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Effectiveness evaluation of the coupled LIDs from the watershed scale based
on remote sensing image processing and SWMM simulation
Yan Chena, Ming Tana, Jiahua Wanb, Thomas Weisea and Zhize Wua

aSchool of Artificial Intelligence and Big Data, Hefei University, Hefei, China; bSchool of Information Engineering, Anhui Xinhua University,
Hefei, China

ABSTRACT
In this paper, based on remote sensing image processing and SWMM simulation, we evaluate
the effectiveness of a coupled LIDs system for the watershed scale. The main content and
contributions include: 1) the extraction and classification of historical and recent LULC data (in
1979, 1989, 1999, 2009, 2017) of the study area and an analysis of the characteristics of the
LULC change; 2) a watershed-based SWMM applied to the simulation of the runoff and an
analysis of the runoff change characteristics; 3) the proposal and design of three coupled LIDs
scenarios which treat runoff change as evaluation metric to systematically discuss the effec-
tiveness of LIDs in the watershed. The results show that the combination structure and scale
can significantly affect the coupled LIDs effectiveness. A system with multiple LIDs is more
effective than one with only single LIDs. With the increase of spatial scale, the effectiveness of
the coupled LIDs gradually weakens. Our research enriches the application scale of LIDs and
SWMM, and can be beneficial to the construction of the “Sponge City”, stormmanagement and
urban planning.
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Introduction

Low impact development (LID) is the storm manage-
ment strategy proposed and used firstly in the United
States in the 1990s. It mainly applies distributed,
source-controlled low impact development devices
(or practices, measures) to regulate runoff and non-
point source pollution caused by rainfall and urbani-
zation, and to restore the impervious surface area to
the state close to the natural hydrological cycle and
ecosystem (Eckart et al., 2017). Commonly used LIDs
include vegetation swales, rain gardens, rain tanks,
permeable paving and retention ponds (Guo et al.,
2019). Although LIDs have been widely used in
developed countries, due to different developing
phases and modes, application and researches in
developing countries are still insufficient, and there
is a lack of experimental data supporting for the local
condition and environment (M. Wang et al., 2018).
Since 2014, in response to the urgent issues contain-
ing urban flooding, environmental protection and
ecological restoration in China (Wang et al., 2004;
Xia et al., 2017), “Sponge City” (H. Wang et al., 2018),
the innovative urban development mode described
from the perspective of integrating storm manage-
ment and urban planning (He et al., 2019) has been
proposed and employed. Implementing wider appli-
cations of LIDs, reducing runoff by effectively using
LIDs and decreasing the impacts of storms and urba-
nization on the nature have become the primary

goals of “Sponge City” construction (Ding et al.,
2019). LID and LIDs begin to enter the fields of the
wider application and researches in China.

Compared with LIDs application in developed
countries, “Sponge City” not only revolves around
storm management, but pays more attention to
the regional ecosystem protection and restoration,
green space construction, urban microclimate reg-
ulation, and sustainable urban planning, which
emphasizes comprehensive research and evalua-
tion carried out by combining macro-scale and
micro-scale based on the scale-crossed planning
theory and methodology (Yu et al., 2015).
Currently, most of LIDs effectiveness data come
from the micro-scale on-site tests with the single
LULC (Ahiablame et al., 2012; Gilbreath et al.,
2019; Hou et al., 2019; Noh et al., 2015; Shafique
et al., 2018), which are difficult to meet the
requirements of the regional planning. Therefore,
research on effectiveness of the coupled use of
multiple LIDs under the large scale and medium-
scale with mixed LULC becomes increasingly
urgent. However, in larger regions, due to the
limitation of the climate and underlying spatial
heterogeneity, conventional LIDs studies based
on monitoring experiment and long-term contin-
uous observation significantly increase costs in
time and labor (Gu et al., 2019).

With the rapid development of computer science
and technology, simulating approaches based on
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mathematical models and algorithms have been
greatly improved on the operation speed and accuracy.
Compared with monitoring, simulating can effectively
reduce manpower, material resources and time invest-
ment for saving costs, and improve application and
research efficiency (Ketabchy et al., 2019). At present,
LIDs simulation is mainly integrated into the hydro-
logical models in the form of functional components
or plug-ins, such as MUSIC, MOUSE, P8-UCM,
PURRS, SLAMM, Storm Tac, SWMM, SUSTAIN
(Wang et al., 2010), and L-THIA (Xu et al., 2019). In
comparison with other models, SWMM (storm water
management model) provides more complete LIDs
components (Gisvold et al., 2019; Thakali et al.,
2018), and supports the distributed, long-term contin-
uous simulation (Campisano et al., 2016), which could
improve the results due to climate and underlying
spatial heterogeneity. Remote sensing, as one of the
considerable means of acquiring extensive earth
resources and environmental information, has been
widely applied in geography, hydrology, meteorology,
mapping, ecology and military reconnaissance on
account of its high timeliness, wide area and low
costs of global detection and monitoring (Pham
et al., 2019). Information extraction based on remote
sensing image processing can be beneficial to improve
the insufficient field surveys due to the underlying
restriction.

Therefore, to enrich the application scale of LIDs
and in response to the requirements of the “Sponge
City” construction in China, in this paper, we evaluate
the effectiveness of a coupled LIDs system from the
watershed scale based on remote sensing image pro-
cessing and SWMM simulation. The main content and
contributions include: 1) we classified and extracted
the historical and recent LULC data (in 1979, 1989,
1999, 2009, 2017) of the study area, and analyzed the
characteristics of LULC change; 2) a watershed-based
SWMM had been built and applied to simulate runoff
and analyze runoff change characteristics; 3) we pro-
posed and designed three coupled LIDs scenarios
which treat runoff change as the evaluation metric to
systematically discuss LIDs application in the
watershed.

Study area and data

Jinan is one of the first 16 “Sponge City” pilot cities. It
is located in eastern China and is the capital of
Shandong province. As of 2018, Jinan has 10 districts
and 2 counties under its jurisdiction with a total area
of 10,244 square kilometers and an urbanization rate
of 72.1% (Jinan Municipal People’s Government
[JMPG], 2019). The terrain of Jinan presents a high
elevation in the south and a low elevation in the north.
Its average annual temperature is 13.8 degree centi-
grade and the annual precipitation is 685 mm (Jinan

Bureau of Statistics [JBS], 2019). Influenced by ele-
ments of the natural topography and landform, clog-
ging of rivers and urban drainage pipes and increased
impervious surface caused by the rapid non-matched
urbanization, Jinan is encountering acute water risks
such as urban waterlogging, non-point source pollu-
tion and water ecological degeneration (Y. Zhao et al.,
2019). The Xiaoqing River is the only outlet river of
the core districts of Jinan. It flows through the districts
of Huaiyin, Tianqiao Licheng and Zhangqiu of Jinan,
then enters the Bohai Sea of China from Yangjiaogou
in Weifang city of Shandong province. The total
length is 233 km and the drainage area is 10,336 square
kilometers. It is the comprehensive utilization river for
flooding control, irrigation and shipping (C. Zhao
et al., 2019). The upstream watershed of the hydro-
logical station of Huangtaiqiao on the river was chosen
as the simulation area which covers 398 square kilo-
meters and eleven tributaries, namely Lashan River,
Nantaiping River, Xingji River, Hongxi River,
Beitaiping River, Xigongshang River,
Donggongshang River, Xiluo River, Dongluo River,
Quanfu River and Liuxing River. Figure 1 shows the
location, topography and tributaries in the simulation
area called Huangtaiqiao watershed.

The data used in the study mainly include meteor-
ological data, hydrological data, soil data, terrain data,
remote sensing data, urban planning data, LIDs data
and GIS data. Data sources and descriptions are
shown in Table 1. The meteorological data contain
the observed precipitation and evaporation records.
The hydrological data refer to the observed runoff
records used for calibration and verification of
SWMM and the measured rivers geometry (para-
meters and maps). The soil data refer to the soil
physical parameters, such as structure, porosity and
saturated permeability. Terrain data, i.e. DEM (digital
elevation model), are employed to segment the study
watershed into several subcatchments to weaken the
impact of spatial heterogeneity. DEM with type of
SRTM X-SAR and spatial resolution of 30 m was
acquired from the German Aerospace Center (abbr.
in German as DLR: Deutsches Zentrum für Luft- und
Raumfahrt). The remote sensing data consist of
Landsat multispectral images (by MSS, TM, and OLI
in 1979, 1989, 1999, 2009, 2017, respectively) and
high-resolution images from Google Earth, used for
LULC classification. The cloud coverage ratios of all
images in the simulation area keep less than 1%.
Besides the necessary pre-processing, images with spa-
tial resolution of 60 m by the sensor of MSS were
resampled to 30 m. The urban planning data mainly
include the texts of the master planning of Jinan and
the thematic maps used to interpret the historical and
recent LULC. The LIDs data consist of the design
standards and test results of individual rain tank,
rain garden and permeable paving. GIS data are
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mainly applied for location description and mapping,
e.g., administrative map and thematic maps. The
socio-economic data of the study area were collected
from the local statistical yearbooks.

Methodology

The technical route of the study is shown in Figure 2.
In this study, the quantified runoff changes before and
after the deployment of the combined LIDs are used as
the basic evaluation metric. The input data of SWMM
cover the topographic, meteorological, soil, and
imperviousness data. Most of them were acquired
based on the available observation data and field sur-
veys. Generally, the imperviousness measuring the
quantity of impervious surface area can be determined
from the regional statistics of LULC (Tuomela et al.,
2018). Therefore, we firstly use an image classification
algorithm, with the assistance of urban planning data,
to interpret remote sensing images for extracting
LULC of the study area. To better understand the
urbanization effect of the study area, we also analyze
the characteristics of LULC change based on the clas-
sification results. The Non-linear reservoir model

integrated into SWMM is applied to simulate runoff
with the aid of hydrological data for calibration and
verification. According to LIDs data and urban plan-
ning data, the coupled LIDs system consisting of rain
tank, rain garden and permeable paving has been
proposed and designed, which is conceptualized in
three scenarios. These scenarios are led into the recti-
fied SWMM for modeling and evaluating the perfor-
mance of their runoff regulating, respectively. As
mentioned above, the crucial procedures of the
research involve LULC classification, runoff simula-
tion and scenarios design and modeling of the coupled
LIDs. Therefore, in the following sections, we sum-
marized the relevant algorithms, models and processes
employed in the study.

Neural network model

An neural network model is a non-linear model with
one or more layers of neuron structure developed on
the basis of the neuron model (Fu et al., 2018). It was
inspired by the biological model of brain neurons and
was first applied to machine learning and computer
science (Ghorbanzadeh et al., 2019). In the past few

Figure 1. Location map of the study area in Jinan of China.

Table 1. Data used in the study.
Data Content Sources

Meteorological data Observed precipitation and evaporation records Jinan Hydrological Bureau
Hydrological data Observed runoff records, measured river geometry Jinan Hydrological Bureau; Hydrological Yearbook of China
Soil data Soil physical parameters Food and Agriculture Organization; Field survey
Terrain data Elevation (DEM) German Aerospace Center
Remote sensing data Landsat images, Google Earth images United States Geological Survey; Google Earth
Urban planning data The texts and maps of master planning of Jinan etc. Jinan Planning Bureau
LIDs data Designation standards etc. Jinan Planning Bureau; Handbook of Sponge City
GIS data Administrative maps, thematic maps etc. National Geomatics Center of

China
Other data Socio-economic data etc. Statistical Yearbook of China
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years, neural network model has evolved into a variety
of architectures, such as MLP, DBF, CNN, and RNN
(Shen, 2018). As the neurons, layers, connection struc-
tures and relevant functions of these architectures stay
diverse, the components can still be divided into three
parts: the input layer, the hidden layer and the output
layer. Each layer contains several neurons, for
instance, the input layer is generally composed of
neurons describing the features of the research objects,
and neurons made up the hidden layer are responsible
for operating non-linear transformation of the input
features, and the output layer receives the non-linear
transformation results and performs the related clas-
sification. The number of neurons in each layer
depends on the research objective.

Currently, neural network models for remote sen-
sing image classification integrated into remote sensing
applications generally consist of one or two hidden
layers, and the architecture is shown in Figure 3.
Neurons of the input layer refer to spectral bands that
characterize the spectral feature of various objects. To
assume the spectral feature vector as X, then the input
layer could be expressed like:X = (x1: band 1, x2: band 2,
x3: band 3, . . ., xn: band n). These low-level features are
accumulated based on initial weights, then dropped into

the non-linear activation function such as sigmoid, tanh
or ReLU (Eckle & Schmidt-Hieber, 2018) to acquire
advanced features. To assume the output vector as Y,
the output layer could be presented as: Y = (y1: class 1,
y2: class 2, y3: class 3, . . ., ym: class m). To notate the
model parameters vectors as W and B, activation func-
tion as g, the mathematical description is generalized in
followed Equation (1).

Y ¼ g W � X þ Bð Þ (1)

These parameters can be automatically estimated
based on a training set and relevant functions or algo-
rithms such as the objective function, the optimization
function and the back propagation algorithm (Ma
et al., 2019). In our research, the used spectral bands
focus on visible and near-infrared bands in the input
layer, and the classified land cover of the output layer
includes urban area and non-urban area. The training
set or samples were manually obtained from Google
Earth images and urban planning data.

Non-linear reservoir model

The non-linear reservoir model (Oosterbaan, 2019) in
SWMM conceptualizes the subcatchment as a rectangle

Figure 2. The technical route of the study.
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with homogeneous slope and width notated by S and
W and with only one single outlet as shown in Figure 4
(a). Figure 4(b) depicts the hydrological processes of the
subcatchment that the inflow mainly comes from pre-
cipitation and makes a loss through evaporation and
infiltration. The model assumes that the net rainfall can
be accumulated on the surface of the subcatchment with
a certain depth notated with d. To deduce the depression
storage notated with ds, the rest can be the runoff.
According to the conservation of mass, the depth change
of the subcatchment in unit time must be equal to the
variation of the outflow quantity as shown in Equation
(2). In addition, the model assumes the subcatchment
with certain width as a wide non-closed open channel, so
the Manning equation or function (Altenau et al., 2019)

can be combined with the above-mentioned equation.
Equation (3) shows the combined result.

q ¼ i� e� f � @d
@t

(2)

@d
@t

¼ i� e� f � K
n� As

�W �
ffiffiffi
S

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d � dsð Þ35

q

(3)

where S, W, d and ds have been explicated above, t, i, e,
f, q, K, n and As are unit time, rainfall rate, evaporation
rate, infiltration rate, runoff rate, unit conversion coef-
ficient, The Manning coefficient and the area of sub-
catchment, respectively.

In our research, the rainfall rate and evaporation
rate are from the observed records. The infiltration
rate is estimated using the Horton model (Al Maimuri,
2018) based on LULC and the physical parameters of
the soil in the study area. The Manning coefficient and
depression storage are also determined based on
LULC. The slope and area of the subcatchment are
calculated in ArcGIS based on a spatial analysis and
geometry statistics, respectively. The conceptualized
width of the subcatchment is estimated according to
the approach proposed in (Jain et al., 2015).

The coupled LIDs scenarios

The simulation of LIDs in SWMM is based on the
water quantity balance of the vertical layers concep-
tualized from the natural layers (Kim & Joo, 2018).
Three represented layers known as the surface layer,
the soil layer and the storage layer have been demon-
strated in Figure 5. The surface layer receives precipi-
tation or runoff generated by its adjacent objects such
as roofs, grass and roads, or other LIDs. In addition to
surface storage and infiltration to the soil layer or

Figure 3. Architecture of neural network model used in remote sensing image classification.

Figure 4. Conceptualized subcatchment and hydrological pro-
cesses of the non-linear reservoir model (source: US EPA).
US EPA).
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storage layer, the excess would enter the urban drai-
nage system or the adjacent area. The soil layer is
actually composed of natural or artificial soil to sup-
port plants growth and infiltration. Crushed rocks or
stones are filled in the storage layer for water deten-
tion. In addition, certain independent components or
layers rely on certain LIDs. Table 2 shows the required
layers (notation: “X”) and optional layers (notation:
“O”) of the frequently used LIDs in SWMM.

As mentioned in section one, current LIDs effec-
tiveness data generated from individual LIDs cannot
fulfil the extensional application in the larger scale any
more. Hence taking into account the water risks of the
study area and the individual LIDs characteristics
summarized in (Hao et al., 2019), we choose rain
tanks, rain gardens and permeable paving as the
basic elements of the coupled LIDs system. Four simu-
lation scenarios consisting of a base scenario and three
coupled scenarios have been designed in terms of the
runoff path and the runoff portion generated by the
impermeable surfaces. The proposed coupled LIDs
scenarios follow in Figure 6.

In the base scenario, the runoff generated on roofs,
grass or soil surfaces and pavements directly enters the
urban drainage system and then eventually converges in

the trunk river. As for three coupled LIDs scenarios,
scenario 1 assumes that 100% of the roof runoff first
enters the rain tanks. The overflowed (or dynamically
drained) portion runs into urban pipes since passing on
the grass or soil surfaces. Likewise, 50% of the pavement
runoff flows into the urban pipes while overflowed from
the rain gardens firstly, and the another 50% acted by
permeable paving also eventually enters the urban drai-
nage system. Scenario 2 assumes that 50% roof runoff
enters the urban drainage system after flowing through
the rain gardens. Fifty percent roof runoff enters the
rain tanks while the excess enters the urban drainage
system since flowing on the surfaces of the grass or soil.
One hundred percent pavement runoff enters the urban
drainage system after passing from the permeable pave-
ments. Scenario 3 assumes that 50% of roof runoff
firstly enters the rain gardens and then is drained to
the drainage system. Fifty percent of the roof runoff first
enters the rain tanks. The overflowed (or dynamically
drained) portion runs into urban pipes since passing on
the grass or soil surfaces. The rest process of scenario 3
is similar to the description above and the route in
Figure 6. Note that the runoff flowing in the urban
pipes eventually runs into the main stream.

Results and analysis

Land use and land cover

Figure 7 shows the classification results of land covers
in the key timing-nodes in the study area from 1979 to
2017. The detailed quantitative description of urban
area and non-urban area has been listed in Table 3.

The urbanization rate is one of the significant indica-
tors to evaluate urban development (M. Zhao et al.,
2019). According to the statistical yearbooks of Jinan,
the urbanization rates in the study area from 1979 to
2017 with the step of 10 years were 23.00%, 39.47%,
49.13%, 63.72% and 70.53%, respectively. The changes
of urbanization rates are consistent with the land cover
obtained by classifying, as shown in Figure 8. During the
first 10 years namely from 1979 to 1989, urban area
growth compared with other periods maintained the
maximum level, because the economy in Jinan was sig-
nificantly promoted by reforming and opening-up policy
of China. Since 1999, the urban area had kept increasing.
However, the growth rate started to fall off during 2009,
probably the local government had issued relevant laws,
regulations and policies to improve the unreasonable
growth mode, such as the leap of urban population
increase, the non-consistency of urbanization and infra-
structure construction, under the extension of the sus-
tainable development. In addition, the establishment and
implementation of the new countryside construction
during this period might also drive the results.
Meanwhile, the results also show that, in order to urba-
nization rate which depicts the state of urban

Figure 5. Conceptualized layers for LIDs simulation in SWMM
(source: US EPA).
US EPA).

Table 2. Required and optional layers of the frequently used
LIDs in SWMM. (source: US EPA).

LIDs Surface Pavement Soil Storage Drain
Drainage
Mat

Bioretention X X O
Rain garden X X
Green roof X X X
Permeable
paving

X X O X O

Infiltration
trench

X X O

Rain tank X X
Vegetative
swale

X
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development from the societal scale, LULC change on
the geographical level could also be employed to assess
the urban development by taking it as an effective indi-
cator. Based on the results of land cover classification and
urban planning data, land use maps in the study area
since 1979 were also interpreted as shown in Figure 9. As
the land use was only used for parameters estimation
such as imperviousness and theManning coefficient. We
do not provide an elaborate analysis here.

Analysis of runoff change

Based on DEM and the actual distribution of the
streams, the Huangtaiqiao watershed was divided into

15 subcatchments. In SWMM, the confluence of the
stream is treated as the outlet of the whole subcatch-
ment. The trunk stream is segmented into several links
by the outlet of the subcatchment. The outlet and link
can be represented using the junction object and con-
duit object of SWMM. In the study, we created 11
junctions and 11 conduits objects shown in Figure 10.

Imperviousness, meteorology and soil parameters
were input into the SWMM which simulated the total
runoff of the subcatchments and the outfall of the
whole watershed shown in Table 4. The variation
curves of water yield and urbanization rate in the
study area have been drawn in Figure 11. It can be
found that the runoff change keeps in accordance with
the urbanization rate. Taking into account the

Figure 6. Simulation scenarios proposed in the study.
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variability of subcatchments, in order to eliminate the
influence of various regional underlying surfaces,
a runoff coefficient that can characterize the capacity
of the rainfall-runoff conversion is applied to replace
the total runoff as the evaluation metric. Table 5 and

Figure 12 lists and shows the values and changes of
runoff coefficients in each subcatchment.

As shown in the forgoing figure, with the develop-
ment of Jinan, much more impervious surface areas
have been rapidly increased. Moreover, due to the
difference in local construction intensity, the growth
rate also presents variety. From 1979 to 2017, the
runoff coefficients in subcatchment S1, S2, S3, S4, S5,
S6, S8 and S14 kept continually increasing. The
increasing trend in S3 is not significant that indicating
low intensity of urban construction in this area. The
growth rate of runoff coefficient in subcatchment S4
shows the largest level during 2009 to 2017 compared
with the others’, which conversely proves the matched

Figure 7. Land cover classification of the study area in 1979, 1989, 1999, 2009 and 2017.

Table 3. Quantitative information of urban area and non-
urban area in the study area.
Date Urban area [km2] Non-urban area [km2] Urban area percent

1979 88.82 308.59 22%
1989 138.28 259.13 35%
1999 174.91 222.50 44%
2009 212.64 184.77 54%
2017 248.46 148.95 63%

Figure 8. Comparison between urbanization rate and land cover change rate.
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developed intensity and faster urban development.
The runoff coefficients of S7, S9, S10, S11, S12, S13
and S15 all present an increasing trend in the initial
phases and then tend to be stable in the later phases,
which probably on the one hand because they are

located in the urban center leading to higher urbani-
zation level in the beginning. On the other hand, it also
shows that the infrastructure construction there is
relatively complete since 1989. Note that the runoff
coefficients in S9, S10 and S15 present a declining

Figure 9. Land use classification of the study area in 1979, 1989, 1999, 2009, 2017.

Figure 10. Subcatchment and junction and conduit in the study area.

EUROPEAN JOURNAL OF REMOTE SENSING 9



trend from 2009 to 2017. According to the investiga-
tion results, the rivers in those areas and adjacent areas
were encountering heavy overflowing caused by the
blocking of several illegal constructions and shanty
cabins on the river, weakening the drainage capacity
compared with the designed one. Those covers had
been demolished later to restore the designed level. In
addition, with paying much focus on the sustainable
development, plenty of runoff regulation measures

and green space might also make effects on the results.
Figure 13 depicts the spatial variation of the runoff
coefficient in each subcatchment in 1979, 1989, 1999,
2009 and 2017. It can be found that the change direc-
tion presents a Z-like from the south to the north then
to the south again, which indirectly reflects the urban
development process in the past 30 years in Jinan.

Table 4. Simulated total runoff of the subcatchments and the whole watershed. (unit: million gal; 1 million
gal = 3.7854e+03 m3).
Subcatchment 1979 1989 1999 2009 2017

S1 1816.86 3634.22 4055.24 4936.31 6050.33
S2 6663.67 10,929.96 17,061.33 24,903.05 35,397.17
S3 1343.81 1764.48 1885.19 2077.1 2190.72
S4 814.82 2509.89 4258.44 5390.18 7154.39
S5 15,410.19 20,969.34 25,488.93 29,758.98 31,885.98
S6 1781.52 2496.24 3103.26 4554.51 4789.84
S7 1023.74 1237.22 1287.62 1288.84 1291.21
S8 3984.18 5807.47 7288.18 10,892.26 13,671.31
S9 1593.02 1627.73 1669.24 1669.24 1667.82
S10 5086.38 6342.07 6397.92 6397.54 6372.08
S11 8293.31 11,427.18 12,210.24 12,909.56 13,021.93
S12 3528.44 5283.69 5857.24 5917.89 5928.5
S13 3165.02 4277.61 4408.38 4474.5 4489.58
S14 4726.05 7356.74 10,216.65 12,240.23 12,866.25
S15 4999.04 6810.62 8474.48 8937.21 8796.22
O1 65,986.71 94,584.40 116,017.50 138,918.79 158,203.80

Figure 11. Comparison between urbanization rate and runoff change.

Table 5. Value of runoff coefficient calculated based on the
simulated total runoff.
Subcatchment 1979 1989 1999 2009 2017

S1 0.084 0.168 0.187 0.228 0.279
S2 0.052 0.086 0.134 0.195 0.277
S3 0.093 0.123 0.131 0.144 0.152
S4 0.057 0.176 0.299 0.378 0.502
S5 0.159 0.216 0.263 0.307 0.329
S6 0.113 0.158 0.196 0.288 0.303
S7 0.39 0.472 0.491 0.491 0.492
S8 0.109 0.159 0.199 0.298 0.374
S9 0.452 0.462 0.474 0.474 0.473
S10 0.482 0.601 0.606 0.606 0.603
S11 0.273 0.376 0.402 0.425 0.428
S12 0.278 0.417 0.462 0.467 0.467
S13 0.345 0.466 0.481 0.488 0.49
S14 0.132 0.205 0.284 0.341 0.358
S15 0.296 0.403 0.502 0.529 0.521

Figure 12. Runoff change in each subcatchment.
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Effectiveness of the coupled LIDs

According to the characteristics of runoff changes in
the study area, the coupled LIDs were deployed in the
subcatchments whose runoff coefficients are greater
than 0.4, as shown in Figure 14. Objects in SWMM
used for representing LIDs were also created to simu-
late runoff response based on the base scenario and
three coupled LIDs scenarios. We analyze and discuss
the results in the next paragraphs.

Tables 6 and 7 respectively list the reduction per-
centage of the total runoff and the peak runoff of each
subcatchment calculated in the base scenario and the
coupled LIDs scenarios. It can be demonstrated that
reduction quantity on the total runoff from the three
scenarios is larger than on the peak runoff nomatter in
the individual subcatchment or the whole watershed.
On the one hand, due to difference in regulation
capacity of individual LIDs for the total runoff and
peak runoff, the combination scheme responded an
accumulation effect. On the other hand, it might also
reveal that the effectiveness of the coupled LIDs for the
low-intensity runoff regulation is superior to the high-
intensity one. Besides, the decreased percentages both
on the total runoff and the peak runoff in the sub-
catchments are greater than in the whole watershed. It
might be because of a lack of LIDs in certain subcatch-
ments, which results in less comprehensive impacts on
the whole research area than on the subcatchments
deployed with LIDs. Probably, the capacity of the
coupled LIDs for regulating runoff could be weakened

with the increase of the spatial scale. By comparing the
decrease percentages of the total runoff and the peak
runoff generated from those scenarios, we find that
scenario 1 presents an improved effect on the control-
ling of the total runoff, while scenario 2 shows the best
controlling effect on the peak runoff. Figure 15 intui-
tively depicts the results mentioned above of the
coupled LIDs scenarios from the spatial scale.

We also estimated the costs of each proposed sce-
nario for reducing one cubic meter of the total runoff
based on the simulation results and the construction
and maintenance costs of the individual LIDs in
China. They are 14.23 yuan, 32.63 yuan, and 25.77
yuan for scenario 1, scenario 2 and scenario 3, respec-
tively. Note that the costs of each individual LIDs
depend on the local developing level.

Conclusion

As mentioned in previous sections, LIDs are initially
designed to regulate or control runoff and non-point
source pollution, belonging to the scope of urban
storm or flooding management. Due to landscape
values of certain LIDs and the new requirements that
coupling them into urban planning and ecosystem
protection in current urban development strategies,
much extensional application and understanding
have been carried out, such as the “Sponge City” in
China. However, along with the increasing interests in
the large area, the effectiveness data of LIDs from the

Figure 13. Spatial variation of the runoff coefficient in each subcatchment.
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micro-scale on-site tests or experiments based on the
conventional monitoring means would be not enough
because of those limitations demonstrated in the first
section of this paper. Therefore, to enrich the applica-
tion scale and surmount the limitations, we evaluated
the effectiveness of the coupled LIDs system from the
watershed scale with several mixed LULC based on

remote sensing image processing, scenario designa-
tion and SWMM simulation. The results show that
the controlling efficiency of the coupled LIDs for the
total runoff is superior for the peak runoff. The
coupled system of rain tanks, rain gardens and perme-
able paving presents better effect on subcatchments
compared with the whole watershed. Namely, with

Figure 14. The deployment of the coupled LIDs in Huangtaiqiao watershed.

Table 6. Reduction percentage of the total runoffwith the action of the coupled LIDs. (unit: million gal; 1 million gal = 3.7854e+03 m3).
Scenario 1 Scenario 2 Scenario 3

Subcatchment Base Total runoff Reduction percent Total runoff Reduction percent Total runoff Reduction percent

S4 7154.39 2607.89 63.55% 3169.52 55.70% 4234.35 40.81%
S7 1291.21 466.62 63.86% 551.47 57.29% 753.9 41.61%
S9 1667.82 577.05 65.40% 735.62 55.89% 972.46 41.69%
S10 6372.08 2653.48 58.36% 2771.96 56.50% 3844.14 39.67%
S11 13,021.93 3217.96 75.29% 4917.6 62.24% 7019.75 46.09%
S12 5928.5 1816.48 69.36% 2434.71 58.93% 3361.68 43.30%
S13 4489.58 1395.91 68.91% 1986.76 55.75% 2584.74 42.43%
S15 8796.22 3330.46 62.14% 3969.57 54.87% 5272.13 40.06%
O1 158,203.80 125,816.21 20.47% 130,352.97 17.60% 137,838.00 12.87%

Table 7. Reduction percentage of the peak runoff with the action of the coupled LIDs. (unit: ft3/s; 1ft3/s = 2.83168e-02 m3/s).
Scenario 1 Scenario 2 Scenario 3

Subcatchment Base Peak runoff Reduction percent Peak runoff Reduction percent Peak runoff Reduction percent

S4 1224.79 1083.31 11.55% 921.73 24.74% 1093.9 10.69%
S7 228.60 211.39 7.53% 181.84 20.45% 214.2 6.30%
S9 296.18 277.87 6.18% 243.37 17.83% 281.65 4.91%
S10 1033.54 909.08 12.04% 763.13 26.16% 934.08 9.62%
S11 2583.98 2203.96 14.71% 1877.65 27.33% 2287.99 11.45%
S12 1283.15 1153.54 10.10% 998.42 22.19% 1172.49 8.62%
S13 964.46 893.26 7.38% 793.27 17.75% 903.18 6.35%
S15 1542.92 1399.12 9.32% 1227.74 20.43% 1410.18 8.60%
O1 21,268.42 21,146.60 0.57% 20,956.50 1.47% 21,154.44 0.54%
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the increase of the spatial scale, the effectiveness
appears to present a decreasing trend. In addition,
we estimated the costs of each proposed scenario,
and the economic benefit of scenario 1, scenario 3
and scenario 2 reduces in order, which could be used
for decision supporting of the urban designers and
urban planners. The results also prove that the
coupled LIDs are more effective than the individual
used LIDs. As the inheriting links, the characteristics
of LULC change and the runoff change in urban area
of Jinan were also analyzed and discussed, which
would be beneficial to the local urban planning and
on-going construction of the “Sponge City”. Besides,
our research indirectly verified the expected benefit of
hydrological features as a significant indicator to mea-
sure the urbanization level. As recommendation in the
end, for the general understanding of the coupled
LIDs effectiveness, more research focusing on the
type and the coupled structure of various LIDs should
be launched in the future.
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