

be reached in more than half of the runs under the given

computational budget. The ECDF curves of BB, MBB and SBB

all increase slowly and approach each other as time increases.

If we decrease Ft (not illustrated), the ECDF value decreases

rapidly as well. If we measure time in terms of FEs (Figure 1c)

instead of (normalized) CPU seconds, we see that the tested

BB algorithms can only create relatively few solutions within

the granted computational budget and thus, the ECDF stops

increasing early.

These observations are based on all the instances with the

size n up to 3795. The findings are not surprising, as problem

scales above 40 were more or less out of reach by BB when

it was designed. In terms of normalized CPU time (NT), BB

can find solutions of instances with n = 32 and below quite

well, and the ECDF increases quickly. The ERT in terms of

DEs and NT is low in this problem class. When the problem

scale n becomes bigger, BB finds fewer solutions.

The TSP Suite provides separate diagrams for the TSP

instances grouped by the number of cities n. In other words,

we can analyze the relationship between the performance of

BB and the problem scale. In the graphs presented in this

paper, lines with the same color represent different algorithms

belonging to the same category (e.g., MNS and VNS belong

to the LS group and thus they are illustrated with the same

color).

From Figures 2a and 2b, we see that the BB algorithm can

find the optimal solutions for instances with n between 16 and

31 quite rapidly, and for 32 ≤ n < 63, although not as good as

LS algorithms, it still can find solutions with Ft ≥ 0.05. As the

problem scale increases, however, its performance decreases.

While the NT is related to the actual consumed runtime,

we can also measure the progress of an algorithm relative to

the number of candidate solutions it has constructed, i.e., in

FEs. In Figures 2c and 2d, we present the ECDF in terms

of FEs, based on the same groups of small-scale instances as

Figures 2a and 2b illustrated. The BB algorithm again shows

good performance for n ≤ 31. We can see from Figure 2c

that it can reach the optima with few FEs and outperform the

other algorithms except MBB, SBB, SBBMNS, SBBVNS and

SBBRNS. As the instance scale gets larger, the BB algorithm

can only perform a few FEs until the maximum runtime is

exhausted, and it manages to find only solutions with a longer

tour length.

In Figure 3, we plot the ERT in terms of the normalized

runtime NT (y-axis) to achieve given goal errors Ft (x-axis).

The trends for the ERT are similar for DEs, FEs, and NT.

BB and its heuristically-initialized derivatives take longer to

find good solutions compared to the other algorithms. This

becomes, again, even more obvious when we look at larger

instances. For problems with n < 256, BB can reach F ≤

0.15. The smaller n is, the smaller the Ft value BB can reach

within the given computational budget.

We also tested two initialized variants of BB: MBB and SBB.

Initialization does improve the performance of BB a little,

at least during the early stage of the search, by giving the

algorithm a better initial upper bound and initial t∗. It does

not, however, increase the speed of improving the existing

solutions. The changes of gradients in the performance curves

of BB, MBB, and SBB are almost identical.

From Figure 1, we can clearly see that the BB algorithms

are initially better than EA128+256e, but EA128+256e

later outperforms them. The heuristically-initialized EA,

hEA128+256e, is better than the BB group from the start.

Moving on to Figure 2, we can see that pure EC methods

behave differently when comparing the improvement of F
over NT. For instances with 8 ≤ n < 32, the BB algorithms

outperform the PACO algorithms all the time and also outper-

form EA128+256e most of the time, but are outcompeted by

hEA128+256e completely. For instances with 32 ≤ n < 64,

the BB algorithms perform the worst. Again, the larger the

scale n is, the worse the set of tested BB methods performs

in comparison with the tested EC methods.

The tested LS setups MNS, RNS1 and VNS1 are much better

than the BB algorithms and the pure EC methods.

B. Hybrid Algorithm Performance

Next, we investigated the BB variants hybridized with MNS

(called BBMNS), VNS (BBVNS), and RNS (BBRNS). Each of

these three hybrids was tested with and without heuristic

initialization.

The ECDF over all tested benchmark instances has a similar

shape for both DEs and NT, and we plot it for Ft = 0.01 in

Figure 1b. From the figure, we can visually classify all the

curves into two main categories. The first category contains

the BB variants, of which MBBMNS (highlighted in the figure)

performs the best. The other category contains the hybrid EC

and LS algorithms, of which hPACO3,10mns (also high-

lighted) is the best algorithm. The hybrid EC methods perform

significantly better than the pure EC and hybrid BB algorithms.

They have achieved better ECDF values eventually and their

ECDF also increases more rapidly. The ECDF value of the

tested hybrid BB algorithms fails to reach 0.35 for Ft = 0.01
within the granted computational budget. The ECDF of the

hybrid EC and LS algorithms, however, eventually exceeds

0.7. This suggests that there is a huge performance gap

between the hybrid BB variants and hybrid EC algorithms or

LS algorithms. The hybrid BB variants are better than the

pure EA (EA128+256e) but worse than the heuristically-

initialized EA (hEA128+256e). They were better than the

pure and heuristically initialized variants of PACO for most

of the given time, but are eventually outperformed by them.

The ERT figures in terms of DEs and NT for a given Ft also

share similar shapes with those in Figure 3. Here, we observe

three visually distinguishable algorithm classes: the pure and

initialized BB algorithms belong to the worst class, their

hybrid versions and pure EC algorithms are in a better class,
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and the hybrid EC algorithms as well as the LS algorithms

end up in the best category. The hybrid BB algorithm group

takes longer to reach a given goal error Ft. An interesting

observation is that the last two classes behave similarly when

Ft is larger than 0.1, but as Ft enters the interval between 0.1

and 0.05 (representing better solutions), their performances

start to diverge. The speed at which the hybrid BB variants

find better solutions then declines dramatically. The hybrid EC

algorithms and the LS algorithms also suffer a great decline

in the speed of finding better solutions at this stage, but not

nearly as much as the hybrid BB group.

From Figures 2a and 2b, we see that all the tested algorithms

can acquire good results on the smallest instances with 8 ≤
n < 63, although both the EC and LS methods have obtained

slightly better results within the given computational budget.

A detailed analysis of the figures shows that all the tested

algorithms are quick to find long tours, i.e., to reach higher

goal errors Ft. However, the hybrid BB algorithms take much

longer than the hybrid EC algorithms (or LS algorithms) to

locate good tours.

One reason for this observation could be that, although we

have introduced hybridization into BB the same way in which

it is introduced in EAs and PACO, its “utilization” is very

different. An MA (hybrid EA) uses the results of the LS as

input for the search operations in the next generation and

ACO uses it to update its pheromone matrix, i.e., the way

new solutions are generated. The hybrid BB only uses it to

update the upper bound f(t∗) for the optimum and to update

its variable t∗ holding the best known solution. It does not

use hybridization to generate new solutions. In other words, it

cannot reap as much benefit from the LS as the EC methods

do.

If we look at Figure 2a as well as figures on other scales,

we notice that the performance of the compared algorithms

differs most significantly when the instance size n is between

32 and 512. Within this range, hybrid BB algorithms with

heuristic initialization can find good solutions with an Fb

around 0.05 (0.1 if n is bigger than 256) in an early stage,

although the results are still not better than the heuristically-

initialized EC methods. The entire BB algorithm group fails

to improve its solutions continuously compared to hybrid EC

algorithms and LS algorithms. All in all, for small instance

sizes, all the algorithms have good performance. For medium

size instances, the hybrid EC algorithms and LS offer better

performance. For relatively large problems, however, none of

the tested algorithms performs well.

We found that initialization does not alter the final results

much, but will it influence the process of finding the solutions?

Figures 2c and 2d along with the diagrams on different

instance scales provide a positive answer to this question.

To reach some fixed goal error Ft, for algorithms from

the hybrid BB family and the LS algorithms, the initialized

variants tend to have good starting solutions and take less

FEs. The exceptions are PACO3,25 and hPACO3,25, for

which initialization neither provides any obvious enhancement

(compared to other algorithms) on the starting solutions nor

does it reduce the consumed FEs significantly. The reason

may be that the way PACO creates a solution when its

pheromone matrix is empty (the initial state) is similar to

how a constructive heuristic works. In general, when the

instance size n increases, the initial solutions generated by

heuristic initialization become worse but are still better than

their random counterparts.

C. Performance Classes

Based on all the above analyses, we can classify

the tested algorithms according to their behaviors into

four groups, which are, in descending order according

to their performance: hybrid EC algorithms, LS algo-

rithms, the hybrid BB, and pure BB. The globally aggre-

gated ranking, over all the performance measures, computed

by the TSP Suite is: hPACO3,10mns, hMA16,64mnse,

hPACO3,10rns, MNSm, MNS, hMA2+8rnss, RNSbm,

RNS1, VNSbm, VNS1, hEA128+256e, MBBMNS, SBBRNS,

hPACO3,25, MBBRNS, PACO3,25, MBBVNS, SBBMNS,

RBBMNS, SBBVNS, RBBRNS, RBBVNS, EA128+256e, SBB,

MBB and BB.

V. CONCLUSIONS AND FUTURE WORK

Our experiments have led us to four major conclusions:

1. The traditional BB algorithm still works well on small-

scale TSP instances (for which it was designed) compared to

current methods, but it does not perform well on medium or

larger scale instances. This is true for its hybrid variants too.



2. Hybridization is able to improve the performance of BB

considerably.

3. We are able to classify TSP solvers into four groups

according to their runtime behavior and confirm that hybrid

algorithms are better than their corresponding pure algorithms.

4. Heuristically-initialized algorithms normally have good

starting solutions and take less FEs to reach the same Ft and

the hybrid EC algorithms are better than our new hybrid BB

algorithms.

Future work will involve implementing the modern variants

of BB by Zhang [20, 21] and hybridizing them with LS. We

will also investigate the use of Lin-Kernighan heuristic [31],

one of the best known metaheuristic strategies [31] for the

TSP, for benchmarking purposes.
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Équipe TAO, Tech. Rep., March 24, 2012. [Online]. Available:
http://coco.lri.fr/BBOB-downloads/download11.05/bbobdocexperiment.pdf

[17] D. A. D. Tompkins and H. H. Hoos, “Ubcsat: An implementation and
experimentation environment for sls algorithms for sat and max-sat,” in
Revised Selected Papers from the Seventh International Conference on

Theory and Applications of Satisfiability Testing (SAT’04), ser. Lecture
Notes in Computer Science (LNCS), H. H. Hoos and D. G. Mitchell,
Eds., vol. 3542. Vancouver, BC, Canada: Berlin, Germany: Springer-
Verlag GmbH, May 10–13, 2004, pp. 306–320. [Online]. Available:
http://ubcsat.dtompkins.com/downloads/sat04proc-ubcsat.pdf
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