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Abstract

This paper presents a comparative study of two indirect solution representations, a
generative and an ontogenic one, on a set of well-known 2D truss design problems.
The generative representation encodes the parameters of a trusses design as a map-
ping from a 2D space. The ontogenic representation encodes truss design parameters
as a local truss transformation iterated several times, starting from a trivial initial truss.
Both representations are tested with a naive Evolution Strategy based optimization
scheme, as well as the state-of-the-art HyperNEAT approach. We focus both on the best
objective value obtained and the computational cost to reach a given level of optimal-
ity. The study shows that the two solutions representations behave very differently.
For experimental settings with equal complexity, with the same optimization scheme
and settings, the generative representation provides results which are far from optimal,
whereas the ontogenic representation delivers near-optimal solutions. The ontogenic
representation is also much less computationally expensive than a direct representa-
tion until very close to the global optimum. The study questions the scalability of the
generative representations, while the results for the ontogenic representation display a
much better scalability.
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1 Introduction

Nowadays, optimization problems involving thousands and even millions of free vari-
ables are routinely solved. Such feats are possible because the optimization algo-
rithms put to good use mathematical properties of the search space, like for linear pro-
gramming, quadratic programming, gradient-based optimization etc. Another way to
achieve high scalability is to exploit the domain knowledge specific to a problem. In
shape optimization, for instance, rather than directly optimizing a shape, the practice
is to optimize an iterative shape transformation that turns an initial shape into the op-
timal shape. Working on shape transformations allows integrating knowledge about
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the physics involved in the problem, such as heat diffusion and elasticity. Unfortu-
nately, the precise mathematical structure of problems is not always well understood
and approaches such as shape optimization require rather sophisticated mathematical
treatments, which can be intractable.

The original motivation of evolutionary algorithms is to deal with problems where
the mathematical structure is mostly unknown and where we have little idea about how
to exploit domain knowledge. Because evolutionary algorithms rely only on compar-
isons between the objective values of candidate solutions, they can find optima with
very little a priori knowledge. This strength comes at a price. In comparison to more
informed algorithms, evolutionary algorithms do not scale well if the number of free
variables increases. For a large class of problems with R

n as search space, Fournier and
Teytaud (2010) prove that evolutionary algorithms have a convergence speed linear
in n at best, whereas more informed optimization algorithms (such as gradient-based
search) are super-linear. In other words, the more decision variables need to be opti-
mized, the slower will optimization processes get and in the case of EAs, this slowdown
is at least linear in the number of variables.

One way to bypass that scalability issue is to use indirect representations of the
problem solutions in order to reduce the number of dimensions as much as possible.
Instead of directly optimizing candidate solutions of the problem, solutions are con-
structed by a solution generator and it is the solution generator which is optimized. An
indirect approach allows to introduce a bias towards some families of solutions, and
can greatly reduce the number of free variables, compared to the number of variables
of the direct representation. If such a mapping is smooth around the global optimum,
this can speed up the optimization process significantly. Note that a mapping can in-
troduce a modelling error: it might not be able to perfectly represent the global optimum
of the direct representation. In such case, one can only hope getting close the optimum.

The main contribution of this article is a comparison between two families of indi-
rect representations on the basis of a benchmark from engineering mechanics, ground
structures optimization. The first representation, the generative representation, pro-
poses to optimize a function that transforms points from a low-dimensional space into
a solution of the problem. The second representation, the ontogenic representation, pro-
poses to optimize an iterated mapping. That mapping transforms an initial guess of
the solution into an hopefuly better solution after several iterations. The iterated map-
ping uses local informations to compute the next iterate. We find that 1) the ontogenic
representation has both, better scalability and 2) produces better results than the gen-
erative representation. 3) Its results are nearly as good as results obtained with a di-
rect encoding where the optimizer directly improves the solutions, 4) but much less
runtime is required to obtain close-to-optimal results. 5) The better scalability of the
ontogenic representation also holds for two different optimization schemes, one based
on a state-of-the-art optimization scheme (HyperNEAT, NEAT to optimize CPPNs that
in turn generates solutions), one based on a naive Evolution Strategy approach. 6) An
optimization scheme applied on an ontogenic representation can further be improved
by introducing a staged development, i.e., by dividing the optimization process into
stages where each stage optimizes iterated mappings which are applied to the best
shape found in the previous stage.

In the following section, we will first give a discussion of related work. We study
both indirect representations on an established benchmark from structural mechanics:
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topology design of ground structures. This benchmark is introduced in Section 3 and
the experimental protocol used for the comparison is described in Section 4. In a first
set of experiments, naive generative and ontogenic representations are applied to this
problem, with optimization carried out using the same evolutionary optimizer. Thus, a
clear and accessible analysis of the results is possible. The analysis of the experimental
results, given in Section 5, includes the statistics of both the best objective value reached
and the computational cost of each representation. As a baseline, a direct representation
for the benchmark problem is also included.

Then, in Sections 5.1 and 5.2, complementary experiments are described and ana-
lyzed, in order to detail and explain the behavior of each representation. Building on
the analysis of the ontogenic representation behavior, Section 5.4 introduces a staged
development approach to reduce the computational cost of an ontogenic representa-
tion.

So far, we chose a naive optimization scheme for the experiments with generative
and with ontogenic representations. It could be questioned whether such an optimiza-
tion scheme may be biased against the generative representation. In order to refute
such considerations, we also apply a state-of-the-art optimization scheme for a gen-
erative representation, namely the NEAT optimizer to optimize CPPNs, to the same
experimental protocol in Section 6. In these experiments, generative and ontogenic
representations display a behavior equivalent to the one obtained with our naive opti-
mization scheme. The article ends with the conclusions in Section 7.

2 Background and Related Work

When an evolutionary algorithm is applied, in most cases, the only information it gets
from the problem to solve are the objective values of potential solutions. This is equiv-
alent to seeing the objective function as a black-box. Yet in practice, the computation
of the objective value itself is far from being a black-box and can provide a lot more
information relevant to the optimization problem. For many shape design problems,
for instance, the objective value is derived from a finite element method (FEM) compu-
tation. The FEM provides very relevant local information (like air pressure, tempera-
ture, electrical charge, mechanical stress) about the behavior of the shape. For optical
systems design, the objective value can be derived by tracing rays of light, giving lo-
cal information about the light propagation through a candidate optical system. For
neural network design, the training of a neural network can provide local information
such as local error or local correlation of the neurons activity. For constraint satisfac-
tion problems, the violated constraint and the amount of violation is used to compute
an objective value. Although much other information is available from the evaluation
of a candidate solution, still only one synthetic element of information is used by an
evolutionary algorithm, the objective value. In that sense, the usual assumption that
the objective function is a black-box is often untrue.

2.1 Indirect Solution Representations

Information provided by a candidate solution evaluation can be advantageously ex-
ploited by the problem representation. Estévez and Lipson (2007), for instance, opti-
mize shadow-making shapes with an evolutionary algorithm. The shapes are defined
on a square grid where a square is either full or empty. Full squares stop the light, ac-
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cumulate heat when hit by light, and diffuse heat efficiently. Empty squares are trans-
parent to light and do not diffuse heat well. The goal is to find shapes that minimize
the average temperature of the grid when light is cast. Estevez et al. define shapes as
the result of a cellular automaton work. When evaluating a candidate cellular automa-
ton, the cellular automaton changes the state of a square depending on the temperature
and the state of the surrounding squares. In return, the changes made by the cellular
automaton change the local temperature. Thus, a shape is the result of the interaction
between the cellular automaton dynamics and the heat diffusion dynamics. The only
information used is the information created by the simulation which is necessary for
computing the objective anyway, but the representation of the solutions can exploit the
local heat knowledge. Estevez et al. show that this local information from the light and
heat simulation is effectively used by the best solutions found by their evolutionary
algorithm. Also, encoding shapes as the result of a cellular automaton process makes
the genotype size more independent from the complexity of the shape. The complexity
of the resulting shapes emerges out of the interaction with the simulated environment.
Because this kind of representation of solutions is based on iterated transformation, an
ontogeny, we call then ontogenic representations. Each iteration of the transformation
on a initial solution form a development.

Using iterative transformations for each candidate solution evaluation seems po-
tentially costly. Moreover, Stanley (2006, 2007) hypothesizes that most of the features
attributed to an ontogenic representation (capacity to express symmetries, the reuse of
functional parts with alterations, etc.) can be subsumed by more efficient and concep-
tually simpler representations. Stanley proposes to represent solutions of a problem as
a spatial transformation. It is the core idea of the HyperNEAT approach. For instance,
in (D’Ambrosio and Stanley, 2007) and further works, the synaptic weights of a large
neural-network are represented as a transformation of a four-dimensional space. A
synaptic weights of a neural network are computed by a function F that takes as in-
put the spatial coordinates of the synapse input and output neurons. The neurons are
embedded in a two-dimensional space, therefore, F takes four arguments. Stanley et
al. then optimize F , as a direct acyclic graph of elementary basis functions, named a
CPPN. Each evaluation of a candidate CPPN has a modest computational cost, just one
evaluation of the spatial transformation. Since that type of representation generates
solutions in a single-shot fashion, we will call them generative representations.

2.2 Taxonomies: Generative and Ontogenic Representation

Both generative and ontogenic representations are indirect representations of candidate
solutions. Being indirect, they can reduce the search space dimensionality, eventually
making it independent of the scale of the problem. Moreover, they both introduce a
bias which hopefully makes the optimization problem easier. Generative and ontogenic
representations differ notably in their way of introducing this bias. A generative repre-
sentation maps potential solutions to a manifold. Therefore, the bias is fully contained
in the generative function. On the other hand, an ontogenic representation can exploit
problem specific knowledge by making the iterated transformation dependent on some
specific local information. The representation bias comes from the candidate solution
behavior itself. The objective value evaluation is likely to be more expensive with an
ontogenic approach, since it consumes several expensive operations (the computation
in each iteration). Applying an ontogenic representation also leads to the question of
when to stop to iterate transformations and to evaluate the final result. The influence
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of the stopping criteria for ontogenic representations is studied in (Devert et al., 2011).

The distinction done here between generative and ontogenic representations
loosely matches one existing representation taxonomy. That taxonomy is introduced
in (Bentley and Kumar, 1999), and distinguishes definitions of three categories of rep-
resentations: external non-evolved embryogeny, explicit evolved embryogeny, and implicit
evolved embryogeny. With an implicit evolved embryogeny, the connection between
genotype and phenotype is of emergent nature, the result of localized transformations.
With an explicit evolved embryogeny, the phenotype transformations are explicitly de-
fined by the genotype. Finally, an external non-evolved embryogeny defines the mapping
from genotype to phenotype in a single shot way, without a development sequence. An
ontogenic representation decodes the genotype by iterating a local, context-sensitive
transformation on the phenotype, making it an implicit evolved embryogeny. A gen-
erative representation is an external non-evolved embryogeny, since no development
takes place when decoding the genotype.

Another taxonomy of representations for evolutionary algorithms is introduced in
(Stanley and Miikkulainen, 2003). It also is an informal taxonomy and proposes five
traits to qualify and distinguish representations. However, our distinction between
generative and ontogenic does not really fit into that taxonomy. One of the proposed
traits is the complexification, whether the genotype size is completely fixed or changes
during the optimization. In our work, we do not assume anything about the way in
which either a generative or an ontogenic representation are optimized. The target-
ing and cell fate traits concern characteristics of the transitions rules for a cells-based
representation. When mentioning an ontogenic representation, we do not assume any
mechanism to carry out the iterated transformation of the phenotype. We simply as-
sume iterated transformations, with a feedback on the result of the transformation.
The iterated transformations can be carried out by cells, by a differential equation sys-
tem, or anything else. The canalization trait classifies representations by their brittleness
when exposed to random mutations of the genotype. No such distinction is done in
our work. Finally, the heterochrony trait concerns the handling of time when decoding
from genotype to phenotype. As we defined it here, a generative representation does
not have a notion of time when decoding a genotype. This is a sharp contrast with
the ontogenic representation, where time is an essential aspect of the decoding of the
genotype. Thus, in the framework of the Stanley et al. taxonomy, the central distinction
between generative and ontogenic representation is the heterochrony trait.

The work presented in this article attempts to demonstrate that generative and
ontogenic representations exhibit very different behaviors, in terms of scaling, conver-
gence, and solution quality. In that sense, it challenges Stanley’s hypothesis that a
generative representation is essentially a faster equivalent to an ontogenic representa-
tion. Devert (2009) empirically demonstrates the striking differences between the two
representations. He used the maximization of the overhang of a stack of blocks for
demonstrating this dissimilarity. His ontogenic representation encodes the block posi-
tions as the result of an iterated transformation. The transformation moves blocks ac-
cording to the interaction forces between blocks due to the gravity. With the ontogenic
representation, the applied optimization algorithm always converges to very close to
the global optimum. The number of fitness evaluation required to reach the optimum
is shown to be independent from the number of blocks in the stack. The generative
representation encodes the block positions as a function of their position in the stack.
The same optimizer applied with the generative representation fails to converge close
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to the global optimum, and the results worsen with increasing number of blocks in the
stack. However the problem used in that study might seem too artificial to make it rel-
evant. Also, Devert (2009) did not study the computational cost associated with the use
of generative and ontogenic representations. As a fitness evaluation for an ontogenic
representation have to compute iterated transformations, such an evaluation is likely
to be very expensive. Thus, it remains unclear if the higher computational cost of an
evaluation an ontogenic represention is worthy.

3 Truss Design with Ground Structures

Trusses are rigid structures, usually composed out of metal beams, which are supposed
to hold or support some weight. They are amongst the most basic and widely used
elements in engineering and architecture. The goal of the truss design process is to
find a suitable arrangement of beams which can at least withstand a specified force at
minimal or fixed material requirements.

The ground structure approach is a common and widely used formulation of an
optimal truss topology design problem (Achtziger, 2007). This approach was first in-
troduced in (Dorn et al., 1964). A ground structure is defined by a set of nodes in the
plane or in space. A set of n potential bars link together pairs of nodes. The structure
with support conditions is a ground structure.

�

�

(1) (2) (3) (4)

Figure 1: A ground structure is defined over a domain (1). Here the domain is a rect-
angle, on a Euclidean plane. A ground structure is made of joints connected by bars.
Joints are at fixed positions and the connection matrix is also fixed. (2) The optimization
variables are the cross-sections of the bars. A fixed quantity of bar material is available.
Bars can have null cross-sections. (3) The same ground structure can express different
trusses. (4) is another truss, made from the same ground structure as (3).

The bars behave like linear springs, with a Young modulus (linear elasticity of
a given material) of 1. The nodes behave like joints between bars. When M forces
(f1, . . . , fM , the loads) are exerted on some nodes of the ground structures, the bars will
react and the nodes will move. The displacements u of the nodes is the solution of the
linear system

K(a)uk = fk (1)

where K(a) is the stiffness matrix of the structure and uk, fk respectively the displace-
ments and the loads in global reduced coordinates. The construction of the stiffness
matrix is done by a standard procedure called assembling which will not be detailed
here, see Felippa (2010) for an in-depth description. For understanding this work, it
is sufficient to know that K(a) is a function of the nodes positions and the bars’ cross
section areas a1, . . . , an. Assembling K(a) and computing uk from fk is an example of
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Finite Element Method (FEM) computation, here applied to an elasticity problem. From
uk, it is relatively straightforward to retrieve information such the mechanical strain on
each bar.

The nodes positions’ are kept fixed: the only design variables are the bars’ cross
section areas. The reason for such a restriction is that simultaneous optimization of
geometry and topology requires significantly more complex mathematical treatments
when using classical optimizers. To compensate for the nodes positions’ restriction,
dense grids are used to obtain refined solutions. Grids with thousands of bars are not
uncommon. Since the position of the nodes are not design variables, the bars length lj
remain constants too.

We use four benchmark problems, square-beam, wheel, short-bridge, and beam, as
introduced by Achtziger and Stolpe (2007). Figure 3 provides detailed description of
the four associated ground structures. For those problems, the optimal solutions are
known, so meaningful comparisons of different problem representations are easier to
do. The ground structure is the only difference between the four problems, and they
share the following common optimization objective:

min
1

2
fT
k uk (2)

subject to the constraints

n∑

j=1

aj lj ≤ V, (3)

aj ∈ [0, 1] (4)

where V is a constant defined for each problem.

Such benchmark problems, despite their apparent simplicity and similarity, are rel-
evant for and similar to many kinds of mechanical structure design tasks. Moreover, to
study the scalability of a representation by introducing more design variables, we used
the same problems with more refined ground structures. In these versions, the grid res-
olution is simply doubled, defining the big-square-beam, big-wheel, big-short-bridge, and
big-beam problems. For these problems, the global optimum is unknown.

4 Experimental Protocol

We define three representations for the cross-section areas of the bars in a ground struc-
ture, direct, generative, and ontogenic, which we apply to all of the introduced benchmark
problems.

• With the direct representation, the cross-section area of the bars are directly stored
as a real-valued vector X . The cross section areas are first taken from X , according
to the ai = X2

i relationship, where ai is the cross section area of the i-th bar. Then,
the volume constraint of the ground structure is enforced by a linear scaling of the
cross sections. The purpose of the square term is to enforce positive only cross-
sections, without creating discontinuities in the fitness landscape.

• With the generative representation, the cross section area of each bar is a function F

of the coordinates of its end-points. More precisely, the cross section ai of the i-th
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���

���

���

���

1× 1 square-beam, 28 bars, V = 4.4 2× 1 wheel, 200 bars, V = 14

���

���

���

���

8× 2 short-bridge, 188 bars, V = 60 8× 4 beam, 632 bars, V = 40

Figure 2: The ground structures for the square-beam, wheel, short-bridge, and beam prob-
lems. V is the volume of materials to use in the ground structure. The triangles mark
the joints with freedom restrictions. The arrows show the 1-Newton loads. The domain
size for each problem is given in front of the problem name. The bars appearing in black
rather than gray are the bars with a non-null cross area from the optimal structure.

bar is computed as ai = F (Ui, Vi). (Ui, Vi) are the coordinates of the end-points of
the i-th bar. Once the cross-sections areas are computed, the volume constraint of
the ground structure is enforced by a linear scaling of the cross section areas. The
function F is a perceptron, with 5 inputs (two 2D points plus one fixed bias input),
one hidden layer of 8 tanh neurons, and one single output. The weights vector of
the perceptron is thus the genotype for this representation. The genotype size is
5× 8 + 8× 1 = 48, independently from the number of bars.

• With the ontogenic representation, the cross section areas of the bars are the 32-th
term of the sequence ai = G(si), where ai is the cross section area of the i-th bar, si
is the mechanical strain of the i-th bar, and G is a function. As sketched in Figure 4,
after each computation of the cross section areas, the mechanical strain of each bar
is updated, thus each term of the sequence costs one FEM computation. Also, the
volume constraint of the ground structure is enforced by a linear scaling of the
cross sections at each term of the sequence. The function G is a perceptron, with 2
inputs (bar strain plus one fixed bias input), one hidden layer of 8 tanh neurons,
and one single output. The weights vector of the perceptron is the genotype in this
representation. The choice of the 32 steps is mostly arbitrary. The genotype size is
2× 8 + 8× 1 = 24, independently from the number of bars.

For all three representations, the genotype are real-valued vectors. The direct represen-
tation genotype size equals the number of bars in the ground structure. In contrast, the
two other representations feature a genotype size independent of the number of bars in
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Figure 3: Generative representation for ground structures. (1) We consider each bar
independently. (2) Each bar geometry is defined by its end-points coordinates. (3) A
function F takes as input the end-points coordinates and outputs the bar cross-section.
F is the same for all the bars.
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Figure 4: Ontogenic representation for ground structures. (1) The development starts
with the bars of equal cross-section areas. (2) For each bar, a function G returns an
increment for the bar cross-section area. (3) The cross-section area of the bar is modified
according to these variations. (4) These steps are repeated several times. The resulting
structure is evaluated to compute the objective value.

the ground structure. Table 1 displays the genotype size for the generative and ontogenic
representations as functions of the number of neurons. 64 independent optimization
runs are performed for the three encodings, applied for each benchmark problem. The
optimizer used for every run of each experiment is the SepCMA evolution strategy with
its default settings, as published by Ros and Hansen (2008). A run is stopped when the
mutation operator parameters are below machine precision. As opposed to using a
fixed time budget for each run, we this way can be sure that no further improvements
would be obtained after a run terminates. The results thus would be the same as in
scenarios with higher or unlimited time budgets.

The SepCMA evolution strategy is a variant of the CMA evolution strategy by
Hansen (2006). The CMA evolution strategy is a (µ, λ) evolution strategy that deter-

no. neurons 4 8 12 16 32 64
generative 24 48 72 96 192 384
ontogenic 12 24 36 48 96 192

Table 1: The genotype size for the two proposed indirect representations, as a function
of the number of neurons used in the representation.
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ministically adapts all the parameters of its mutation operator, a Gaussian distribu-
tion. Although there are a wide choice of stochastic optimizers, CMA is known to be
very competitive on recent, well-known benchmarks, as in Auger et al. (2009). More-
over, CMA have proven invariance properties (see Hansen (2000)) that makes it a robust
choice. The SepCMA evolution strategy adapts a restricted mutation operator: an axis
aligned Gaussian distribution. This makes SepCMA more scalable than CMA in high
dimensional problems, such as those obtained when using the direct representation on
the larger versions of the problems introduced in the previous section.

For all three representations, the initial sigma (initial standard deviation of the
Gaussian noise) is set to 1.0. For the direct representation, and only for that one, a
penalty P (X) =

∑
i |Xi − 1|2 is added to candidates points which are outside the

[−1, 1]n bound. Such a penalty scheme was necessary for the direct representation to
converge closely to the global optimum.

The computation of the objective value requires solving relatively large linear sys-
tems. To take advantage of the high sparsity of the linear systems involved here, we
employed the preconditioned conjugate gradient algorithm (as described by Shewchuk
(1994)), an iterative method. The employed preconditioner is the Jacobi preconditioner.
If the conjugate gradient residual (a measure of the result accuracy) is not below 10−15

after 20N iterations (where N is the dimension of the linear system), the genotype is
considered invalid. In this case, the evaluation is stopped and the genotype is dis-
carded. For an evolution strategy, this simply means that a new candidate individual
is generated as replacement for the deleted one. In practice, such cases are extremely
rare.

For comparing two statistical distributions, we rely on the two-tailed Mann-
Whitney U test. When the p value of the test is above 0.02 – a very conservative limit
– we consider that there is not significant differences between the two distributions
considered.

5 Experimental Results

The statistical evaluation of the objective values obtained on each problem for the three
representations is shown in Figure 5 and 7 as standard box plots. The direct representa-
tion reliably reaches the global optimum, showing very little dispersion across the op-
timization runs. The ontogenic representation also manages to produce solutions close
to the global optimum, although not as close as the direct representation and also with a
larger dispersion across the optimization runs. The objective value gap between the di-
rect and ontogenic representation grows for the largest benchmark problems. The runs
with the generative representation, while being able to reach the global optimum for
the simplest problem (the square-beam), converge to sub-optimal minima for the other
problems.

The median computational effort to reach given levels of objective values is illus-
trated in Figures 6 and 8. The computational effort is defined here as the number of
calls to the FEM routine made during the optimization run, to reach a given level of
fitness. In a typical design optimization scenario, the physical simulation of a design is
by far the dominant cost of an optimization run. As explained in Section 4, the direct
and generative representations consume one call to the FEM routine per objective value
evaluation, whereas the ontogenic representation consumes 32 calls to the FEM routine
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Figure 5: Lowest objective value reached statistics for the square-beam, short-bridge,
wheel, and beam problems, across 64 independent optimization runs. The thin dotted
horizontal lines show the lowest possible objective value for the problem considered.

per objective value evaluation. For evaluating one candidate solution, its costs are thus
32 times as high as for the other representations.

However, for all the problems but the simplest one (square-beam), the ontogenic rep-
resentation still has a significantly smaller or similar computational cost to reach close-
to-optimal fitness levels, compared to the direct representation. The reduced computa-
tional cost of the ontogenic representation is very visible for the largest instances of the
benchmark problems. The computational costs of the direct and ontogenic representa-
tions increase at similar rates when very closely approaching the global optimum. In
contrast, the generative representation’s computational cost consistently increases faster
than the other representation’s computational costs. Although initially very efficient,
the generative representation always leads to convergence far from the optimum. Also,
the local optimum reached with the generative representation is always obtained at a
higher computational cost compared to the ontogenic representation. The only excep-
tion for this trend is the beam problem, where the generative representation reaches its
local optimum with the lowest cost.
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Figure 6: Median computational effort for the direct, generative, and ontogenic represen-
tations, on the square-beam, short-bridge, wheel, and beam problems, across 64 indepen-
dent optimization runs.
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tation, on the big-square-beam, big-short-bridge, big-wheel, and big-beam problems, across
64 independent optimization runs.
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5.1 Behavior of the Generative Representation

Both the generative and ontogenic representations converge farther from the global opti-
mum than the direct representation. The direct representation can represent all possible
solutions whereas the generative and ontogenic representations cannot reach all possible
solutions, which is a consequence of the smaller search space. The resulting decrease
in the number of discoverable solutions can be considered as a modeling flaw. Due
to this modeling flaw, the best genotype possible for one indirect representation does
not necessarily correspond to the best solution. Indeed, the best solution might even
be unreachable for the representation. This can partly explain the differences with the
direct representation, regarding the lowest objective value reached.

For the generative representation, the size of the genotype depends on the percep-
tron F . More neurons in the hidden layer allow a more accurate estimation of the
optimal cross section areas of a ground structure. A given perceptron has a universal
approximation capability, up to a given precision (see Hornik (1991) for a demonstra-
tion). Here, it seems that 8 neurons are not enough to match solutions close to the global
optimum, as shown by the statistics of the lowest objective value reached. As explained
in Section 4, the optimization is stopped when the optimizer cannot make any further
improvements. While approaching the approximation limit of the perceptron, the op-
timizer is bound to do just vanishing small adjustments with little to no effects on the
objective value and stops. In such a case, one might increase the number of neurons
used in the perceptron, to allow more refined approximations. This addition of neurons
means increasing the genotype size, which might increase the number of evaluations
used by the optimizer to reach a given fitness level. Thus, adding more neurons for the
generative representation would improve the best objective value reached, but likely at
the price of an increased computational effort.

To validate this hypothesis, runs with 4, 8, 12, and 16 neurons for the perceptron
F have been performed, with exactly the same protocol used for the initial experi-
ments with 8 neurons (64 independent runs with SepCMA, default settings). Figure 9
shows the statistic of the lowest objective value reached. As predicted, using more neu-
rons for the generative representation significantly decreases the lowest objective value.
Figure 10 shows the median computational effort. The number of neurons does not
significantly affect the increase rate of the computational effort when approaching the
optimum. Even with 16 neurons, the objective values obtained with the generative rep-
resentation are still far from those obtained with the two other representations. It seems
that a large number of neurons are required for this problem, thus a large genotype is
necessary. This somewhat defeats the purpose of using the generative representation,
originally intended to reduce the genotype size.
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Figure 9: Lowest objective value reached statistics for the generative representation with
4, 8, 12, and 16 neurons, across 64 independent optimization runs. The thin dotted
horizontal lines show the lowest possible objective value for the problem considered.
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and 16 neurons for the perceptron F , across 64 independent optimization runs.
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5.2 Behavior of the Ontogenic Representation

The ontogenic representation behaves much differently from the generative representa-
tion. First, the ontogenic representation reaches objective values much closer to the one
reached by the direct representation, compared to the generative representation. Second,
the computational cost to reach a given objective value level associated to this represen-
tation is close to the one of the direct representation. The computational effort increase
rate is lower that for the generative representation, and close to the computational ef-
fort increase rate of the direct representation. Until the later stages of the optimization
process, the ontogenic representation consistently has a reduced computational effort
compared to the direct representation. It should be noted that this lower computational
effort is achieved despite having fitness evaluations with a cost of 32 FEM calls, in con-
trast to the cost of 1 FEM call per genotype decoding for the direct representation.

Since the ontogenic representation also relies on a perceptron, it can do approxi-
mations only up to a certain precision. Two parameters control the ontogenic repre-
sentation: the number of neurons used for the iterated function G, and the number of
development steps. The number of neurons for G might be a less critical parameter
to enhance the approximation power, compared to the number of development steps,
for the following reason. In the case of the ontogenic representation, the optimal geno-
type codes for a function G which, after 32 iterations, will generate the optimal ground
structure. But there might exist functions G that generate the optimal ground structure
in 33, 42, or more iterations. Indeed, longer developments allow for greater variety of
development trajectories that eventually stabilize around the optimal ground structure.
Thus using more development steps would improve the lowest objective value statistic
for the ontogenic representation. More neurons for the function G would allow to define
more precise development trajectories. But what matters is only the end point of the
development trajectory, the final ground structure. In the case of a development that
tends to converge to a given ground structure, less precise development control would
just converge more slowly to the attractor point. In the case of a development that does
not converge, the development trajectory might be important and thus, more neurons
would be very beneficial for the lowest objective value statistics.

To validate this hypothesis, runs with 4, 8, 12, and 16 neurons for the perceptron
G at 32 development steps have been performed. Additionally, runs with 8, 16, 32, 64,
and 128 development steps and 8 neurons for the perceptron G have been performed as
well. In both cases, exactly the same protocol is used as in the initial experiments with
8 neurons (64 independent runs with SepCMA, default settings). The lowest objective
value statistics are shown on Figures 11 and 13, whereas the median computational
effort is shown on Figures 12 and 14. As predicted, longer developments introduce a
significant improvement in the lowest objective value reached. Adding neurons to the
perceptron G has no significant influence on the objective value.

The development sequences for the best performing genotypes have similar dy-
namics, seemingly independent from the problem. All the best development processes
initially reduce the cross-area of the beams. Then, when the number of development
steps is close to the number of steps used during the optimization, the development
shows a pseudo-oscillatory behavior. Further development steps modify the truss, cy-
cling through different but similar states. The frequency, the amplitude and the regular-
ity of such cycles are highly variable, without significant correlation with the number
of steps used during the optimization.
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Figure 11: Lowest objective value reached statistics for the ontogenic representation with
32 development steps, 4, 8, 12 and 16 neurons, across 64 independent optimization
runs. The thin dotted horizontal lines show the lowest possible objective value for the
problem considered.
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opment steps, 4, 8, 12 and 16 neurons, across 64 independent optimization runs.
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Figure 13: Lowest objective value reached statistics for the ontogenic representation with
8, 16, 32, 64 and 128 development steps, 8 neurons, across 64 independent optimization
runs. The thin dotted horizontal lines show the lowest possible objective value for the
problem considered.
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64 and 128 development steps, 8 neurons, across 64 independent optimization runs.
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5.3 Fitness Landscape

From our results, it is now clear that the studied problems, the genotype size alone does
not determine the behavior of a representation. By observing how the fitness statistic
varies when increasing the distance from an optimum, we can further get a rough idea
of the fitness landscape. The dispersion of the fitness gives a measure of the smoothness
of the fitness landscape. The trend of the fitness over the distance to the optimum gives
an idea of the topology of the fitness landscape. To compute the statistic of the fitness
at a distance d from the optimum X , n normalized vectors Z are drawn from a uniform
distribution. The fitness of the n points Xi+ dZi are then evaluated. We used n = 4096,
with d varying from 10−3 to 100.

The Figure 15 shows the fitness statistic for the generative and ontogenic represen-
tations, at increasing distance from the best solutions ever found for the four problems
we defined. For all problems, the fitness statistics of the two representations are sig-
nificantly different. The ontogenic representation features an almost flat valley of low
fitness dispersion, which ends with a sharp increase of the fitness and its dispersion far
from the optimum. In the other end, the generative representation has a smaller low fit-
ness dispersion area. The differences of the fitness statistic, when changing the number
of neurons for a representation, or the number of development steps for the ontogenic
representation, is not statistically significant.

The CMA evolution strategy and, by extension, most evolution strategies, can be
seen as biased random walks in the fitness landscape. Evolution Strategies are biased
to be move toward better solutions, so the random walk eventually ends up trapped by
a local optimum. The optimum for the ontogenic representation seems a more effective
trap than the generative representation for such a biased random walk. This observation
is consistent with the statistic of the best fitness of a run. The best fitness statistic of the
ontogenic representation has a reduced dispersion compared to the one of the generative
representation. Since the optimum for the ontogenic representation behaves as a better
trap, optimization runs are more likely to terminate in that optimum.
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Figure 15: Higher and lower quartile of the fitness of candidate solutions at a given
distance from the best solution ever found, for two representations. The generative rep-
resentation uses 8 neurons. The ontogenic representation uses 32 development steps
and 8 neurons. 4096 samples per points are used for computing this statistic. The thin
dotted horizontal lines show the lowest possible objective value for the problem con-
sidered.
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5.4 Staged Development

The genotype size for the ontogenic representation is independent from the number
of bars in the ground structure. Although a modeling flaw is introduced, this flaw is
much less pronounced than for the generative representation. By using more develop-
ment iterations, the gap to the direct representation in terms of lowest objective value
can be reduced. Although this allows keeping a reduced genotype size, doing so in-
creases the computational effort. A way to reduce the computational effort when using
an ontogenic representation, would be to increase the number of development itera-
tions by stages. Staged development for ontogenic approaches have been introduced
by Federici and Downing (2006). Each run starts with a first stage S1: an optimization
round where just a few development iterations per evaluation is carried out. Once the
optimizer converged, a new stage S2 is started. The initial ground structure used for
the development process in S2 is the best solution found by S1. Instead of using a single
run with a long development time, dividing a single run into stages with short devel-
opment time can be a way to reduce the computational effort. Federici et al. reported a
nine-fold computational effort reduction for their experiments.

Figures 16 and 17 display respectively the lowest objective value reached statistics
and the median computational effort for the ontogenic representation with 5 stages,
8 neurons for the function G. The initial stage S1 uses 8 development steps, and the
number of development steps is doubled at each stages. The last stage, S5, uses 128
development steps. The experimental setup remains the same as used in the previ-
ously introduced experiments. The lowest objective value is slightly yet significantly
improved over a single staged run with the ontogenic representation, 128 development
steps and 8 neurons. The computational effort is significantly reduced (up to a factor
ranging from 2 to more than 10) until close to the global optimum, where it became
equal to or largely higher than the computational effort of the direct representation.
Nevertheless, multi-staged runs significantly improve the computational effort of the
ontogenic representation compared to a single staged run. Indeed, it makes the onto-
genic representation much more efficient than the direct representation, until very close
to the global optimum.

The idea of staged runs can be transposed to a generative representation. A first
optimization round, the stage S1 would generate a ground structure. A second opti-
mization run, the stage S2 would generate a ground structure from the ground struc-
ture obtained at S1. S2 can even use the same local information used by the ontogenic
representation. The stages Si>1 would transform a ground structure rather than gen-
erate one from scratch. Such a staged run approach for generative representation is
indeed equivalent to a staged run approach for ontogenic representations, with a sin-
gle iteration for the development. Stages incorporate optimization results which, in
turn, represent information gathered from the objective value evaluations. By doing
so, we would introduce feedback into a generative approach. This extends beyond the
pure generative idea and is out of the scope of this paper.
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Figure 16: Lowest objective value reached statistics for the ontogenic representation with
5 stages 8, 16, 32, 64 and 128 development steps, 8 neurons, across 64 independent
optimization runs. The thin dotted horizontal lines show the lowest possible objective
value for the problem considered. The lowest objective value reached statistics for the
single stage ontogenic representation is for 128 development steps and 8 neurons.
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Figure 17: Median computational effort for the ontogenic representation with 5 stages
of 8, 16, 32, 64, 128 developments steps, 8 neurons, across 64 independent optimization
runs. The median evaluation statistics for the single stage ontogenic representation is
for 128 development steps and 8 neurons.
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6 NEAT

In all the experiments introduced in the previous sections, we relied on the same exper-
imental setup. The function approximator is a neural network with an ad-hoc topology,
a perceptron with a hidden neuron layer. The optimization algorithm is the CMA Evo-
lution Strategy. The reason for choosing this straightforward setup is that it can easily
be reproduced and, more importantly, does not introduce any effects or phenomena
unrelated to the representation behavior that we wish to investigate. Using, e.g., a
more sophisticated generative technique could lead to better results, but the question
would arise whether these results are obtained because of the features of the optimizer,
the peculiarities of the specific algorithm, or the internal structure of the representation
instead of general generative idea.

Yet, choosing the trivial generative method may also be considered as making the
results rather specific, even if the explanations for those results do not rely heavily
on specificities of the setup. Doing the same experiments with a significantly differ-
ent experimental setup would allow to see to which extends our observations can be
generalized.

A natural choice for an alternative setup are CPPNs and NEAT. CPPNs are gen-
eral feed-forward neural networks, where the neurons’ transfer function is taken from
a ad-hoc set of functions. NEAT (Stanley and Miikkulainen, 2002) is a state-of-the-art
evolutionary optimizer for neural networks. NEAT is used to optimize both the pa-
rameters and the topology of CPPN. In the NEAT and CPPN method applied here, the
generative encoding devised in Section 4 is very close to the encoding introduced as
the HyperNEAT approach, adapted to the truss benchmark problem. In HyperNEAT,
a CPPN generates the connection weight of a neuron network, where the neurons of
the generated network have 2D Cartesian coordinate systems. Here, we use a CPPN
to generate the thickness of the beams as a function of the end-point coordinates, also
2D. The ontogenic encoding, for this alternative setup, is in the other end unique, up
to our knowledge. The CPPN and NEAT setup crucially differ from the Perceptron and
CMA-ES setup.

• NEAT starts with an elementary neural network, which topology is then aug-
mented by random mutations. Thus, the topology of the neural networks op-
timized with NEAT is plastic and unbounded. In contrast, the experiments in
the previous sections always relied on a neural network of fixed complexity. An
unbounded complexity for the neural network topology allows arbitrary precise
matching of any function.

• In D’Ambrosio and Stanley (2007), the transfer function set for CPPNs is claimed to
be well-suited for expressing repetition with variations. The transfer function used
in the previous sections is the classical tanh function.

• CMA-ES is a self-adaptive evolution strategy. The CMA-ES mutation operator is
an anisotropic additive Gaussian mutation, which parameters are adapted by an
effective deterministic strategy. NEAT uses an additive uniform mutation without
strategies to adapt that operator.

• NEAT uses a complex breeding operator, featuring a niching strategy. The nich-
ing strategy clusters the candidate solutions with a genotype similarity measure.
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Crossover is performed only with candidate solutions from a same cluster. More-
over, premature convergence is countered by preserving recently introduced can-
didate solutions.

6.1 Experimental Protocol

The NEAT implementation used for all the experiments is the one provided by the Hy-
perNEAT 3.0 C++ package. The employed parameter setting specific to this implemen-
tation is fully described in Table 2. The population size is set to 100. As the number
of parameters for NEAT is rather high, an extensive parameter tuning work was be-
yond our computational resources. Default values have been used, with some slight
modifications. The simplest problem (square-beam), e.g., is solved without relying on a
very small strength for the parameter mutation. Moreover, the parameters controlling
the population clustering have been set such as the clusters size stays within a reason-
able range during a run. The transfer function set for the neurons is the same as in
D’Ambrosio and Stanley (2007). Recurrent connections in the CPPNs are not allowed,
as we use the CPPNs as pure functions.

NEAT does not provide stopping criteria that terminate a run when that run is
very unlikely to do any further progress. All runs are stopped after 2500 generations,
which in practice is enough to reach a local optimum from which none of the runs
could escape. Like the previous experiments, the square-beam, beam, wheel, and square-
bridge problems are considered. As NEAT can arbitrarily expand the complexity of a
neural network, the generative encoding does not require exploring various network
topologies. For the ontogenic encoding, 8, 16, 32, and 64 development steps have been
considered. For the four problems and encodings, 64 runs are performed.

NEAT is a maximization algorithm. Also, NEAT accepts only positive fitness val-
ues, which is a requirement of its breeding operator. Since the four benchmark prob-
lems are minimization problems, we have to apply a transformation to the compliance
value of a truss. We used the following transformation.

F = max(3− log10(C), 0) (5)

To ensure that this transformation does not modify significantly the difficulty of the
four problems, we employed the same transformation on CMA-ES based runs. The best
fitness of the runs with this fitness transformation is not statistically different from the
runs using original fitness value directly (based on 64 runs for each four problems, with
the generative and ontogenic encoding). The logarithmic scale employed by the proposed
transformation proved to be important. Without it, NEAT is not able to converge near
the global optimum even for the simplest problem (square-beam). As NEAT relies on a
proportional selection operator, not a rank-based one, NEAT can be very sensible to the
fitness scaling. For our four benchmark problems, the difficulty is roughly exponential,
i.e., it is as hard to improve from 100 to 10−1 as improving from 10−1 to 10−2. The
logarithmic fitness transformation proved to be very effective, based on exploratory
experiments.

6.2 Experimental Results

Figure 18 shows the best fitness statistic for all the experiments. The ontogenic encod-
ings provide significantly better results, for all problems. The dispersion of the fitness
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parameter name value

AddBiasToHiddenNodes 0.0
AdultLinkAge 18.0
CompatibilityModifier 0.30
CompatibilityThreshold 100.0
DisjointCoefficient 2.0
DropoffAge 50.0
ExcessCoefficient 2.0
ForceCopyGenerationChampion 1.0
LinkGeneMinimumWeightForPhentoype 0.0
MutateAddLinkProbability 0.30
MutateAddNodeProbability 0.030
MutateDemolishLinkProbability 0.0
MutateLinkProbability 0.10
MutateLinkWeightsProbability 0.80
MutateOnlyProbability 0.250
MutateSpeciesChampionProbability 0.0
MutationPower 0.5
SmallestSpeciesSizeWithElitism 5.0
SpeciesSizeTarget 8.0
SurvivalThreshold 0.20
WeightDifferenceCoefficient 0.1
AgeSignificance 1.0

Table 2: The parameters setting used for all the NEAT-based experiments
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is much smaller for the ontogenic encodings compared to the generative encoding. This is
very similar with the CMA-ES based runs with ad-hoc neuron network topologies. An
exception is the beam problem, where the dispersion of the best fitness is more impor-
tant than for the generative representation. The beam problem is the hardest of the four
problems, and here, NEAT did not fully converge. As for the CMA-ES based experi-
ments, increasing the number of development steps for the ontogenic encoding triggers
a better fitness statistic.

Figure 19 shows the effort statistic for all the experiments. For moderate levels of
fitness, the generative encoding proves to be significantly less expensive. But as the runs
are moving towards the global optimum, ontogenic encodings with 8 or 16 development
steps provide better fitness at a lesser expense. Overall, the effort statistic with NEAT
behaves similar to the one of the generative method with CMA-ES. The only difference
is the scale of the computational effort: The best fitness is reached with a cost of roughly
106 to 107 invocations of the FEM with NEAT. With the CMA-ES based approach, that
cost is within 104 to 105 for similar levels of fitness.

Overall, the behavior of the generative and ontogenic representations seems to be
independent from the optimization method. For our four benchmark problems, it is
clearly visible that the generative encoding cannot achieve results equivalent to those
of the ontogenic encoding. The same phenomena are observed with two conceptually
very different optimizers. Thus, we believe that the non-equivalence of generative and
ontogenic representations, at least on the problem studied here, is mostly independent
from the underlying optimization approach employed. Moreover, the better behavior
of the ontogenic representation in regard of best fitness reached and scalability seems
also fairly independent from the optimization approach.
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Figure 18: Lowest objective value reached statistics for the generative representation
and the ontogenic representation with 8, 16, 32, and 64 development steps, across 64
independent NEAT optimization runs. The thin dotted horizontal lines show the lowest
possible objective value for the problem considered.
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Figure 19: Median computational effort for the generative representation and the onto-
genic representation with 8, 16, 32, and 64 development steps, across 64 independent
NEAT optimization runs.

7 Conclusion

On a benchmark problem from structural mechanics, generative and ontogenic solution
representations are compared and analyzed. The same evolution strategy (SepCMA-ES)
is used for both representations. Both the generative and ontogenic method are indirect
representations that attempt to bring a better scalability to evolutionary algorithms.

The generative representation encodes solutions of a problem as a single-pass spa-
tial transformation. Here, the transformation is a function approximator: a multi-layer
perceptron. The ontogenic representation encodes solutions as the result of an iterated
transformation on an initial solution, using feedback from a simulation or objective
value computation. Here, the iterated transformation is a function approximator (also
a multi-layer perceptron) fed with local mechanical strain information. Both generative
and ontogenic representations can only approximate the global optimum. Thus, compar-
isons with a direct encoding makes sense only close to the global optimum, not at the
global optimum.

In terms of the lowest objective value reached, the ontogenic representation, by a
large margin, provides better results, close to the global optimum. The ontogenic rep-
resentation can further obtain better results by increasing the development time, which
does not affect the genotype size. The ontogenic representation is a truly scalable rep-
resentation for ground structures. In terms of computational cost, the generative repre-
sentation is not better than the ontogenic representation. Far from the global optimum,
the generative representation is much cheaper. But if it should approach the global
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optimum, the generative representation becomes more expensive than the ontogenic
one. Especially with multi-staged runs, the ontogenic representation remains much
less costly than a direct representation, until being very close to the global optimum.

We showed that increasing the number of neurons in the generative representa-
tion does not improve the objective value which can be discovered. Moreover, adding
neurons increases the genotype size, which goes against the very purpose of a scalable
representation. Other changes could have been carried out to improve the approxima-
tion power of the perceptron. We can change the transfer function of the perceptron. A
careful choice of transfer function would allow a perceptron with a few neurons to per-
fectly match the global optimum. But the ability to craft such a transfer function would
imply a great knowledge about the solution of the problem. Indeed, in that case, using
an evolutionary algorithm with a sophisticated representation would be irrelevant.

Another way to improve the approximation power of a neural network is to use
more complex neural network topologies. This is what is done with HyperNEAT
(D’Ambrosio and Stanley, 2007): the spatial transformation is a general feed-forward
neural network. These neural networks are initially trivial, but an evolutionary algo-
rithm will incrementally augment them. This is a big difference compared with first
experiments described here, where the function approximators are never augmented
during the optimization. In order to verify whether this can fundamentally change
the trends for the generative and ontogenic representations, we conducted a second
set of experiments. As the results of these experiments show, even with a much more
complex approach such as HyperNEAT, the relation between the performances of two
representations remains the same, as the ontogenic method still leads to better results
and provides better scalability. Thus, the difference of behaviors between the genera-
tive and ontogenic representations is likely to be independent from the optimization
scheme employed.

In summary, the study introduced here directly contradicts the claim that a gener-
ative representation is a much cheaper alternative to an ontogenic representation. On
the problems introduced here, the generative representation suffers much more from
approximation accuracy problems. The ontogenic representation, although relying on
a function approximator of similar power, suffered much less from such issues. Thus,
at least in the problems studied here, a generative representation is not qualitatively
equivalent to an ontogenic representation. Moreover, the ontogenic representation is
shown to be an overall less expensive way to find solutions close to the global opti-
mum, despite having a higher cost per evaluation. A development process can be an
effective way to build a scalable and computationally efficient representation for opti-
mization problems.

Finally, it should be mentioned that in our experiments, the direct representation
manages to reach the global optimum with a lower computational effort than the other
representations. Thus one might question the relevance of the ontogenic representa-
tion. For the introduced benchmark, the direct representation is guaranteed to con-
verge to the known global optimum. The two indirect representations can only approx-
imate the global optimum. Thus, relevant comparisons can be done only at close-to-
optimum levels. Then, the ontogenic representation demonstrates a very scalable be-
havior whereas the generative representations fall short of this. On real-world prob-
lems, the global optimum might be unknown. What an ontogenic representation can
offer is to come reasonably close to the global optimum with a much improved scalabil-
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ity, i.e., lower computational costs. In that sense, our results are a clear demonstration
of that ability.
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Estévez, N. S. and Lipson, H. (2007). Dynamical blueprints: exploiting levels of system-
environment interaction. In GECCO ’07: Proceedings of the 9th annual conference on Genetic and
evolutionary computation, pages 238–244, New York, NY, USA. ACM.

Federici, D. and Downing, K. (2006). Evolution and development of a multicellular organism:
Scalability, resilience, and neutral complexification. Artif. Life, 12(3):381–409.

Felippa, C. (2010). Introduction to finite element methods. http://www.colorado.edu/
engineering/cas/courses.d/IFEM.d.

Fournier, H. and Teytaud, O. (2010). Lower bounds for comparison based evolution strategies
using vc-dimension and sign patterns. Algorithmica.

Hansen, N. (2000). Invariance, self-adaption and correlated mutations in evolution strategies. In
Schoenauer, M., Deb, K., Rudolph, G., Yao, X., Lutton, E., and Merelo, J., editors, Proceedings of
PPSN VI, Parallel Problem Solving from Nature. Springer.

Hansen, N. (2006). The CMA evolution strategy: a comparing review. In Lozano, J., Larranaga,
P., Inza, I., and Bengoetxea, E., editors, Towards a new evolutionary computation. Advances on
estimation of distribution algorithms, pages 75–102. Springer.

Evolutionary Computation Volume x, Number x 31



A. Devert, T. Weise, K. Tang

Hornik, K. (1991). Approximation capabilities of multilayer feedforward networks. Neural Net-
works, 4(2):251–257.

Ros, R. and Hansen, N. (2008). A simple modification in CMA-ES achieving linear time and
space complexity. In Rudolph, G., Jansen, T., Lucas, S. M., Poloni, C., and Beume, N., editors,
Parallel Problem Solving from Nature - PPSN X, 10th International Conference, Proceedings, volume
5199 of Lecture Notes in Computer Science, pages 296–305. Springer.

Shewchuk, J. R. (1994). An introduction to the conjugate gradient method without the agonizing
pain. http://www.cs.cmu.edu/˜jrs/jrspapers.html.

Stanley, K. O. (2006). Exploiting regularity without development. In AAAI Fall Symposium on
Developmental Systems, Proceedings.

Stanley, K. O. (2007). Compositional pattern producing networks: A novel abstraction of devel-
opment. Genetic Programming and Evolvable Machines, 8(2):131–162.

Stanley, K. O. and Miikkulainen (2003). A taxonomy for artificial embryogeny. volume 9, pages
93–130.

Stanley, K. O. and Miikkulainen, R. (2002). Evolving neural networks through augmenting
topologies. Evolutionary Computation, 10(2):99–127.

32 Evolutionary Computation Volume x, Number x

Alexandre Devert, Thomas Weise, and Ke Tang. A Study on Scalable Representations for Evolutionary Optimization of Ground Structures. 

Evolutionary Computation, 20(3):453-472, Fall 2012. doi:10.1162/EVCO_a_00054

Alexandre Devert, Thomas Weise, and Ke Tang. A Study on Scalable Representations for Evolutionary Optimization of Ground Structures. 

Evolutionary Computation, 20(3):453-472, Fall 2012. doi:10.1162/EVCO_a_00054


