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Abstract

The Set Covering Problem (SCP) is NP-hard. We propose a new Row
Weighting Local Search (RWLS) algorithm for solving the unicost variant of
the SCP, i.e., USCPs where the costs of all sets are identical. RWLS is a
heuristic algorithm that has three major components united in its local search
framework: (1) a weighting scheme, which updates the weights of uncovered
elements to prevent convergence to local optima, (2) tabu strategies to avoid
possible cycles during the search, and (3) a timestamp method to break
ties when prioritizing sets. RWLS has been evaluated on a large number of
problem instances from the OR-Library and compared with other approaches.
It is able to find all the best known solutions (BKS) and improve 14 of them,
although requiring a higher computational effort on several instances. RWLS
is especially effective on the combinatorial OR-Library instances and can
improve the best known solution to the hardest instance CYC11 considerably.
RWLS is conceptually simple and has no instance-dependent parameters,
which makes it a practical and easy-to-use USCP solver.
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1. Introduction

The Set Covering Problem (SCP) is a combinatorial optimization problem
with many applications, ranging from crew scheduling in railways to job
assignment in manufacturing and service location [2, 3]. It can be described
as follows: Given a set of elements X , a set S = {s|s ⊆ X} and

⋃

s∈S s = X ,
where each subset in S is associated with a cost, and the goal is to find a
set F ⊆ S whose union is X (which contains all elements from X) at the
minimal total cost. If all subsets in S have identical cost, the problem is
referred to as the unicost set covering problem (USCP). Although being a
special case of SCP, the unicost version is generally considered to be even
harder to solve [4] and is the subject of this paper.

Formally, an SCP instance is usually defined as an m×n zero-one matrix
A = {aij}m×n where aij = 1 means column (set) j can cover row (element)
i. The objective is to find a set of columns at the minimal cost to cover all
rows. If the problem is a USCP, the objective is equivalent to finding the
smallest set of columns that cover all rows. A candidate solution C can then
be represented as a subset of N = {1, . . . , n}. Such a solution is feasible if
and only if

∑

j∈C aij ≥ 1, ∀i ∈ M = {1, . . . , m}.
In this paper, we propose a stochastic RowWeighting Local Search (RWLS)

algorithm for solving USCPs. RWLS uses two search operators to perturb
the candidate solution and combines three major existing strategies into its
local search procedure:

(1) a weighting scheme, which updates the weights of the uncovered rows in
order to escape from local optima,

(2) different tabu strategies, which prevent possible cycles during the search,
and

(3) a timestamp method to break ties, which makes the sets that are not
moved into or out of the candidate solution for a long time are more
likely to be selected.

In our experimental studies, RWLS has improved 14 best known solutions
in the literature for 87 USCP benchmark instances from the OR-Library [5]
and shown excellent performance. It is especially effective on the problems
where the number of rows (elements) is much larger than the number of
columns (sets). However, RWLS is also effective in other cases, for exam-
ple, for the seven railway crew scheduling instances, with up to millions of
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columns and thousands of rows. Combining a problem size reduction tech-
nique from solving Lagrangian Relaxation, although RWLS obtains inferior
results to a sophisticated algorithm [6] from the literature for this set of
railway crew scheduling instances, it still outperforms CPLEX12.51 consis-
tently and succeeds in finding good solutions to all seven instances while
CPLEX12.5 failed on four larger instances. Overall, RWLS is simple, effi-
cient, and only needs a single parameter to indicate the stopping criterion.

The rest of this paper is organized as follows. We first discuss related work
in Section 2 and then give a detailed description of RWLS in Section 3. The
experimental studies are presented in Section 4 and compared with several
approaches from the related work. Conclusions and future work are finally
given in Section 5.

2. Related Work

The SCP is NP-hard in the strong sense [7]. Many algorithms have been
developed for solving the SCP. Exact approaches [8, 9, 10, 11] are mostly
based on branch-and-bound or branch-and-cut. Caprara et al. [12] com-
pared different exact algorithms and found that the best exact approach is
CPLEX. However, although exact algorithms can guarantee the optimality
of the found solutions, they usually require substantial computational efforts
when facing large scale problems.

Therefore, large instances of SCP are typically tackled by heuristic algo-
rithms. The simplest one for SCPs is the greedy algorithm [13]. Later, several
randomized greedy algorithms [14, 15] are proposed. They usually produce
better results than the deterministic greedy one. A variety of other heuristic
algorithms have also been proposed, including some general meta-heuristics,
such as Genetic Algorithms [16], Simulated Annealing [17] and Lagrangian
Relaxation-based heuristics [18, 19, 20, 6], among which the heuristic meth-
ods by Ceria et al [19], Caprara et al. [20] and Yagiura et al. [6] are able to
achieve excellent results on the very large-scale instances by exploiting their
specific features. In particular, the 3-flip neighborhood local search (3FNLS)
method by Yagirua et al. [6], which combines 3-flip local search, adaptive
penalty weights and Lagrangian Relaxation, has the best performance on
the very large-scale railway crew scheduling problems. For a good survey of
relaxation-based heuristics for the SCP, see [21].

Lan et al. [22] noticed that the cost information plays an important role
in determining the peformance of Genetic algorithm [16], Simulated Anneal-

1CPLEX is an optimization software package from IBM:
http://www-01.ibm.com/support/knowledgecenter/SSSA5P_12.5.1/maps/ic-homepage.html
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ing [17] and the Lagrangian-based heuristic [18], and did not recommend
these algorithms for USCPs. They proposed the Meta-RaPS approach that
works effectively for both unicost and non-unicost SCPs. Yelbay et al. [4]
gave a detailed explanation of the usefulness and limitations of dual informa-
tion from Lagrangian Relaxation or Linear Programming (LP) Relaxation,
and pointed out that the unicost problems may be more challenging than the
non-unicost problems.

There are heuristics dedicated to specifically solving USCPs. Grossman
and Wool [23] compared nine heuristics, including several greedy variants
and a neural network algorithm. In their report [23], the randomized greedy
variant R-Gr has the best performance on a large set of instances from the
OR-Library [5]. A newer GRASP algorithm incorporating a local improve-
ment procedure from solving Satisfiability (SAT) has shown to be able to
obtain better results than R-Gr [24].

The Electromagnetism Meta-heuristic (EM) proposed by Naji-Azimi et
al. [25] creates an initial population by generating a pool of solutions, and
then a fixed number of local search and movement iterations are applied based
on the “electromagnetism” theory. In order to escape from local optima,
mutation is also adopted. The computational results in [25] show that EM
performs much better than GRASP, but in comparison with Meta-RaPS on
the combinatorial problem set, for 3 instances the solution qualities obtained
by EM are inferior.

Stochastic local search is a popular approach for solving hard combina-
torial problems [26]. Musliu [27] proposed a local search algorithm for the
USCP using a simple fitness function, which is the number of uncovered ele-
ments plus the cardinality of the candidate solution. New candidate solutions
are created by adding or removing sets from the current one. To avoid cycles
during the local improvement phase, a tabu mechanism is used. According to
our investigation, Musliu’s algorithm is able to find most of the best known
solutions on 80 instances from the OR-Library [5] as unicost problems and 5
small instances from the Steiner triple systems [28].

Since in USCP instances all sets have the same cost, the task can be seen
as minimizing the number of sets in a solution. RWLS utilizes the special
property of USCP, and uses a general search framework to iteratively reduce
the size of the candidate solution.

3. Row Weighting Local Search (RWLS)

3.1. Notations and Definitions

As mentioned above, the USCP can be presented as an m × n zero-one
matrix. M and N indicates the set of rows (elements in X) and columns
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(subset s ∈ S) , respectively. We define Ji as the set of columns that are
able to cover row i, and Ij as the set of rows covered by column j:

Ji = {j ∈ N |aij = 1}, i = 1, . . . , m, (1)

Ij = {i ∈ M |aij = 1}, j = 1, . . . , n. (2)

A candidate solution C is a subset of columns: C ⊆ N . For all i in M ,
we say that row i is covered if and only if there exists a j in C that satisfies
i ∈ Ij .

For all j inN , an attribute denoted j.score, which is later used to prioritize
the columns for covering, is defined and calculated according to Equation (3).

j.score =























∑

i∈Ij
σ(C,i)=0

i.weight if j 6∈ C,

−
∑

i∈Ij
σ(C,i)=1

i.weight if j ∈ C.
(3)

In Equation (3), i.weight is the weight of row i and σ(C, i) = |C ∩ Ji| rep-
resents the number of columns in C covering row i. When a column j 6∈ C,
j.score is the sum of all the weights of uncovered rows that j is able to cover.
If a column j ∈ C, j.score is the negation of the sum of the weights of rows
which are only covered by j in C. It can be seen from the definition of j.score
that if we move j into or out of C, the score of j should be negated. A row i

with σ(C, i) > 1 has no contribution to the score value of the corresponding
columns in Ji, since it has been covered more than once by the candidate
solution C.

Each column has a timestamp associated with it, which gets updated
whenever it is moved into or out of the candidate solution. It is used to
break ties when two or more columns have the same score.

We also define a neighborhood relationship for columns as follows: For all
j1, j2 in N , and j1 6= j2, if ∃i ∈ M, i ∈ Ij1 ∩ Ij2, we call j1 and j2 neighbors.
The notation neighbor(j) contains all the neighbors of j, defined as

neighbor(j) = {d ∈ N |d 6= j ∧ Id ∩ Ij 6= ∅}, j = 1, . . . , n (4)

Each column has a Boolean attribute, named j.canAddToSolution, which
is used to implement one of the two tabu strategies in RWLS. A column j

can only be added to C if j.canAddToSolutin is true. The uncovered rows
are maintained in a set named L in RWLS.
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3.2. The RWLS Algorithm

RWLS is a USCP solver. It tries to find the smallest set of columns
that covers all the rows in M . For this purpose, we adopt a two phase
search procedure. In the first phase, an initial solution C is constructed in
a greedy manner. Then, a local search improvement is conducted with the
adaptive weighting scheme. The overall procedure of RWLS is described as
Algorithm 1.

A preprocessing step is necessary when there are rows that are only cov-
ered by one column. Such columns must be selected into the candidate
solution, and the rows they cover can be removed from the problem. We ex-
amine the number of columns covering each row, i.e., |Ji| for each i, and for
rows that are only covered by one single column, the corresponding column is
selected into the solution and marked permanently not to be removed. This
preprocessing step has a time complexity of at most O(n′), where n′ is the
number of ones in the matrix A.

Algorithm 1 The RWLS algorithm
1: function RWLS( )
2: read problem instance
3: set stopping criteria
4: preprocessing if necessary
5: init( )
6: localsearch( )
7: end function

3.2.1. Initialization

Algorithm 2 describes the initialization phase, which builds a set C, rep-
resenting the initial solution. The set L is initialized as M , representing the
set of uncovered rows. Every row is initialized to have a weight of 1 and
each column j has a j.canAddToSolution of true, a timestamp of 1 and a
score computed according to Equation (3), i.e., the number |Ij| of rows it
can cover. C is then constructed greedily in a loop until L becomes empty.
The obtained initial solution C is then used as the candidate solution in the
subsequent local improvement phase.

ADD(j) is a simple operator, in which the score of j is negated, and
then the scores of neighbor(j) are updated according to Equation (3). The
canAddSolutions of neighbor(j) are set to true. Note that when ADD(j)
is called, the removal of newly covered rows from L is conducted inside the
operator.
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Algorithm 2 Initialization
1: function init(C candidate solution)
2: for j ∈ N do

3: j.score← 0
4: j.timestamp← 1
5: j.canAddToSolution ← true

6: end for

7: L← ∅
8: for i ∈M do

9: i.weight← 1
10: add i into L

11: for d ∈ Ji do

12: d.score← d.score+ i.weight

13: end for

14: end for

15: C ← ∅
16: while L 6= ∅ do
17: j ← rand({d ∈ N\C ∧ d.score = max{d1.score|d1 ∈ N\C}})
18: add(j)
19: end while

20: end function

3.2.2. Local Search

Let the size of the initial solution C be k = |C|. If there is any better
solution, it must have a size less than k. If we always maintain k as the
size of the best solution we have encountered so far, then the local search
improvement can also be regarded as to solve a series of new problems: given
the original problem and an integer number k, find a k−1 size solution which
is able to cover all the rows in M .

Therefore, we take the initial solution C as the candidate solution into the
local search improvement phase defined as Algorithm 3. Here, the REMOVE

function is first called, which removes a column from C. C then becomes a
partial solution with k−1 columns. However C may have redundant columns,
and if one of such columns is removed, we get an even better solution, then
the stored best solution and the variable k will be updated. We continue
to remove columns until C becomes a partial solution which cannot cover
all rows in M . As a partial solution of size k − 1 has been obtained, a pair
of operations (ADD and REMOVE ) are used to perturb C. The weighting
scheme is also applied, which means that the weights of uncovered rows are
increased. The weighting scheme improves the chance of uncovered rows of
being covered in the following iterations.

As described in Algorithm 3, in each iteration, C becomes a partial so-
lution of size k − 1. The REMOVE operator deletes the columns with the
highest negative score (the one closest to zero) in C. RWLS keeps track of
two previously added columns in the tabu list, i.e., a FIFO queue of size
two, to prevent them from being removed again immediately. We found
that even with a tabu list length of one, good results can be achieved, but
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Algorithm 3 Local search improvement
1: function localsearch( )
2: step← 1
3: while stop criteria not satisfied do

4: while L = ∅ do
5: update the best solution
6: select j ∈ C with the greatest score
7: remove(j)
8: end while

9: select j ∈ C ∧ j 6∈ tabu list with greatest score and the oldest if there is a tie
10: remove(j)
11: r ← rand(L)
12: select d ∈ {d1 ∈ Jr|d1.canAddToSolution = true} with the greatest score and the oldest if

there is a tie
13: add(d)
14: for i ∈ L do

15: i.weight← i.weight+ 1
16: end for

17: put d to tabu list

18: j.timestamp← step

19: d.timestamp← step

20: step← step+ 1
21: end while

22: end function

with length two the algorithm tends to proceed faster. After a column re-
moval, a row is randomly selected from the uncovered row set L and the
column with the highest score and canAddToSolution = true is chosen to
be added to C. The REMOV E(j) operator is symmetric of ADD(j), in
which the scores associated with j and neighbor(j) are updated according to
Equation (3), and j.canAddToSolution is set to false, whereas its neighbors’
canAddToSolution are updated to true.

The canAddToSolution = true restriction in Line 11 is the second tabu
strategy applied in RWLS. Generally, we do not want the column which has
been removed from C to be added back again if none of its neighbors’ states
have changed since its removal. We set j.canAddToSolution = false if j
leaves C, which means j is not eligible to be added to C. If one of the states of
j’s neighbors changes (due to their removal or addition), j.canAddToSolution
is updated to true. To save computing time, we implement this strategy
along with the operators ADD and REMOVE.

Finally, the timestamp used in Algorithm 3 makes sure that columns that
have not been selected for a longer time are preferred; i.e., when two or more
columns have the same score, we break ties by preferring the oldest one with
the smallest timestamp.

The viability of Line 11 in Algorithm 3 is guaranteed by an observation,
as below:

Lemma 3.1. ∀i ∈ L, |{j ∈ Ji|j.canAddToSolution = true}| ≥ 1.
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Proof: Before the proof, we reassert that after necessary preprocessing, the
remaining rows are covered by two or more columns. Then we consider the
following two circumstances.

(a) Initially, all the columns have canAddToSolution = true, and then an
initial solution is constructed. At this time, no columns have left C and no
column has a false value for canAddToSolution. Thus, the claim holds.

(b)During local search, when a column j leaves C, we set j.canAddToSolution =
false, and ∀j′ ∈ neighbor(j), j′.canAddToSolution = true. Let’s assume that
the removal of j causes row r ∈ Ij to be uncovered, because Jr∩neighbor(j) 6=
∅. Then, there is at least one column in Jr whose canAddToSolution = true

and, thus, the claim holds.

3.3. The Row Weighting Scheme in RWLS

The row weighting scheme plays an important role in our algorithm. In
RWLS, each row is associated with a weight, which is represented by a posi-
tive integer number. Initially, all the rows are given a weight of 1. During the
local search improvement phase, whenever the candidate solution C becomes
a partial solution in an iteration, the weight scheme is applied, which means
the weights of uncovered rows are increased. In RWLS, the simplest additive
increasing method is adopted, which means the weights are simply increased
by 1.

Whenever a partial solution with k−1 columns has been obtained, RWLS
repeatedly perturbs the candidate solution. Since the columns in C are
changing dynamically, the uncovered rows in L also change accordingly. Be-
cause of the weight increasing scheme, the “hard to cover” rows, which have
larger weights, may have a good chance to be covered in the following iter-
ations. Both the perturbation and increasing weights help RWLS to escape
from potential local optima.

3.4. Analysis of the ADD and REMOVE Operators

As shown in Algorithm 3, the operators ADD and REMOVE are crucial
to RWLS. Therefore, it is necessary to precisely specify them, as shown in
Algorithms 4 and 5.

When column j is added or removed, the scores of j and its neighbors
are calculated according to Equation (3) and Equation (4), respectively. The
canAddToSolution of neighbor(j) are updated to true. Only when j is re-
moved, j.canAddToSolution is set to false. The time complexity of these two
operators depends on the size of neighbor(j). To further analyze it, we define
variables p, q and t. For all d in neighbor(j), let γ(j, d) be the set of rows
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Algorithm 4 Add a column into C

1: function add(j)
2: add j to C

3: j.score← −j.score
4: for d ∈ neighbor(j) do

5: d.canAddToSolution ← true

6: for r ∈ Id ∩ Ij do

7: if |Jr ∩ C| = 1 then

8: L← L\{r}
9: d.score← d.score− r.weight

10: else if |Jr ∩ C| = 2 then

11: if d ∈ C then

12: d.score← d.score+ r.weight

13: end if

14: end if

15: end for

16: end for

17: end function

Algorithm 5 Remove a column from C

1: function remove(j)
2: remove j from C

3: j.score← −j.score
4: j.canAddToSolution ← false

5: for d ∈ neighbor(j) do

6: d.canAddToSolution ← true

7: for r ∈ Id ∩ Ij do

8: if |Jr ∩ C| = 1 then

9: d.score← d.score− r.weight

10: else if |Jr ∩ C| = 0 then

11: L← L ∪ {r}
12: d.score← d.score+ r.weight

13: end if

14: end for

15: end for

16: end function
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that they both can cover.

γ(j, d) = Id ∩ Ij (5)

q = max{|γ(j, d)||d ∈ neighbor(j)} (6)

Therefore, if column j is added or removed, the time complexity of the two
operators is O(|neighbor(j)| × q). More generally, if we define

t = max{|Jr||r ∈ M} (7)

p = max{|Ij||j ∈ N} (8)

where ∀j ∈ N, |neighbor(j)| ≤ t, and ∀d, j ∈ N, |γ(j, d)| ≤ p, we can conclude
that the time complexity of these two operators will not exceed O(tp). Thus,
the two operators used to perturb C are efficient when the product of t and
p is relatively small, which is often the case.

4. Computational Results

In order to demonstrate the effectiveness of RWLS, we evaluate it on a
large number of instances from the OR-Library [5] as well as instances from
the Steiner Triple Systems (STS) [28]. There are 87 SCP instances from
the OR-Library, of which 70 are randomly generated, 7 are very large-scale
instances arising from crew-scheduling at Italian railways. The remaining 10
are unicost instances from two combinatorial mathematical models. Similar
to previous work on the USCP [23, 24, 25, 27], we convert the non-unicost
instances into USCPs by ignoring the cost information.

4.1. Problem Instances

Table 1 contains the details of the 70 random instances, divided into 12
problem sets (from 4 to NRH) with the number of rows ranging from 50 to
1000 and the number of columns spanning from 500 to 10000. Each set of
instances is generated according to a specific density, i.e., a percentage of
non-zero entries in the (sparse) matrix A. Sets 4 to 6 are from [29], A to E
are from [8], and NRE to NRH are from [18].
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Table 1: Details of the random problem sets [8, 18, 29], the combi-
natorial problems [23] and the STS instances [28].

Set m n Density(%)
Max number of 1s
per row

Num of
Instances

4 200 1000 2 36 10
5 200 2000 2 60 10
6 200 1000 5 71 5
A 300 3000 2 81 5
B 300 3000 5 192 5
C 400 4000 2 105 5
D 400 4000 5 244 5
E 50 500 20 124 5

NRE 500 5000 10 561 5
NRF 500 5000 20 1086 5
NRG 1000 10000 2 258 5
NRH 1000 10000 5 580 5

CYC06 240 192 2.1 4 1
CYC07 672 448 0.9 4 1
CYC08 1792 1024 0.4 4 1
CYC09 4608 2304 0.2 4 1
CYC10 11520 5120 0.08 4 1
CYC11 28160 11264 0.02 4 1
CLR10 511 210 12.3 126 1
CLR11 1023 330 12.4 210 1
CLR12 2047 495 12.5 330 1
CLR13 4095 715 12.5 495 1
STS243 9801 243 1.2 3 1
STS405 27270 405 0.7 3 1
STS729 88452 729 0.4 3 1
STS1215 245835 1215 0.2 3 1
+ We ignore the first four STS instances (STS27 to STS135) due to their very small
problem scale.

As non-unicost SCPs, the random instances from 4 to 6, A to D, NRE and
NRF, as well as instances NRG1 to NRG4, are relatively easy to solve and
their optima are known. The mixed integer linear programming tool CPLEX
can solve them in reasonable time [12]. However, no optima are known for
the instances that are converted to USCPs. The instances from set E are
randomly generated USCPs and their optima can be easily obtained by a
greedy procedure [23].

Table 1 also contains the ten combinatorial problem instances (CYC and
CLR). The only instance whose optimum is known is CYC06. One obvious
feature of the CYC instances is that each row is exactly covered by 4 columns.
Different from the random instances, m is always larger than n. For a detailed
explanation of the CLR and CYC problems, see [23].

The STS instances are unicost problems with regular structures, such as
|Ji| = 3, ∀i ∈ M and |Ij1 ∩ Ij2| = 1, ∀j1 6= j2 ∈ N . They are generally
regarded as very difficult for the existing algorithms [6]. The perl script used
to generate the STS instances can be found from the website 2. In STS
problems, the number m is also much larger than n.

For the 7 railway crew scheduling instances, because of their very large
sizes, we will consider them separately in Section 4.4.

2http://www.co.cm.is.nagoya-u.ac.jp/~yagiura/scp/stcp/

12

 http://www.co.cm.is.nagoya-u.ac.jp/~yagiura/scp/stcp/


4.2. Experimental Results

Our algorithm is programmed in C, compiled with gcc with -O2 opti-
mization, running on a machine with Intel(R) Core(TM) i5 650 3.20GHz
CPU and 4 GB RAM under a 64-bit Linux system. The maximum number
of search steps for the random instances is set to 3× 107, and to 1× 108 for
the combinatorial and STS problems at first, to show the best solutions that
RWLS is able to achieve, and then we give direct comparisons to the most
effective heuristics found in the literature.

4.2.1. Comparison of Best Solutions Found by Different Algorithms

Tables 2 and 3 contain the best results found by GRASP [24], EM [25], the
local search algorithm by Musliu [27] and RWLS on the random instances.
For convenience, in the rest of this paper, we will refer to the local search al-
gorithm proposed by Musliu [27] as Musliu. The best known solution (BKS)
value for each instance is also included in the table and we highlight those
improved by RWLS in starred boldface. For each instance, 10 runs are exe-
cuted by RWLS with different random seeds, in addition to the best solution
value, we also report the number of runs detecting the best, and the average
time over these “successful” runs.

It can be observed from Table 2 that the best solution values of EM are
generally better than those of GRASP. EM found the BKS of NRE1, which
is 16, whereas Musliu’s algorithm has achieved the remaining BKSs on these
instances. However, RWLS is able to surpass Musliu, since it has discovered
all the BKSs and even improved 12 of them.

Table 3 contains the best solution values found by GRASP [24], EM [25],
Meta-RaPS [22], Musliu [27], 3FNLS and RWLS on combinatorial and STS
instances. Since 3FNLS has not been tested on the CLR and CYC problems
by its authors, the best results obtained by 3FNLS on these instances are
unknown in the literature. The same is true for GRASP, EM and Meta-RaPS
on the STS problems.

From Table 3, we find that the best solutions obtained by RWLS are
better than those of the other four approaches. RWLS has improved 2 BKSs
on these 10 combinatorial problems. In particular, the best solution value of
CYC11 is improved from 4088 to 3968. The only instance on which RWLS
did not achieve the BKS is CYC10, whose BKS is 1792 [30]. However, the
best solution from RWLS on CYC10 is still better than those from GRASP,
EM, Meta-RaPS and Musliu.

Combining the results in Tables 2 and 3, we can see that RWLS has
improved 14 BKSs in total, at the expense of more computation time on some
instances. Since Musliu’s algorithm has the best overall performance among
all other algorithms, we choose Musliu’s algorithm for further comparison.
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Since the results of the other approaches are from the literature, we list
the computer configurations used by each algorithm as below:

• GRASP [24]: programmed in C, running on a Pentium 4 1800 MHz
CPU machine with 512 MB RAM under Linux System. The stopping
criterion is a predefined maximum number of iterations. The compu-
tation times in finding the best reported solutions were not given.

• EM [25]: programmed in C, running on an Intel Core Duo 1.7GHz CPU
with 1 GB RAM. It stops when an indicated global time is reached.

• Meta-RaPS [22]: running on an Intel Pentium IV 1.7 GHz PC.

• Musliu [27]: written in C++, running on an Intel Pentium 4, 2.4GHz
CPU with 512MB RAM machine. For each instance, 10 runs are per-
formed, and the average time over the runs detecting the best is re-
ported.

• 3FNLS [6]: implemented in C, running on a Sun Ultra 2 Model 2300
(two Ultra SPARC II 300 MHz processors with 1 GB RAM) worksta-
tion, 10 runs are performed for each instance using various time limits.
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Table 2: The best solutions found by GRASP [24], EM [25], Musliu [27]
and RWLS on the random USCP instances. The starred boldface indi-
cates the improvement over the best known solution in the literature.

Inst. BKS GRASP EM Musliu RWLS
best time best time best #best time

4.1 38 38 38 22.70 38 0.5 38 10 0.02
4.2 37 37 37 1.57 37 0.0 37 10 0.01
4.3 38 38 38 3.00 38 0.0 38 10 0.01
4.4 38 39 38 74.38 38 0.7 38 10 0.17
4.5 38 38 38 2.40 38 0.4 38 10 0.02
4.6 37 38 38 3.17 37 0.8 37 10 0.13
4.7 38 38 38 17.00 38 1.1 38 10 0.07
4.8 37 38 38 3.07 37 1.0 37 10 0.08
4.9 38 38 38 0.57 38 1.0 38 10 0.02
4.10 38 38 38 6.72 38 1.2 38 10 0.15
5.1 34 35 34 6.84 34 1.0 34 10 0.40
5.2 34 34 34 220.05 34 3.2 34 10 0.10
5.3 34 35 34 25.91 34 0.8 34 10 0.04
5.4 34 34 34 27.16 34 1.6 34 10 0.07
5.5 34 34 34 5.84 34 2.2 34 10 0.06
5.6 34 34 34 297.62 34 3.1 34 10 0.09
5.7 34 34 34 6.34 34 0.6 34 10 0.04
5.8 34 35 34 61.41 34 2.2 34 10 0.17
5.9 35 36 35 33.30 35 0.6 35 10 0.03
5.10 34 35 34 7.87 34 3.4 34 10 0.16
6.1 21 21 21 1.87 21 0.0 21 10 0.02
6.2 20 20 20 79.71 20 0.7 20 10 0.17
6.3 21 21 21 0.08 21 0.0 21 10 0.02
6.4 20 21 21 10.89 20 0.6 20 10 0.48
6.5 21 21 21 2.09 21 0.0 21 10 0.03
A.1 39 39 39 28.85 39 3.2 38* 10 320.27
A.2 38 39 39 182.56 38 - 38 10 3.46
A.3 39 39 39 140.21 39 1.8 38* 10 181.40
A.4 37 38 38 18.74 37 5.7 37 10 6.04
A.5 38 39 38 7.81 38 6.1 38 10 0.42
B.1 22 22 22 44.32 22 8.3 22 10 0.35
B.2 22 22 22 7.39 22 2.0 22 10 0.31
B.3 22 22 22 7.04 22 1.1 22 10 0.68
B.4 22 22 22 29.04 22 11.6 22 10 1.07
B.5 22 22 22 42.86 22 12.1 22 10 0.68
C.1 43 43 43 921.96 43 5.9 43 10 0.81
C.2 43 44 43 1023.79 43 9.5 43 10 1.14
C.3 43 44 43 918.46 43 10.2 43 10 0.73
C.4 43 44 43 28.49 43 11.6 43 10 0.82
C.5 43 44 43 1007.09 43 2.1 43 10 4.25
D.1 24 25 25 49.06 24 - 24 10 9.73
D.2 25 25 25 18.76 25 2.2 24* 10 285.28
D.3 24 25 25 73.53 24 21.6 24 10 364.87
D.4 25 25 25 50.56 25 17.7 24* 10 270.87
D.5 25 25 25 212.62 25 24.1 24* 10 346.74
E.1 5 5 5 0.01 5 0.0 5 10 0.0
E.2 5 5 5 0.01 5 0.0 5 10 0.0
E.3 5 5 5 0.01 5 0.0 5 10 0.0
E.4 5 5 5 0.05 5 0.0 5 10 0.0
E.5 5 5 5 0.02 5 0.0 5 10 0.0

NRE1 16 17 16 1305.72 17 2.2 16 2 3441.29
NRE2 17 17 17 22.61 17 1.5 16* 2 6437.21
NRE3 17 17 17 50.67 17 16.5 16* 1 2935.55
NRE4 16 17 17 43.31 16 - 16 5 2925.08
NRE5 17 17 17 10.78 17 4.5 16* 2 3576.99
NRF1 10 10 10 145.71 10 17.3 10 10 35.09
NRF2 10 10 10 1325.44 10 43.9 10 10 84.45
NRF3 10 10 10 1399.77 10 48.7 10 10 71.61
NRF4 10 10 10 120.20 10 17.9 10 10 36.48
NRF5 10 10 10 1651.14 10 29.4 10 10 47.25
NRG1 61 - 63 101.75 61 27.3 61 10 74.27
NRG2 62 - 63 127.87 62 29.8 61* 10 124.62
NRG3 62 - 63 124.47 62 20.8 61* 10 104.36
NRG4 62 - 63 117.15 62 41.8 61* 10 139.69
NRG5 62 - 63 32.38 62 40.2 61* 10 176.31
NRH1 34 - 34 755.72 34 8.7 34 10 280.76
NRH2 34 - 34 464.40 34 7.8 34 10 407.19
NRH3 34 - 34 1760.62 34 19.1 34 10 409.27
NRH4 34 - 34 227.73 34 26.1 34 10 533.78
NRH5 34 - 34 1912.47 34 50.3 34 10 495.10

+ RWLS uses a maximum search iteration of 3× 107 as its stopping criterion.
+ The best solution values of A.2, D.1 and NRE4 of Musliu were found after
parameter tuning, and the computation times were not reported.

+ The time of EM was the computation time of finding the best. The time of
Musliu and RWLS was the average time over the successful runs that found the
corresponding best.
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Table 3: The best solutions found by GRASP [24], EM [25], Meta-RaPS [22], Musliu [27], 3FNLS [6]
and RWLS on the combinatorial and STS instances [28]. The starred boldface indicates the newly
discovered BKSs. “-” indicates that the algorithm has not been evaluated on this problem instance.

Inst. BKS GRASP EM Meta-RaPS Musliu 3FNLS RWLS
best time best time best time best #best time

CLR10 25 25 25 0.57 25 0.05 25 0.0 - 25 10 0.01
CLR11 23 23 23 15.53 23 3.03 23 0.0 - 23 10 0.08
CLR12 23 23 23 109.69 23 4.13 23 3.7 - 23 10 0.38
CLR13 23 23 23 3539.45 23 48.74 23 79 - 23 10 3.89
CYC06 60 60 60 0.08 60 0.0 60 0.0 - 60 10 0.00
CYC07 144 144 144 1.97 144 0.0 144 0.0 - 144 10 0.02
CYC08 342 348 344 303.40 344 38.91 342 11.1 - 342 10 0.30
CYC09 774 813 812 407.63 793 88.36 774 110.4 - 772* 2 266.70
CYC10 1792 1916 1915 1892.06 1826 80.56 1820 488.9 - 1798 7 663.73
CYC11 4088 4268 4272 12922.03 4140 12656.75 4088 1497.8 - 3968* 1 520.69
STS243 198 - - - - - 198 29.6 198 198 10 0.09
STS405 335 - - - - - - - 337 335 5 321.26
STS729 617 - - - - - - - 617 617 10 23.36
STS1215 - - - - - - - - - 1063 1 886.25
+ For 3FNLS, the best is obtained by setting the time limit of 1800 seconds for STS243, 3600 seconds for STS405 and STS729.
+ The time of Meta-RaPS and EM is the computation time of finding the corresponding best.
+ The time of Musliu and RWLS is the average time over the runs finding the corresponding best.
+ For RWLS, the stopping criterion is set as a maximum iteration number of 1 × 108 .
+ The BKS 198 of STS243 has been proven to optimality in [31].
+ The BKS 335 of STS405 is recently found by Resende et al. [32] using a biased random-key genetic algorithm dedicated to the STS
problems.
+The best known solution to STS1215 is unknown in the literature.

4.2.2. Further Comparison with Musliu’s Algorithm and 3FNLS

The experimental results in the previous section have demonstrated the
ability of RWLS in finding high quality solutions. It has found 14 new best
known solutions among 80 benchmark problem instances in the OR-library.
This section will examine the reason of RWLS’s superior performance in
finding high quality solutions. Is it because it used much longer computation
time than other algorithms or is it because of the novel combination of dif-
ferent search operators and the adaptive weighting scheme? To answer such
questions in detail, we will compare RWLS against Musliu’s algorithm as well
as 3FNLS [6]. We have seen from Tables 2 and 3 that Musliu’s algorithm
has the best solution values among other existing algorithms on the USCP
instances from the OR-Library. The 3FNLS algorithm, on the other hand,
represents one of the most effective algorithms that combine Lagrangian Re-
laxation and local search. It has been known to be effective on a variety
of instances, achieved state-of-the-art results on the non-unicost, very large-
scale railway crew scheduling instances. However, the effectiveness of 3FNLS
has not been tested on the OR-Library instances as unicost problems.

In order to make direct comparison between these three algorithms, we
asked Musliu for the executable code of his solver on Linux. For 3FNLS, we
asked Yagiura to share with us their source code of 3FNLS, which is written
in C. Similar to RWLS, we compile 3FNLS on our machine using gcc, with
O2 option. Both Musliu, 3FNLS and RWLS are running on the same Intel
Core i5 3.2 GHz CPU, 4GB RAM machine under 64bit Linux system. Due
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to the randomness of the three algorithms, we follow the experiment setup as
Musliu, perform 3FNLS and RWLS 10 independent trials on each instance
with 10 consecutive integer numbers ranging from 11 to 20 as random seeds.
The computational results are presented as the best solution value (best),
average solution value (avg) among the 10 trials, the number of trials finding
the best, as well as the average time (time) over those “successful” runs that
delivered the best. We follow the suggestion of Musliu, set the tabu factor for
the random problems (4 to NRH) to 0.05, and 0.15 for the combinatorial and
STS problems, respectively. The stopping criteria of the three algorithms are
set to the same time limits. Note that because of the different features each
algorithm possesses, it is difficult to set time limits fair to each algorithm.
However, the times reported in [27] provide a reference of the hardness of
these USCP instances from OR-Library. Hence we set the time limits for
each set of instances roughly according to [27].

Tables 4 and 5 contain the computational results of Musliu, 3FNLS and
RWLS. As shown in Table 4, for random instances from sets 4 to 6 and
sets A to E, when RWLS and 3FNLS both achieve the same best solutions,
RWLS is more efficient computationally, because it consumes less average
times to achieve the same best and smaller averages. Moreover, RWLS has
obtained 9 better solutions than Musliu and 3FNLS among 50 instances. As
for the larger instances from sets NRE to NRH, the overall solution values of
RWLS are still better than those of Musliu and 3FNLS, both of the best and
the average solution values, while the time reported by RWLS are generally
much larger than those of Musliu’s algorithm. Observed that the computa-
tional times of Musliu are always very small even given larger time limits, we
suspect that Musliu’s algorithm might be quickly stuck in some local optima
after certain iterations.

Table 5 also contains the comparison between Musliu’s algorithm, 3FNLS
and RWLS on the ten combinatorial and 4 STS instances. We can see that
RWLS outperforms Musliu’s algorithm in terms of solution quality by finding
the same or better solutions in all cases, although it tends to consume a little
more computation time on some small size problems. RWLS also outperforms
3FNLS on all the combinatorial and STS problems both in terms of best solu-
tion values and computational times. It is interesting that 3FNLS’s solution
values are generally better than those of Musliu although 3FNLS’s perfor-
mance on USCPs are not previously investigated by its authors. However,
when compared to RWLS, it is easy to see that our algorithm outperforms
3FNLS, for it can always obtain better solution values within shorter run-
times, especially on the larger instances with many more rows than columns,
such as CYC11 and STS1215.

Combining the results of Tables 4 and 5, we can see that RWLS has
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obtained 19 better solutions than Musliu and 3FNLS given the same amount
of running time on the same machine.

Table 4: Computational results from Musliu, 3FNLS and RWLS on the random
USCP instances, obtained by running on the same Intel Core 3.25 GHz CPU with
4GB RAM under Linux system.

Inst
Musliu 3FNLS RWLS

best avg #best time best avg #best time best avg #best time
4.1 38 38.1 9 0.0 38 38.2 8 2.79 38 38.0 10 0.02
4.2 37 37.0 10 0.0 37 37.0 10 0.29 37 37.0 10 0.01
4.3 38 38.0 10 0.0 38 38.0 10 0.22 38 38.0 10 0.01
4.4 38 38.9 3 0.0 38 38.9 1 5.19 38 38.0 10 0.17
4.5 38 38.1 9 0.0 38 38.0 10 1.96 38 38.0 10 0.02
4.6 37 37.4 6 0.0 37 37.6 4 5.58 37 37.0 10 0.13
4.7 38 38.5 5 0.1 38 38.2 8 3.88 38 38.0 10 0.07
4.8 37 37.9 1 0.0 37 37.7 3 5.68 37 37.0 10 0.08
4.9 38 38.2 8 0.0 38 38.0 10 2.91 38 38.0 10 0.02
4.10 38 38.4 7 0.0 38 38.9 1 1.14 38 38.0 10 0.15
5.1 35 35.1 9 0.1 35 35.0 10 0.25 34 34.0 10 0.40
5.2 35 35.1 9 0.0 34 34.5 5 4.52 34 34.0 10 0.10
5.3 35 35.3 7 0.0 34 34.0 10 1.20 34 34.0 10 0.04
5.4 35 35.1 9 0.0 34 34.4 6 3.86 34 34.0 10 0.07
5.5 35 35.1 9 0.0 34 34.0 10 2.57 34 34.0 10 0.06
5.6 34 34.3 6 0.5 34 34.3 7 5.62 34 34.0 10 0.09
5.7 34 34.9 3 0.0 34 34.0 10 1.64 34 34.0 10 0.04
5.8 35 35.4 7 0.2 34 34.7 3 1.77 34 34.0 10 0.17
5.9 35 36.7 1 0.0 35 35.0 10 1.18 35 35.0 10 0.03
5.10 35 35.6 5 0.0 34 34.9 1 6.24 34 34.0 10 0.16
6.1 21 21.2 8 0.0 21 21.0 10 0.32 21 21.0 10 0.02
6.2 20 20.7 3 0.1 20 20.7 3 7.35 20 20.0 10 0.17
6.3 21 21.1 9 0.1 21 21.0 10 0.59 21 21.0 10 0.02
6.4 21 21.1 9 0.0 21 21.0 10 1.34 20 20.0 10 0.48
6.5 21 21.0 10 0.0 21 21.0 10 1.36 21 21.0 10 0.03
A.1 39 39.0 10 0.0 39 39.0 10 5.56 38 38.9 1 10.03
A.2 39 39.1 9 0.4 39 39.0 10 3.40 38 38.0 10 3.46
A.3 39 39.0 10 0.0 39 39.0 10 3.01 38 38.7 3 14.10
A.4 37 37.9 1 1.0 38 38.0 10 4.42 37 37.1 9 4.39
A.5 38 38.9 1 0.4 38 38.9 1 17.84 38 38.0 10 0.42
B.1 22 22.9 2 0.2 22 22.4 6 10.49 22 22.0 10 0.35
B.2 22 22.0 10 0.0 22 22.0 10 6.09 22 22.0 10 0.31
B.3 22 22.0 10 0.0 22 22.3 7 12.33 22 22.0 10 0.68
B.4 23 23.0 10 0.0 23 23.0 10 1.73 22 22.0 10 1.07
B.5 22 22.5 5 0.6 22 22.1 9 6.37 22 22.0 10 0.68
C.1 43 43.8 2 1.1 43 43.4 6 8.66 43 43.0 10 0.81
C.2 43 43.9 2 0.5 43 43.9 1 17.63 43 43.0 10 1.14
C.3 43 43.5 5 1.0 43 43.8 2 13.39 43 43.0 10 0.73
C.4 44 43.9 1 0.7 43 43.8 2 9.65 43 43.0 10 0.82
C.5 43 43.7 3 0.6 43 43.9 1 5.75 43 43.0 10 4.25
D.1 25 25.8 2 0.0 25 25.1 9 12.37 24 24.1 9 7.27
D.2 25 25.3 7 0.9 25 25.0 10 4.86 24 24.9 1 8.54
D.3 25 25.3 7 0.3 25 25.4 6 14.32 24 24.9 1 5.60
D.4 25 25.6 4 0.5 26 26.0 10 0.00 25 25.0 10 1.69
D.5 25 25.4 6 1.0 26 26.0 4 14.42 24 24.9 1 18.27
E.1 5 5.0 10 0.0 5 5.0 10 0.0 5 5.0 10 0.0
E.2 5 5.0 10 0.0 5 5.0 10 0.0 5 5.0 10 0.0
E.3 5 5.0 10 0.0 5 5.0 10 0.0 5 5.0 10 0.0
E.4 5 5.0 10 0.0 5 5.0 10 0.0 5 5.0 10 0.0
E.5 5 5.0 10 0.0 5 5.0 10 0.0 5 5.0 10 0.0

+ Time limits for instance set 4 – 6 and A – E are set to 10 seconds and 20 seconds, respectively.
+ For each instance, the results are reported as the best solution (best), the average solution
(avg) from the 10 runs, the number of runs (#best) that the best is found as well as the average
time (time) over those runs detecting the best.

+ We emphasize our better solutions than Musliu and 3FNLS with boldface.
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Table 5: Computational results from Musliu, 3FNLS and RWLS on the random NRE to NRH,
combinatorial and STS problems, obtained by running on the same Intel Core 3.25 GHz CPU
with 4GB RAM under Linux system.

Inst
Musliu 3FNLS RWLS

best avg #best time best avg #best time best avg #best time
NRE1 17 17.2 8 2.4 17 17.3 7 62.16 17 17.0 10 8.82
NRE2 17 17.2 8 0.8 17 17.2 8 38.80 17 17.0 10 3.64
NRE3 17 17.2 8 0.0 17 17.0 10 51.22 17 17.0 10 3.05
NRE4 17 17.1 9 0.1 17 17.4 6 54.98 17 17.0 10 3.64
NRE5 17 17.4 6 0.7 17 17.2 8 67.59 17 17.0 10 10.76
NRF1 10 10.8 2 1.2 11 11.0 10 0.00 10 10.1 9 25.31
NRF2 10 10.8 2 3.2 10 10.9 1 89.45 10 10.2 8 55.24
NRF3 10 10.6 4 3.2 10 10.9 1 24.44 10 10.1 9 28.34
NRF4 10 10.9 1 3.8 11 11.0 10 0.00 10 10.0 10 36.29
NRF5 10 10.8 2 2.9 11 11.0 10 0.00 10 10.1 9 34.91
NRG1 62 62.6 4 3.2 63 63.3 7 63.81 61 61.3 7 54.05
NRG2 62 62.2 8 3.4 62 63.0 1 88.96 61 61.5 5 69.76
NRG3 63 63.0 10 2.7 63 63.4 6 55.69 61 61.7 3 82.09
NRG4 63 63.2 8 2.6 63 63.3 7 50.41 61 61.9 1 86.72
NRG5 62 63.1 1 3.0 63 63.4 6 30.09 61 61.9 1 88.44
NRH1 34 34.8 2 7.4 35 35.3 7 53.36 34 34.9 1 53.22
NRH2 35 35.0 10 1.5 35 35.2 8 62.59 35 35.0 10 15.39
NRH3 35 35.0 10 0.5 34 35.2 1 59.35 34 34.9 1 97.02
NRH4 34 34.9 1 6.9 35 35.3 7 75.01 34 34.8 2 97.46
NRH5 34 34.9 1 4.3 35 35.1 9 50.73 34 34.9 1 25.56
CLR10 25 25.1 9 0.0 25 25.0 10 2.75 25 25.0 10 0.01
CLR11 23 23.0 10 0.0 23 23.1 9 11.69 23 23.0 10 0.08
CLR12 23 23.0 10 0.5 23 25.1 1 13.87 23 23.0 10 0.38
CLR13 23 24.1 5 5.6 29 29.7 5 16.71 23 23.0 10 3.89
CYC06 60 60.0 10 0.0 60 60.0 10 0.00 60 60.0 10 0.00
CYC07 144 144 10 0.0 144 144.0 10 0.00 144 144.0 10 0.02
CYC08 349 349.9 6 1.8 342 343.8 1 46.60 342 342.0 10 0.30
CYC09 809 813.0 3 15.6 780 780.1 9 104.39 772 773.6 2 266.70
CYC10 1894 1909.9 1 42.7 1801 1807.2 1 819.80 1798 1798.6 7 663.73
CYC11 4270 4271.1 1 0.9 4103 4144.9 3 392.36 3968 4021.1 1 520.69
STS243 198 201.7 2 1.6 198 198.0 10 170.50 198 198.0 10 0.09
STS405 343 345.0 4 7.6 336 336.0 10 151.07 335 335.7 3 117.81
STS729 649 649.8 4 87.9 617 630.3 3 831.78 617 617.0 10 23.36
STS1215 1119 1119.0 10 0.1 1071 1076.3 1 1659.63 1063 1065.9 1 886.25

+ Time limit for instance set NRE – NRH is set to 100 seconds.
+ Time limit for CLR10 – CLR13, CYC06 – CYC08 and STS243 is set to 20 seconds.
+ Time limit for CYC09 – CYC11 and STS243 – STS729 instances is set to 1000 seconds.
+ Time limit for STS1215 is set to 2000 seconds due to its larger size.
+ For each instance, the results are reported as the best solution (best), the average solution (avg) from the
10 runs, the number of runs (#best) that the best is found as well as the average time (time) over these runs
detecting the best.

+ We emphasize our better solutions than Musliu and 3FNLS with boldface.

In summary, RWLS can achieve better or the same solution quality within
the same time limits as Musliu and 3FNLS on the 70 random USCP instances,
10 combinatorial and 4 STS instances, which demonstrates the advantages
of RWLS in solving USCP. In order to gain a deeper understanding of what
caused the good performance of RWLS on USCP instances, several main
differences and similarities between Musliu, 3FNLS and RWLS are worth
noting.

First, we would like to discuss the fitness functions of the three algorithms.
For Musliu and 3FNLS, they both define a penalty function as their fitness
functions. Specifically, Musliu’s fitness function is defined as the number of
uncovered rows plus the cardinality of the candidate solution. When solving
USCPs, the penalty function of 3FNLS can be seen as the sum of the penalty
weights of rows plus the cardinality of the current candidate solution. The
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main difference turns out to be that 3FNLS assigns penalty weights to rows,
and during its local search, it adaptively adjusts the weights whenever the
search gets stuck, while the fitness function of Musliu can be seen as each
row is assigned to a constant weight of 1, and never changes during its local
search. According to our experimental results, although Musliu can almost
always find a good solution quickly, 3FNLS usually obtains the same or
better solutions than Musliu as runtime increases. Whereas for RWLS, we do
not define an explicit fitness function, instead, we always prefer a candidate
solution with a larger total score value of the columns, even though the
score values of columns are changing each iteration with the adjusting of the
weights of rows.

Second, the tabu mechanisms are different. Musliu defines a tabu list
whose size is the product of a tabu factor and the cardinality of the initial
solution. It stores the information of the columns which are removed or
added in the previous iterations, and such columns are not permitted to be
selected in the following iterations. For RWLS, a variety of tabu strategies
are adopted, including a timestamp method, the canAddToSolution restric-
tion, as well as not allowing the last two removed or added columns to be
selected immediately in the next iteration. The main advantage of our tabu
mechanism is that it is general for different instances, whereas the perfor-
mance of Musliu heavily depends on fine tuning of the tabu factor for different
kinds of instances. In fact, the best solutions previously reported by Musliu
are obtained by exploiting different tabu factors for each individual instance,
which is beyond our work, thus we only use the suggested parameters in our
experiments. 3FNLS does not use any tabu mechanisms.

Third, the strategies used to escape from local optima are different, which
may be the most significant difference between Musliu, 3FNLS and RWLS.
RWLS uses a weighting scheme to update the weights of uncovered rows. The
adaptive adjustment of weights in each iteration leads to enhanced opportu-
nities of escaping from a local optimum. As mentioned above, Musliu can
be seen as assigning all rows a constant weight of 1, and thus may get stuck
in a local optimum after certain iterations. Different from Musliu, 3FNLS
adaptively adjusts the weights of rows during its local search, but unlike our
weighting scheme, 3FNLS uses complex weighting adjust techniques that
tend to consume more computation time.

Fourth, although 3FNLS has a sophisticated local search procedure, it
adopts the information from solving Lagrangian Relaxation for prioritizing
columns during the search. However, in some situations, information from
Lagrangian Relaxation would become useless, such as for the STS prob-
lems [6].
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4.3. The Effectiveness of the Row Weighting Scheme

In RWLS, the weighting scheme is used to help the search from escaping
from local optima. To investigate the effectiveness of this method, we execute
our algorithm without it, which means that the weights of the rows remain
1 all the time. We then compare the results with the original RWLS on the
hardest combinatorial instance CYC11. To distinguish between these two
algorithms, we name the one without the row weighting scheme as RWLS-1.

Table 6: The effectiveness of the row weighting scheme on CYC11. RWLS is the original
algorithm, while RWLS-1 is the algorithm without the adaptive weighting scheme. Results
are obtained with random seed 11.

❳
❳
❳
❳
❳
❳
❳
❳
❳
❳
❳

Algorithm
Step

1 102 103 104 105 106 107 108

RWLS 4799 4742 4628 4598 4516 4289 4199 3968
RWLS-1 4799 4742 4626 4421 4371 4317 4317 4317

The first row of Table 6 contains the results obtained by RWLS, and
the second row contains the results of RWLS-1, at different search steps,
respectively. We can see that, initially at Step 1, RWLS and RWLS-1 have
the same solution because they share the same initial solution construction
method. During the first 105 search steps, RWLS-1 is able to obtain better
solutions than RWLS, but after that, the solutions found by RWLS continue
to improve, whereas those of RWLS-1 remain the same. It appears that
the row weighting scheme helped RWLS to avoid being trapped in a local
optimum and to continue exploring the solution space. Such phenomenon
can be observed on other instances as well.

4.4. Evaluation RWLS on the Railway Crew Scheduling Instances

Table 7 gives the details of the railway crew scheduling instances from
the OR-Library [5]. These instances are very large, rising up to thousands
of rows and millions of columns. Hence, directly tackling them can seldom
produce high quality solutions. Noting that the railway instances have many
more columns than rows, one approach to deal with such instances is to
use Lagrangian relaxation and its dual information to reduce the number
of columns. This has been shown to be very effective for the non-unicost
instances [19, 20, 6]. We will incorporate such a technique into RWLS.
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Table 7: Details of the railway instances

Instance m n Density Instance m n Density
RAIL507 507 63009 1.2 RAIL2586 2586 920683 0.4
RAIL516 516 47311 1.3 RAIL4284 4284 1092610 0.2
RAIL582 582 55515 1.2 RAIL4872 4872 968672 0.2
RAIL2536 2536 1081841 0.4
+ We turn this set of instances into unicost problems by ignoring the cost infor-
mation.

More precisely, we use the problem size reduction technique from 3FNLS [6],
which is based on Lagrangian relaxation and uses the subgradient method to
solve the core problem defined by [20]. By incorporating this technique, we
adapt our RWLS to Algorithm 6, which is noted as RWLS-R. The problem
size reduction in 3FNLS, which is also named variable fixing, has two phases,
i.e., the initial fixing stage and the modification stage. Initially, the subgra-
dient method is called to solve the Lagrangian dual relaxation to obtain
the Lagrangian cost for columns (variables) and only columns good enough
are selected into the local search (the other variables are set to 0). Then,
whenever the local search stops, the fixed variables are heuristically adjusted
by freeing some variables whose value are zero previously. In RWLS-R, the
initial column selection in Line 6 and column addition in Line 9 are based
on the first-fixing phase and the modify-fixing phase in 3FNLS, respectively.
The interested reader is referred to [6] for more details.

From Algorithm 6, we can see that the local search is conducted many
times, i.e., each time on different sets of selected columns. In Line 5, the
local search is on the original problem, and in Line 8, the local search is only
on the small set of columns which have been selected. In our experiments,
we set the maximum number of search steps for the local search in Line 5 to
1000, and that in Line 8 to 10 ∗ selected n, where selected n is the number
of selected columns.

In order to compare the results with yet another solver CPLEX, we run
our algorithm and 3FNLS on an Intel Duo Core 2.4GHz CPU with 2 GB
RAM machine, which has CPLEX12.5 3 installed. We set the maximum
runtime for RWLS-R and 3FNLS to 100 seconds for instances RAIL507,
RAIL516 and RAIL586, and 1000 seconds for RAIL2536, RAIL2586, RAIL4284
and RAIL4872 because of their larger sizes. For each instance, the results of
ten independent runs of RWLS-R and 3FNLS are shown in Table 8. To our
best knowledge, no results have ever been reported by other methods that

3http://www-01.ibm.com/support/knowledgecenter/SSSA5P_12.5.1/maps/ic-homepage.html
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Algorithm 6 RWLS-R: Incorporating RWLS with problem size reduction
1: function RWLS-R( )
2: read problem instance
3: preprocessing to add columns that able to cover some rows alone to the candidate solution perma-

nently
4: initialize a solution
5: local search
6: column selection
7: while stopping time not reached do

8: local search on the selected columns
9: add some new columns to the selected columns
10: restart the local search by initializing the candidate solution as the best found solution
11: end while

12: end function

treat these railway instances as USCPs.
From Table 8, we can see that for the first three instances (RAIL507,

RAIL516, RAIL582), CPLEX is able to solve them to optimality in 1375.57
seconds, 6.49 seconds and 158.67 seconds, respectively. However, because the
last four instances (RAIL2536, RAIL2586, RAIL4284, RAIL4872) are very
large, CPLEX failed to produce solutions on these instances, even when more
than ten thousands of seconds are given.

According to Table 8, RWLS-R can find good solutions to all railway
instances, including the last four large instances where CPLEX fails to pro-
duce a solution. On the first three instances, both RWLS-R and CPLEX
find good solutions, whereas the best solution found by 3FNLS on RAIL582
is inferior to those found by CPLEX and RWLS-R. However, on the four
larger ones (RAIL2536, RAIL2586, RAIL4284, RAIL4872), 3FNLS is able to
obtain better solutions than RWLS-R. We note that the lower bounds found
by 3FNLS on instances RAIL2536, RAIL2586, RAIL4284 and RAIL4872 are
363, 505, 579 and 857, respectively.

Table 8: Test railway instances as unicost problems. Italic indicates the solution values
that are worse than those produced by 3FNLS.

Instance RWLS-R 3FNLS CPLEX12.5
best avg #best time best avg #best time sol time

RAIL507 96 96.9 1 35.24 96 96.7 3 67.88 96 1375.57
RAIL516 134 134.1 9 65.45 135 135.6 4 40.93 134 6.49
RAIL582 126 126.3 7 27.60 126 126.0 10 31.37 126 158.67
RAIL2536 381 381.6 4 373.12 378 379.2 2 733.34 - -
RAIL2586 520 521.6 2 300.62 518 518.9 2 391.10 - -
RAIL4284 597 599.4 3 550.40 594 595.0 3 834.31 - -
RAIL4872 882 884.6 2 778.28 879 880.5 1 817.12 - -
+ For 3FNLS, we convert these problems to unicost by replacing the cost information to 1 for all
columns.
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4.5. How Good Is CPLEX in Solving USCP?

For non-unicost SCPs, it has been shown that the random instances from
sets 4 to 6, A to D, NRE, NRF and NRG1 to NRG4 can be solved to opti-
mality by CPLEX in reasonable time [12]. However, the USCP is generally
considered to be harder to solve than non-unicost SCPs [4]. In order to find
out the difficulties of the random USCP instances from 4 to 6 and A to D,
we apply CPLEX to these 45 instances.

In Table 9, we report the best solutions found by CPLEX within 100
seconds for groups 4 to 6, since they are quite small and generally regarded
as easy, and 1000 seconds for groups A to D because of their larger sizes. The
table includes the BKS (not those updated by RWLS) for comparison. It can
be seen that for these 45 instances, CPLEX can only achieve seven BKSs.
In fact, according to our experience, as time increases, solutions found by
CPLEX improve very slowly. For instance 4.1, CPLEX can find a solution
of 39 in 100 seconds, but it takes about 1000 seconds to achieve the BKS
of 38. Similarly on the NRE1 instance, CPLEX needs about 15000 seconds
to achieve a solution of 17. It keeps running for about 50000 seconds before
terminating due to an out of memory error and the solution still remains 17.
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Table 9: Results of CPLEX12.5 on instances set 4 – 6 and
A – D as USCPs.

Instance BKS CPLEX12.5 Instance BKS CPLEX12.5
4.1 38 39 A.1 39 40
4.2 37 37 A.2 38 40
4.3 38 38 A.3 39 40
4.4 38 40 A.4 37 38
4.5 38 38 A.5 38 39
4.6 37 38 B.1 22 22
4.7 38 39 B.2 22 23
4.8 37 38 B.3 22 23
4.9 38 39 B.4 22 23
4.10 38 39 B.5 22 23
5.1 34 35 C.1 43 44
5.2 34 35 C.2 43 44
5.3 34 34 C.3 43 45
5.4 34 35 C.4 43 44
5.5 34 36 C.5 43 45
5.6 34 35 D.1 24 25
5.7 34 35 D.2 25 26
5.8 34 34 D.3 24 26
5.9 35 36 D.4 25 26
5.10 34 36 D.5 25 26
6.1 21 22
6.2 20 21
6.3 21 22
6.4 20 21
6.5 21 21
+ Time limits are set to 100 seconds for instances from 4 to 6.
+ Time limits are set to 1000 seconds for instances from A to D.
+ We place the best know solutions along side to show the solution
qualities of CPLEX.

+ The results are obtained by an Intel Core Due 2.4GHz CPU with
2 GB RAM machine.

The results in Table 9 indicate that the 45 USCP instances are not easy
to solve, although their non-unicost versions are. Combining the results of
RWLS from Table 4, we can conclude that RWLS is much better than CPLEX
on USCP instances, because it almost always achieves or even improves the
BKSs.

5. Conclusion and Future Work

In this paper, we have introduced a new local search heuristic, named
RWLS, for USCPs. We proposed a local improvement framework to iter-
atively reduce the size of the currently best solution, which is realized by
using two efficient operators to perturb the currently best solution when it
becomes infeasible. In addition, several widely used strategies are integrated
with RWLS, including an adaptive weighting scheme that adaptively updates
the weights of rows (elements) to help RWLS to escape from local optima,
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two tabu strategies to avoid cycles, and a timestamp method to break ties
when adding or removing a column (set). RWLS successfully hybridized
these general strategies into its local search framework.

The effectiveness and efficiency of RWLS have been evaluated on a large
number of instances from the OR-Library [5] and Steiner triple systems [28],
which vary from hundreds of rows (elements) and thousands of columns (sets)
to tens of thousands of rows and columns. The experimental results show
that RWLS has an excellent performance and outperforms existing state-
of-the-art algorithms in terms of the best solutions found. It has improved
14 best known solutions in the literature. For the combinatorial instance
CYC11, the best known solution value is improved from 4088 to 3968.

RWLS is especially effective on the ten combinatorial instances from the
OR-Library as well as instances from the Steiner triple systems, which con-
tain many more rows than columns. However, for instances containing a
significantly larger number of columns but a few rows, the problem size re-
duction techniques should be adopted. In Section 4.4, we showed the effec-
tiveness of RWLS in dealing with such large USCP instances by incorporating
the problem size reduction technique from [6]. This is the first time that the
seven railway crew scheduling instances from the OR-Library were solved as
USCPs, outperforming CPLEX 12.5.

In spite of excellent performance of RWLS on 91 USCP benchmark in-
stances, more work is needed in the future. First, the extended algorithm
RLWS-R was outperformed by 3FNLS on the four larger railway crew schedul-
ing instances. The reason for this needs to be studied. Second, the study in
this paper is experimental in nature. It will be necessary to analyze the algo-
rithm as well as the characteristics of the benchmark instances (especially the
hardest ones) theoretically, so that we can understand more which algorith-
mic features are most important in solving what kinds of USCP instances.
Third, we have not analyzed in depth the impact of different tabu strate-
gies on RWLS’s performance, which should be done in the future. Fourth,
it would be useful to investigate automatic stopping techniques for RWLS,
instead of setting a time limit in advance. Fifth, it would be interesting to
adapt some of RWLS’s ideas to solve other hard combinatorial optimization
problems.
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