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Abstract. Learning from imbalanced datasets has drawn more and more
attentions from both theoretical and practical aspects. Over-sampling is
a popular and simple method for imbalanced learning. In this paper, we
show that there is an inherently potential risk associated with the over-
sampling algorithms in terms of the large margin principle. Then we pro-
pose a new synthetic over sampling method, named Margin-guided Syn-
thetic Over-sampling (MSYN), to reduce this risk. The MSYN improves
learning with respect to the data distributions guided by the margin-
based rule. Empirical study verities the efficacy of MSYN.

Keywords: imbalance learning, over-sampling, over-fitting, large mar-
gin theory, generalization

1 Introduction

Learning from imbalanced datasets has got more and more emphases in recent
years. A dataset is imbalanced if its class distributions are skewed. The class
imbalance problem is of crucial importance since it is encountered by a large
number of real world applications, such as fraud detection [2], the detection of
oil spills in satellite radar images [3], and text classification [4]. In these scenarios,
we are usually more interested in the minority class instead of the majority class.
The traditional data mining algorithms have a poor performance due to the fact
that they give equal attention to the minority class and the majority class.
One way for solving the imbalance learning problem is to develop ”im-
balanced data oriented algorithms” that can perform well on the imbalanced
datasets. For example, Wu et al. proposed class boundary alignment algorithm
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which modifies the class boundary by changing the kernel function of SVMs [5].
Ensemble methods were used to improve performance on imbalance datasets [6].
In 2010, Liu et al. proposed the Class Confidence Proportion Decision Tree
(CCPDT) [7]. Furthermore, there are other effective methods such as cost-based
learning [8] and one class learning [9].

Another important way to improve the results of learning from imbalanced
data is to modify the class distributions in the training data by over-sampling
the minority class or under-sampling the majority class [10]. The simplest sam-
pling methods are Random Over-Sampling (ROS) and Random Under-Sampling
(RUS). The former increases the number of the minority class instances by du-
plicating the instances of the minority, while the latter randomly removes some
instances of the majority class. Sampling with replacement has been shown to be
ineffective for improving the recognition of minority class significantly. [10][11].
Chawla et al. interpret this phenomenon in terms of decision regions in feature
space and proposed the Synthetic Minority Over-Sampling Technique (SMOTE)
[12]. There are also many other synthetic over-sampling techniques, such as
Borderline-SMOTE [13] and ADASYN [14]. To summarize, under-sampling meth-
ods can reduce useful information of the datasets; over-sampling methods may
make the decision regions of the learner smaller and more specific, thus may
cause the learner to over-fit.

In this paper, we analyze the performance of over-sampling techniques from
the perspective of the large margin principle and find that the over-sampling
methods are inherently risky from this perspective. Aiming to reduce this risk,
we propose a new synthetic over-sampling method, called Margin-guided Syn-
thetic Over-Sampling (MSYN). Our work is largely inspired by the previous
works in feature selection using the large margin principle [15] [16] and prob-
lems of over-sampling for imbalance learning [17]. The empirical study revealed
the effectiveness of our proposed method.

The rest of this paper is organized as follows. Section 2 reviews the related
works. Section 3 presents the margin-based analysis for over-sampling. Then in
Section 4 we propose the new synthetic over-sampling algorithm. In Section 5, we
test the performance of the algorithms on various machine learning benchmarks
datasets. Finally, the conclusion and future work are given in Section 6.

2 Related Works

We use A to denote a dataset of n instances A = {a1, ..., @n }, where a; is a real-
valued vector of dimension m. Let Ap C A denote the minority class instances,
Apn C A denote the majority class instances.

Over-sampling techniques augment the minority class to balance between
the numbers of the majority and minority class instances. The simplest over-
sampling method is ROS. However, it may make the decision regions of the
majority smaller and more specific, and thus can cause the learner to over-fit [17].

Chawla et al. over-sampled the minority class with their SMOTE method,
which generates new synthetic instances along the line between the minority in-
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stances and their selected nearest neighbors [12]. Specifically, for the subset Ap,
they consider the k-nearest neighbors for each instances a; € A,. For some spec-
ified integer number k, the k-nearest neighbors are define as the & elements of
Ap, whose Euclidian distance to the element a; under consideration is the small-
est. To create a synthetic instance, one of the k-nearest neighbors is randomly
selected and then multiplied by the corresponding feature vector difference with
a random number between [0, 1]. Take a two-dimensional problem for example:

Qnew = @i + (ann - ai) X 0

where a; € Ap is the minority instance under consideration, @y, is one of the k-
nearest neighbors from the minority class, and § € [0, 1]. This leads to generating
a random instance along the line segment between two specific instances and
thus effectively forces the decision region of the minority class to become more
general [12]. The advantage of SMOTE is that it makes the decision regions
larger and less specific [17].

Borderline-SMOTE focuses the instances on the borderline of each class and
the ones nearby. The consideration behind it is: the instances on the borderline
(or nearby) are more likely to be misclassified than the ones far from the border-
line, and thus more important for classification. Therefore, Borderline-SMOTE
only generates synthetic instances for those minority instances closer to the
border while SMOTE generates synthetic instances for each minority instance.
ADASYN uses a density distribution as a criterion to automatically decide the
number of synthetic instances that need to be generated for each minority in-
stance. The density distribution is a measurement of the distribution of the
weights for different minority class instances according to their level of difficulty
in learning. The consideration is similar to the idea of AdaBoost [18]: one should
pay more attention to the difficult instances. In summary, either Borderline-
SMOTE or ADASYN improves the performance of over-sampling techniques by
paying more attention on some specific instances. They, however, did not touch
the essential problem of the over-sampling techniques which causes over-fitting.

Different from the previous work, we resort to margins to analyze the problem
of over-sampling, since margins offer a theoretic tool to analyze the generalization
ability. Margins play an indispensable role in machine learning research. Roughly
speaking, margins measure the level of confidence a classifier has with respect to
its decision. There are two natural ways of defining the margin with respect to a
classifier [15]. One approach is to define the margin as the distance between an
instance and the decision boundary induced by the classification rule. Support
Vector Machines are based on this definition of margin, which we refer to as
sample margin. An alternative definition of the margin can be the Hypothesis
Margin; in this definition the margin is the distance that the classifier can travel
without changing the way it labels any of the sample points [15].

3 Large Margin Principle Analysis for Over-Sampling

For prototype-based problems (e. g. the nearest neighbor classifer), the classifier
is defined by a set of training points (prototypes) and the decision boundary
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Fig. 1. Two types of margins in terms of the Nearest Neighbor Rule. The toy problem
involves class A and class B. Margins of a new instance (the blue circle), which belongs
to class A, are shown. The sample margin 1(left) is the distance between the new
instance and the decision boundary (the Voronoi tessellation). The hypothesis margin
1(right) is the largest distance the sample points can travel without altering the label
of the new instance. In this case it is half the difference between the distance to the
nearest miss and the distance to the nearest hit.

is the Voronoi tessellation [19]. The sample margin in this case is the distance
between the instance and the Voronoi tessellation. Therefore it measures the
sensitivity to small changes of the instance position. The hypothesis margin R
for this case is the maximal distance such that the following condition holds:
if we draw a sphere with radius R around each prototype, any change of the
location of prototypes inside their sphere will not change the assigned labels.
Therefore, the hypothesis margin measures the stability to small changes in the
prototypes locations. See Figure 1 for illustration.

Throughout this paper we will focus on the margins for the Nearest Neighbor
rule (NN). For this special case, it is proved the following results [15]:

1. The hypothesis-margin lower bounds the sample-margin

2. It is easy to compute the hypothesis-margin of an instance & with respect
to a set of instances A by the following formula:

1
T2

where nearesthit o(x) and nearestmiss(x) denote the nearest instance to x in
dataset A with the same and different label, respectively.

In the case of the NN, we can know that the hypothesis margin is easy to
calculate and that a set of prototypes with large hypothesis margin then it has
large sample margin as well [15].

Now we consider the over-sampling problem using the large margin principle.
When adding a new minority class instance x, we consider the difference of the

04(x) (||l — nearestmissa(x)|| — ||x — nearesthits(x)||) (1)
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overall margins for the minority class:

Ap(x) = Z (0a\au{zy (@) = Oava(a)) (2)

acAp

where A\a denotes the dataset excluding a from the dataset A, and A\a U {z}
denotes the union of A\a and {x}.

For each instance a € Ap, ||a—nearestmiss s\quiz}(@)|| = |[a—nearestmiss 4\ q(a)||
and ||a —nearesthit g\qu{z}(a)|| < |a—nearesthit 4\q(a)||. From Eq. (1), it fol-
lows that Ap(x) > 0. We call Ap(x) the margin gain for the minority class.

Further, the difference of the overall margins for majority class is:

Ay(@) = Y (Oarauie}(@) — Oara(a)) (3)

acAnN

for each instance @ € Ay, [[a—nearestmiss 4\ qu{z}(a)||<||a—nearestmiss 4\q(a)||
and ||la — nearesthit g\qu{z}(a)|| = [|a — nearesthit 4\q(a)||. From Eq. (1), it
follows that Ay (x) < 0. We call —Ay(x) the margin loss for the majority class.

In summary, it is shown that the over-sampling methods are inherently risky
from the perspective of the large margin principle. The over-sampling methods,
such as SMOTE, will enlarge the nearest-neighbor based margins for the minority
class while may decrease the nearest neighbor based margins for the majority
class. Hence, over-sampling will not only bias towards the minority class but
also may be detrimental to the majority class. We cannot eliminate these effects
when adopting over-sampling for imbalance learning completely, but we can seek
methods to optimize the two parts.

In the simplest way, one can maximize the margins for the minority class and
ignore the margins loss for the majority class, i.e., the following formula:

fr=—-A4p(x) (4)
Alternatively, one may also minimize the margins loss for the majority class,
which is

fa=—-An(x) (5)
One intuitive method is to seek a good balance between maximizing the margins
gain for the minority class and minimizing the margins loss for the majority
class. This can be conducted by minimizing Eq. (6):
_ —An(=)

AP%$)4—€’

where € is a positive constant to ensure that the denominator of Eq. (6) to be
non-zero.

f(x)s e>0 (6)

4 The Margin-guided Synthetic Over-Sampling
Algorithm

In this section we apply the above analysis to the over-sampling techniques.
Without loss of generality, our algorithm is designed on the basis of SMOTE.
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The general idea behind it, however, can also be applied to any other over-
sampling technique

Algorithm 1: MSYN

Input: Training set X with n instances (as,y;),i = 1,...,n where a; is an
instance in the m dimensional feature space, and y; belongs to
Y = {1, —1} is the class identity label associated with a;, Define mp
and my as the number of the minority class instances and the number
of the majority class instances, respectively. Therefore, mp < my. BIN
is the set of synthetic instances, which is initialized as empty.
Parameter: Pressure.

Calculate the number of synthetic instances that need to be generated for the

minority class: G = (my — mp) * Pressure;
2 Calculate the number of synthetic instances that needed to be generated for
each minority example a;:

=

G

gi = —
mp

3 for each minority class instances a; do

4 for j < 1 to g; do

5 Randomly choose one minority instance, a.;, from the k nearest
neighbors for the instance a;;

6 Generate the synthetic instances as using the technique of SMOTE;

7 Add as to BIN

8 sort the synthetic instances in BIN according to the their values of Eq. (6);

©

return (my — mp) instances who have the minimum (my — mp) values of Eq.

(6).

Based on the analysis in the previous section, Eq. (6) is employed to decide
whether a new synthetic instance is good enough to be added into the training
dataset. Our new Margin-guided Synthetic Over-Sampling algorithm, MSYN for
short, is given in Algorithm 1. The major focus of MSYN is to use margin-based
guideline to select the synthetic instances. Pressure € N, a natural number, is a
parameter for controlling the selection pressure. In order to get (my —mp) new
synthetic instances, we first create (my —mp)* Pressure new instances, then we
only select top best (my —mp) new instances according to the values of Eq. (6)
and discard the rest instances. This selection process implicitly decides whether
an original minority instance is used to create a synthetic instances as well as
how many synthetic instances will be generated, which is different from SMOTE
since SMOTE generates the same number of synthetic instances for each original
minority instances. Moreover, it is easy to see that computational complexity of
MSYN is O(n?), which is mainly decided by calculating the distance matrix .
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5 Experiment Study.

The Weka’s C4.5 implementation [20] is employed in our experiments. We com-
pare our proposed MSYN with SMOTE [12], ADASYN [14], Borderline-SMOTE
[13] and ROS. All experiments were carried out using 10 runs of 10-fold cross-
validation. For MSYN, the parameter Pressure is set to 10 and the £ can be
any random positive real number; for other methods, the parameters are set as
recommended in the corresponding paper.

To evaluate the performance of our approach, experiments on both artificial
and real datasets have been performed. The former is used to show the behavior
of the MSYN on known data distributions while the latter is used to verify the
utility of our method when dealing with real-world problems.

5.1 Synthetic Datasets

1 I . + minority class
* £F o4 L
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T T *g —— true boundary
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Fig. 2. The distribution of the dataset Concentric with noise.

This part of our experiments focuses on synthetic data to analyze the char-
acteristics of the proposed MSYN. We used the dataset Concentric from the
ELENA project [21]. The Concentric dataset is a two-dimensional uniform con-
centric circular distributions problem with two classes. The instances of minority
class uniformly distribute within a circle of radius 0.3 centered on (0.5, 0.5). The
points of majority class are uniformly distribute within a ring centered on (0.5,
0.5) with internal and external radius respectively to 0.3 and 0.5.

In order to investigate the problem of over-fitting to noise, we modify the
dataset by randomly flipping the labels of 1% instances, as shown in Figure 2.
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Fig. 3. The synthetic instances and the corresponding C4.5 decision boundary after
processing by SMOTE, MSYN, Borderline-SMOTE, ADASYN, respectively.

In order to show the performance of the various synthetic over-sampling tech-
niques, we sketch them in Figure 3. The new synthetic instances created by each
over-sampling method, the original majority instances and the corresponding
(C4.5 decision boundary are drawn. From Figure 3, we can see that MSYN shows
good performance in the presence of noise while SMOTE and ADASYN suffer
greatly from over-fitting the noise. MSYN generates no noise instances. This can
be attributed to the fact that the margin-based Eq. (6) contains the information
of the neighboring instances, and this information helps to decrease the influence
of noise. Both SMOTE and ADASYN generate a large number of noise instances
and their decision boundary is greatly influenced. Borderline-SMOTE generates
a small number of noise instances and its decision boundary is slightly influenced.
Furthermore, Borderline-SMOTE pays little attention to interior instances and
creates only a few of synthetic instances.

5.2 Real World Problems

We test the algorithms on ten datasets from the UCI Machine Learning Repos-
itory [22]. Information about these datasets is summarized in Table 1, where
num is the size of the dataset, attr is the number of features, min% is the ratio
of the number of minority class number to NUM.
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Table 1. Summary of the DataSets

Datasets num  attr min%
Abalone 4177 8 9.36%
Contraceptive 1473 9 2261%
Heart 270 9  29.28%
Hypothyroid 3163 8  34.90%
Tonosphere 351 34 35.90%
Parkinsons 195 22 24.24%
Pima 768 8  34.90%
Spect 367 19  20.65%
Tic-tac-toe 958 9 34.66%
Transfusion 748 4  31.23%

Instead of using the overall classification accuracy, we uadopt metrics related
to Receiver Operating Characteristics (ROC) curve [23] to evaluate the compared
algorithms, because traditional overall classification accuracy may not be able to
provide a comprehensive assessment of the observed learning algorithms in case
of class imbalanced datasets [4]. Specifically, we use the AUC [23] and F-Measure
[24] to evaluate the performance. We apply the Wilcoxon signed rank test with
a 95% confidence level on each dataset to see whether the difference between the
compared algorithms is statistically significant.

Table 2 and Table 3 show the AUC and F-Measure for the datasets, respec-
tively. The results of Table 2 reveal that MSYN wins against SMOTE on nine
out of ten datasets, beats ADASYN on seven out of ten datasets, outperforms
ROS on nine out of ten datasets, and wins against Borderline-SMOTE on six out
of ten datasets. The results of Table 3 show that MSYN wins against SMOTE on
seven out of ten datasets, beats ADASYN on six out of ten datasets, beats ROS
on six out of ten datasets, and wins against Borderline-SMOTE on six out of ten
datasets. The comparisons reveal that MSYN outperforms the other methods in
terms of both AUC and F-measure.

6 Conclusion and Future work

This paper gives an analysis of over-sample techniques from the viewpoint of the
large margin principle. It is shown that over-sampling techniques will not only
bias towards the minority class but may also bring detrimental effects to the clas-
sification of the majority class. This inherent dilemma of over-sampling cannot be
entirely eliminated, but only reduced. We propose a new synthetic over-sampling
method to strike a balance between the two contradictory objectives. We eval-
uate our new method on a wide variety of imbalanced datasets using different
performance measures and compare it to the established over-sampling methods.
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Table 2. Result in terms of AUC in the experiments performs on real datasets. For
SMOTE, ADAYSN, ROS and Borderline-SMOTE, if the value is underlined, MSYN
has better performance than that method; if the value is starred, MSYN exhibits lower
performance compared to that method; if the value is in normal style it means that the
corresponding method does not perform significantly different from MSYN according
to the Wilcoxon signed rank test. The row W/D/L Sig. shows the number of wins,
draws and losses of MSYN from the statistical point of view.

Dataset MSYN SMOTE ADASYN ROS Borderline-SMOTE
Abalone 0.7504 0.7402 0.7352 0.6708 0.7967*
Contraceptive 0.6660 0.6587 0.6612 0.6055 0.6775*
Heart 0.7909 0.7862 0.7824 0.7608 0.7796
Hypothyroid 0.9737 0.9652 0.9655 0.9574 0.9653
Tonosphere 0.8903 0.8731 0.8773 0.8970* 0.8715
Parkinsons 0.8248 0.8101 0.8298* 0.7798 0.8157
Pima 0.7517 0.7427 0.7550 0.7236 0.7288
Spect 0.7403 0.7108 0.7157 0.6889 0.7436
Tic-tac-toe  0.9497 0.9406 0.9391 0.9396 0.9456
Transfusion  0.7140 0.6870 0.6897 0.6695 0.6991
W/D/L Sig. N/A 9/1/0  7/2/1 9/0/1 6/2/2

Table 3. Result in terms of F-measure in the experiments performs on real datasets.
For SMOTE, ADAYSN, ROS and Borderline-SMOTE, if the value is underlined,
MSYN has better performance than that method; if the value is starred, MSYN ex-
hibits lower performance compared to that method; if the value is in normal style it
means that the corresponding method does not perform significantly different from
MSYN according to the Wilcoxon singed rank test. The row W/D/L Sig. shows the
number of wins, draws and losses of MSYN from the statistical point of view.

Dataset MSYN SMOTE ADASYN ROS Borderline-SMOTE
Abalone 0.2507 0.3266* 0.3289* 0.3479* 0.3154*
Contraceptive 0.3745 0.4034* 0.4118* 0.4133* 0.4142*
Heart 0.7373 0.7305 0.7318 0.7151 0.7223
Hypothyroid 0.8875 0.8412 0.8413 0.8771 0.9054*
Tonosphere 0.8559 0.8365 0.8338 0.8668* 0.8226
Parkinsons 0.7308 0.6513 0.6832 0.6519 0.6719
Pima 0.6452 0.6435 0.6499 0.6298 0.6310
Spect 0.4660 0.4367 0.4206 0.4644 0.4524
Tic-tac-toe  0.8619 0.8465 0.8437 0.8556 0.8604
Transfusion  0.4723 0.4601 0.4507 0.4596 0.4664

W/D/L Sig. N/A 7/1/2  6/2/2 6/1/3 6/1/3
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The results support our analysis and indicate that the proposed method, MSYN,
is indeed superior.

As a new sampling method, MSYN can be further extended along several
directions. First of all, we investigate the performance of MSYN using C4.5.
Based on the nearest neighbor margin, MSYN has a bias for the 1-NN. Some
strategies, however, can be adopted to approximate the hypothesis margin for
the other classification rules. For example, we can use the confidence of the clas-
sifiers’ output to approximate the hypothesis margin. Thus we expect MSYN
can be extended to work well with other learning algorithms, such as k-NN,
RIPPER [29]. But solid empirical study is required to justify this expectation.
Besides, ensemble learning algorithms can improve the accuracy and robustness
of the learning procedure [26]. It is thus worthy of integrating MSYN with en-
semble learning algorithms. Such an investigation can be conducted following
the methodology employed in the work of SMOTEBoost [6], DataBoost-IM [27],
BalanceCascade [28], etc.

Secondly, MSYN can be generalized to multiple-class imbalance learning as
well. For each minority class ¢, a straightforward idea is to extend Eq. (6) to:

=>4 ()

fi(z) = %»5 >0 (7)

where A;(x) denotes the margin gain of minority class ¢ by adding a new minority
instance x (x belongs to class i), and —A; j(x) denotes the margin loss for class
j by adding a new minority instance & (x belongs to class 7). Then we create the
synthetic instances for each minoirty class to make the number of them being
equal to the number of the majority class, which has the maximum number of
instances. However, this idea is by no means the only one. Extending a technique
from binary to multi-class problems is usually non-trivial, and more in-depth
investigation is necessary to seek the best strategy.
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