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unclear. Originally, it was coined to put a group of stochastic search algo-
rithms that mimic natural evolution together. While some people would still
see it as a specific term devoted to this group of algorithms, including Ge-
netic Algorithms, Genetic Programming, Evolution Strategies, Evolutionary
Programming, and to a lesser extent Differential Evolution and Estimation
of Distribution Algorithms, many others would regard “Evolutionary Algo-
rithms” as a general term describing population-based search methods that
involve some form of randomness and selection. In this chapter, we re-visit
the fundamental question of “what is an Evolutionary Algorithm?” not only
from the traditional viewpoint but also the wider, more modern perspectives
relating it to other areas of Evolutionary Computation. To do so, apart from
discussing the main characteristics of this family of algorithms we also look
at Memetic Algorithms and the Swarm Intelligence algorithms. From our dis-
cussion, we see that establishing semantic borders between these algorithm
families is not always easy, nor necessarily useful. It is anticipated that they
will further converge as the research from these areas cross-fertilizes each
other.

1 Introduction

Almost any design or decision task encountered in business, industry, or pub-
lic services is, by its nature, an optimization problem. How can a ship be
designed for highest safety and mazimum cargo capacity at the same time?
How should the production in a factory be scheduled in order to satisfy all
customer requests as soon and timely as possible? How can multiple sclerosis
lesions on an MRI be identified with the best precision? ... Three completely
different questions and scenarios, three optimization problems as encountered
by practitioners every day.

From the management perspective, an optimization problem is a situation
which requires deciding for one choice from a set of possible alternatives
in order to reach a predefined/required benefit at minimal costs. From a
mathematical point of view, solving an optimization problem requires finding
an input value x* for which a so-called objective function f takes on the
smallest (or largest) possible value (while obeying to some restrictions on
the possible values of z*). In other words, every task that has the goal of
approaching certain configurations considered as optimal in the context of
pre-defined criteria can be viewed as an optimization problem.

Many optimization algorithms for solving complex real-world problems
nowadays are based on metaheuristic methods as opposed to traditional op-
erations research techniques. The reason is simple — this is due to the com-
plexity of the problems. Real-world problems are usually difficult to solve for
several reasons, some of which include:
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1. The number of possible solutions may be too large so that an exhaustive
search for the best answer becomes infeasible.

2. The objective function fmay be noisy or varies with time, thereby requiring
not just a single solution but an entire series of solutions.

3. The possible solutions are so heavily constrained that constructing even
one feasible answer is difficult, let alone searching for an optimum solution.

Naturally, this list could be extended to include many other possible obsta-
cles. For example, noise associated with the observations and measurements,
uncertainties about the given information, problems that have multiple con-
flicting objectives, just to mention a few. Moreover, computing the objective
values may take much time and thus, the feasible number of objective func-
tion invocations could be low. All these reasons are just some of the aspects
which can make an optimization problem difficult (see [2]; and also [37 ] for
an in-depth discussion on this topic).

It is worth noting that every time a problem is “solved”, in reality what
has been discovered is only the solution to a model of the problem — and all
models are simplification of the real world. When trying to solve the Trav-
elling Salesman Problem (TSP), for example, the problem itself is usually
modeled as a graph where the nodes correspond to cities and the edges are
annotated with costs representing, e.g., the distances between the cities. Pa-
rameters such as traffic, the weather, petrol prices and times of the day are
typically omitted.

In view of this, the general process of solving an optimization problem
hence consists of two separate steps: (1) creating a model of the problem,
and (2) using that model to generate a solution.

Problem = Model = Solution.

Again, the “solution” here is only a solution in terms of the model. If the
model has a high degree of fidelity, this “solution” is more likely to be mean-
ingful. In contrast, if the model has too many unfulfilled assumptions and
rough approximations, the solution may be meaningless, or worse. From this
perspective, there are at least two ways to proceed in solving real-world prob-
lems:

1. Trying to simplify the model so that conventional methods might return
better answers.

2. Keeping the model with all its complexities and using non-conventional
approaches to find a near-optimum solution.

So, the more difficult the problem is, the more appropriate it is to use a
metaheuristic method. Here, we see that it will anyway be difficult to obtain
precise solutions to a problem, since we have to approximate either the model
or the solution. A large volume of experimental evidence has shown that the
latter approach can often be used to practical advantages.

In recent years, we have seen the emergence of different types of meta-
heuristics. This gives rise to many new variants and concepts, making some
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of the fundamental views in the field no longer clear-cut. In this chapter,
our focus is to discuss what Evolutionary Algorithms (EAs) — one of the
most popular metaheuristic methods — are and how they differ from other
metaheuristics. The aim is not to give a definitive answer to the question
“What is an EA?” — it is almost impossible for anyone to do so. Instead,
we will systematically explore and discuss the traditional and modern views
of this topic. We start by describing what metaheuristics are, followed by
the core question of what EAs are. We then present some of the most well-
known EAs, such as Genetic Algorithms (GAs), Genetic Programming (GP),
Evolution Strategies (ES) and Evolutionary Programming (EP). After that,
we extend our discussion to Memetic Computing, taking a look at the rele-
vance/connection between EAs and Memetic Algorithms (MAs). Finally, we
also discuss the similarities and differences between EAs and the Swarm In-
telligence algorithms such as Particle Swarm Optimization (PSO) and Ant
Colony Optimization (ACO).

2 Metaheuristics

The field of metaheuristics has a rich history. During the second half of the
20th century, with the development of computational devices and demands of
industrial processes, the necessity to solve some optimization problems arose
despite the fact that there was not sufficient prior knowledge (hypotheses)
on the optimization problem for the application of an exact method. In fact,
in the majority of industrial cases, the problems are highly nonlinear, or
characterized by a noisy fitness, or without an explicit analytical expression
as the objective function might be the result of an experimental or simulation
process. In this context, the earliest metaheuristics have been designed. The
term metaheuristic, from the greek meta-euriskein which means beyond the
search, refers to a computational method which progressively attempts to
improve one or more candidate solutions while searching for the optimum.

Whenever an optimization problem is to be solved, we expect that there is
some kind of utility measure which defines how good a solution is or how high
the costs are. Usually this measure is given in the form of a mathematical
function f. Then, as stated before, the inputs for which the function takes on
the minimal value is sought. Sometimes, multiple such functions have to be
optimized simultaneously.

A metaheuristic is a method for solving a general class of optimization
problems. It combines utility measures in an abstract and hopefully efficient
manner, typically without utilizing deeper insights into their inner structure.
Metaheuristics do not require hypotheses on the optimization problem nor
any kind of prior knowledge on the objective function. The treatment of
objective functions as “black boxes” [4-{7] is the most prominent and attrac-
tive feature of metaheuristics. Metaheuristics obtain knowledge about the



Evolutionary Optimization 5

structure of an optimization problem by utilizing statistics obtained from
the possible solutions (i.e., candidate solutions) evaluated in the past. This
knowledge is used to construct new candidate solutions which are likely to
have a high utility.

Many different types of metaheuristics emerged during the last 30 years,
and the majority of them have been inspired by some aspects of the nature
(see [§] for a recent collection of nature-inspired algorithms). These include a
variety of Hill Climbing techniques (deterministic and stochastic), the Swarm
Intelligence algorithms (PSO and ACO), Artificial Immune Systems, Differ-
ential Evolution, Simulated Annealing, Tabu Search, Cultural Algorithms,
Iterated Local Search, Variable Neighborhood Search, and — of course — Evo-
lutionary and co-Evolutionary Algorithms.

Metaheuristics can be classified based on different criteria. For example,
some of them process a single solution (e.g., Simulated Annealing), whereas
some others process a set of solutions and are called population-based meth-
ods (e.g., EAs). Some metaheuristics are deterministic (e.g., Tabu Search),
others are stochastic (e.g., Simulated Annealing). Some generate complete
solutions by modifying complete solutions (e.g., EAs), while some others con-
struct new solutions at every iteration (e.g., ACO). Many of these metaheuris-
tics offer unique features, but even within a single approach, there are many
variants which incorporate different representation of solutions and different
modification or construction techniques for new solutions.

3 What are “Evolutionary Algorithms”?

So, what are EAs? Perhaps the best place to start in answering the question
is to note that there are at least two possible interpretations of the term
evolution. It is frequently used in a very general sense to describe something
that changes incrementally over time, such as the software requirements for
a payroll accounting system. The second meaning is its narrower use in biol-
ogy, where it describes an evolutionary system that changes from generation
to generation via reproductive variation and selection. It is this Darwinian
notion of evolutionary change that has been the core idea in EAs.

3.1 Principles Inspired by Nature

From a conventional point of view, an EA is an algorithm that simulates —
at some level of abstraction — a Darwinian evolutionary system. To be more
specific, a standard EA includes:

1. One or more populations of individuals competing for limited resources.
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2. These populations change dynamically due to the birth and death of indi-
viduals.

3. A notion of fitness which reflects the ability of an individual to survive
and reproduce.

4. A notion of variational reproduction: offspring closely resemble their par-
ents, but are not identical.

In a nutshell, the Darwinian principles of evolution suggest that, on aver-
age, species improve their fitness over generations (i.e., their capability of
adapting to the environment). A simulation of the evolution based on a set
of candidate solutions whose fitness is properly correlated to the objective
function to optimize will, on average, lead to an improvement of their fitness
and thus steer the simulated population towards the solution.

3.2 The Basic Cycle of EAs

In the following, we try to introduce a very simple EA consisting of a sin-
gle population of individuals exist in an environment that presents a time-
invariant notion of fitness. We will do this from a general perspective, com-
prising most of the conventional EAs.

Like in nature, an individual may have two different representations: the
data structure which is processed by the genetic search procedures and the
format in which it is assessed by the environment (and finally handed to
the human operator). Like in biology, in the context of EAs, the former
representation is referred to as genotype and the latter as phenotype. EAs
usually proceed in principle according to the scheme illustrated in
Its steps can be described as follows:

1. In the first generation, a population of n > 0 individuals is created. Usu-
ally, these individuals have random genotypes but sometimes, the initial
population is seeded with good candidate solutions either previously known
or created according to some other methods.

2. The genotypes, i.e., the points in the search space, are then translated
to phenotypes. In the case that search operations directly work on the
solution data structures, this genotype-phenotype mapping is the identity
mapping.

3. The values of the objective functions are then evaluated for each candidate
solution in the population. This evaluation may incorporate complicated
simulations and calculations.

4. With the objective functions, the utility of different features of the can-
didate solutions has been determined. If there is more than one objective
function, constraint, or other utility measure, then a scalar fitness value is
assigned to each of them.
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Figure 1: The basic cycle of EAs.

5. A subsequent selection process filters out the candidate solutions with poor
fitness and allows those with good fitness to enter the mating pool with a
higher probability.

6. In the reproduction phase, offspring are derived from the genotypes of the
selected individuals by applying the search operations (which are called
reproduction operations in the context of EAs). There are usually two dif-
ferent reproduction operations: mutation, which modifies one genotype,
and crossover, which combines two genotypes to a new one. Whether the
whole population is replaced by the offspring or whether they are inte-
grated into the population as well as which individuals to recombine with
each other depends on the applied population handling strategy.

7. If the termination criterion is met, the evolution stops here. Otherwise,
the evolutionary cycle continues with the next generation at point 2.

Of course, such an algorithm description is too abstract to be executed di-
rectly.

3.3 Do all EAs fit to the Basic Cycle?

According to our discussion so far, a simple answer to the question “What
are EAs?” would be that EAs are those based on the concepts gleaned from
natural evolution and which roughly adhere to the principles and the ba-
sic cycle introduced in the previous sections. From a high-level perspective,
however, the definition is not so clear.
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When solving a new challenging problem, often a new optimization method
is designed. It is necessary to specify how the individuals in the population
represent the problem solutions, how the fitness is calculated, how parents
are selected, how offspring are produced, and how individuals are selected for
removal from the population (i.e., to dieﬂ). Each of these decisions results
in an EA variant with different computational properties.

Will these design decisions result in an EA? Before you answer, let us
recall that the (1 + 1) EA does not require a population of solutions but
processes just one individual (and is comparing it with its only offspring).
Many “Evolutionary Algorithms” assume deterministic selection methods,
many “Evolutionary Algorithms” take advantage of smart initialization and
problem-specific operators. Some “Evolutionary Algorithms” have been ex-
tended with memory structures (e.g., when they operate in dynamic envi-
ronments) or by a parameter called temperature (to control mutation rates).
The list could go on.

While there is a well-researched set of “default” EAs which we will intro-
duce in the next section, for many real-world applications it is necessary to
derive new, specialized approaches. Examples for this can be found in |9-11]
as well as the collection in this book [12].

3.4 Conventional EAs

Historically, computer scientists and engineers had started to consider draw-
ing inspiration from evolutionary principles for solving optimization problems
as early as the 1950s (see [13, [14], and [15]). In the 1960s and 1970s, three
research lines were developed in parallel [16]: EP [17], ES [18], and GAs [19].
De Jong’s PhD thesis [20] further increased the interest in this field, and his
PhD student |Grefenstette, in turn, started the International Conference on
Genetic Algorithms and their Applications (ICGA) [21] in 1985. At the 1991
ICGA |22], the three original research streams came together, with Hans-Paul
Schwefel presenting the ES. At the same venue, Koza 23] introduced the new
concept of Standard GP and Zbigniew Michalewicz outlined the concepts of
different data structures which can undergo the evolutionary process in the
so-called Fwvolutionary Programs [24]. This was considerably the first time
all major areas of Evolutionary Computation were represented at once. As a
result, the Fvolutionary Computation Journal by MIT Press was established,
later followed by the IEEE Transactions on Evolutionary Computation. The
idea of unifying concepts, such as “Evolutionary Algorithms” (or the more
general idea of Evolutionary Computation |16]), was then born. Thereafter,

1 The “death” of an individual, candidate solution, or agent in terms of metaheuristic
optimization means that it is removed from the set of elements under investigation and
deleted from memory, possibly due to being replaced by a better element.
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the first IEEE Congress on Evolutionary Computation [25] was initiated in
1994.

From the 1990s onwards, many new ideas have been introduced. One of
the most important developments is the discovery that EAs are especially
suitable to solve problems with multiple, possibly conflicting optimization
criteria — the Multi-Objective Evolutionary Algorithms (MOEAs) [26, 27].
Today, the second, improved versions of NSGA |28, 129] and SPEA (30, 131]
may be the most popular members of this MOEA family.

There is also growing interest in co-evolutionary EAs, originally introduced
by Hillis [32] back in 1989. Potter and De Jong |33, 134] developed cooperative
co-evolution, which is now regarded as one of the key approaches for tack-
ling large-scale optimization problems because it provides a viable way to
decompose the problems and co-evolve solutions for the problem parts which
together make up a solution for the original task [35]. Other parallel develop-
ments include the works of Grefenstette [36], Deb and Goldberg |37] as well
as De Jong [|38] who considered the issues deception.

Books such as [24, 26, 39] and [40] have always played a major role in
opening the field of Evolutionary Computation to a wide audience, with the
Handbook of Evolutionary Computation [41] one of the most prominent ex-
amples.

3.4.1 Genetic Algorithms

GAs are the original prototype of EAs. Here, the genotypes of the search
space are strings of primitive elements (usually all of the same type) such as
bits, integers or real numbers. Because of the simple structure of the search
space of GAs, a genotype-phenotype mapping is often used to translate the
genotypes to candidate solutions [19, 39, 42, |43].

The single elements of the string genotypes in GAs are called genes. GAs
usually apply both the mutation and crossover operators. The mutation op-
erator modifies one or multiple genes whereas the crossover operator takes
two genotypes and combines them to form a new one, either by merging or
by exchanging the values of the genes. The most common reproduction op-
erations used in GAs, single-point mutation and single-point crossover, are

sketched in 139, l44].

3.4.2 Genetic Programming

The term Genetic Programming 23,42, |45] has two possible meanings. First,
it can be viewed as a set of EAs that breed programs, algorithms, and sim-
ilar constructs. Second, it is also often used to subsume EAs that have tree
data structures as genotypes. Tree-based GP, usually referred to as the Stan-
dard GP, is the most widespread GP variant both for historical reasons and
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Fig. 2.a: Single-gene mutation. Fig. 2.b: Single-point Crossover (SPX).

Figure 2: Mutation and Crossover in GAs.

because of its efficiency in many problem domains. Here, the genotypes are
tree data structures. Generally, a tree can represent a rule set ﬂﬂ, @, @], a
mathematical expression [23], a decision tree [47, 48], or even the blueprint
of an electrical circuit [49).

[ ]
> I
[ ]

/\
[ N

maximum depth

Fig. 3.a: Sub-tree replacement mutation.
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Fig. 3.b: Subtree exchange crossover.

Figure 3: Mutation and Recombination in GP.

Of course, mutation and crossover operators as used in GAs cannot be
applied to tree data structures. Instead, new operations have been devel-
oped, such as the sub-tree replacement mutation which replaces a sub-tree
of a genotype with a randomly created one and sub-tree exchange crossover
which exchanges two sub-trees between two parental genotypes, as sketched

in [Figure 3
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3.4.3 Evolution Strategies

ES, introduced by Rechenberg [18, 50, 51] and Schwefel [52, 153, [54], is a
heuristic optimization technique based on the ideas of adaptation and evo-
lution — a special form of EAs [18, 42, |50, 51, 55-58&]. The search space of
today’s ES usually consists of vectors from the R", but bit strings or integer
strings are common as well [56]. Mutation and selection are the primary re-
production operators and recombination is used less often in ES. Most often,
normal distributed random numbers are used for mutation. The parameter
of the mutation is the standard deviation of these random numbers. ES may
either:

1. maintain a single standard deviation parameter and use identical normal
distributions for generating the random numbers added to each element
of the solution vectors,

2. use a separate standard deviation (from a standard deviation vector) for
each element of the genotypes, i. e., create random numbers from different
normal distributions for mutations in order to facilitate different strengths
and resolutions of the decision variables, or

3. use a complete covariance matrix for creating random vectors distributed
in a hyperellipse and thus also taking into account binary interactions
between the elements of the solution vectors.

The standard deviations are governed by self-adaptation [59-61] and may
result from a stochastic analysis of the elements in the population [62-65].
They are often treated as endogenous strategy parameters which can directly
be stored in the individual records and evolve along with them [56].

3.4.4 Evolutionary Programming

EP is less precisely defined as the other conventional EAs. There is though
a semantic difference: while single individuals of a species are the biological
metaphor for candidate solutions in other EAs, in EP a candidate solution
is thought of as a species itself. Hence, mutation and selection are the only
operators used in EP and recombination is usually not applied. The selection
scheme utilized in EP is normally quite similar to the (x+ A\) method in ES.

EP was pioneered by Fogel [66] in his PhD thesis back in 1964. Fogel et al.
[17] experimented with the evolution of finite state machines as predictors
for data streams [67]. One of the most advanced EP algorithms for numerical
optimization today has been developed by Yao et al. [68].
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4 Memetic Computing

Memetic Computing is a growing area in computational intelligence closely
related to EAs. During the creation of the initial population in an EA, a
set of candidate solutions is generated, usually randomly within the decision
space. Other sampling systems that include a certain degree of determinism
for selecting the initial set of solutions are also widely used. The latter, usu-
ally known as intelligent initial sampling, is often considered as a memetic
component within an EA framework [69].

4.1 MAs as an Extension of EAs

The main idea in 1980s and 1990s was to propose EAs with superior per-
formance with respect to all the other algorithms present in the literature.
This approach is visible in many famous texts and papers published in those
years (see [Section 3.4). After the publication of the No Free Lunch Theorem
(NFLT) [70], however, researchers in the field have to dramatically change
their view about the subject. The NFLT mathematically proves that the
average performance of any pair of algorithms A and B across all possible
problems with finite search spaces is identical. Thus, if an algorithm performs
well on a certain class of problems, then it necessarily pays for that with de-
graded performance on other sets of problems. The concept that there is no
universal optimizer has a significant impact on the scientific communityﬂ In
light of increasing interest in general-purpose optimization algorithms, it has
become important to understand the relationship between the performance
of an algorithm A and a given optimization problem f. The problem hence
becomes the starting point for building up a suitable algorithm.

In this context, the term Memetic Algorithms was coined, representing an
efficient alternative (or maybe a modification) of EAs. This term was first in-
troduced in |72] with reference to an algorithm proposed in [73,|74] to indicate
an approach that integrates a local search operator within an evolutionary
structure. The metaphor of the term “memetic” was inspired by modern phi-
losophy, more specifically by the meme’s theory of Richard Dawkins [75]. The
meme is an idea, a “unit of cultural transmission”, the basic unit of knowl-
edge. Although in Dawkins’ studies the focus was to prove that evolution
was based on the individual choices rather than collective choices (the self-
ish gene), in Computer Science another concept has been taken and adapted
to computational problem-solving. By interpreting Dawkins’ philosophy, it
can be deduced that the collective culture is the result of an evolutionary
process where ideas (memes) interact and diffuse over individuals modifying

2 Note, however, that it is possible to find algorithms which are best over large sets of
(practically-relevant) problems; see |71].
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and getting enriched. Transferring this to the computing environment, differ-
ent search operators (e.g., evolutionary framework and local search) compete
and cooperate as different memes and process the solutions, by means of their
harmonic interaction, towards the detection of the global optimum.

A definition which characterizes the structural features of MAs has been
given in [69]. In general, an MA is a population-based hybrid optimization
algorithm composed of an evolutionary framework and a list of local search
algorithms activated within the generation cycle of the framework. In other
words, MAs can be considered as specific hybrid algorithms which combine
an EA framework and local search for enhancing the quality of some solutions
of the population during the EA generation cycle. The sense of MAs is to
compensate, for some specific problems, the limitations of EAs. As with all
other metaheuristics, the functioning of an EA is due to the proper balance
between exploration and exploitation. The generally optimal balance, in ac-
cordance with the NFLT, does not exist but it should be found for each fitness
landscape. In addition, MAs contain multiple search components which can
explore the fitness landscape from complementary perspectives and mitigate
the typical undesired effects of stagnation and premature convergence.

Obviously, in MAs the coordination between the EA framework and local
search operators can be hard to design. For this reason, a lot of research stud-
ies on MAs have been performed by paying great attention to the coordina-
tion logic of the various search operators. By updating the classification given
in [76], MAs can be subdivided as: 1) Adaptive Hyper-Heuristic, see e.g., [77—
79] and [80], where the coordination of the memes is performed by means
of heuristic rules; 2) Self-Adaptive and Co-Evolutionary, see e.g., |81, 182]
and [83], where the memes, either directly encoded within the candidate so-
lutions or evolving in parallel to them, take part in the evolution and undergo
recombination and selection in order to select the most promising operators;
3) Meta-Lamarckian Learning, see e.g., [84-86] and [87], where the success
of the memes biases their activation probability, thus performing an on-line
algorithmic design which can flexibly adapt to various optimization prob-
lems; 4) Diversity-Adaptive, see e.g., |[88493] and |94], where a measure of
the diversity is used to select and activate the most appropriate memes. In
addition, it is worth to mention about the Baldwinian systems, i.e., those
MAs that do not modify the solutions after the employment of local search,
see [95] and [96]. The latter are basically EAs where the selection process is
influenced by the search potential of each solution.

4.2 Can all MAs be considered EAs?

Generally speaking, MAs are population-based algorithms that evolve so-
lutions under the same rules/logic as conventional EAs while additionally
applying local search. In this sense, if the local search algorithms are to be
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considered as special operators, e.g., a hill-climb is seen as a mutation, then
MAs can be considered as a subset of EAs. On the other hand, MAs can
be considered as EAs that allow plenty of unconventional operators. To this
end, MAs can be seen as an extension of EAs.

Regardless of the labeling, it is important to note that all these optimiza-
tion algorithms are de facto the combination of two kinds of operators, i. e.,
search and selection, respectively. In conventional EAs, the search is per-
formed by crossover and mutation operators, which are also known as vari-
ation operators, while the selection is included into the parent and survivor
selection phases. Similarly, the combination of these two kinds of operators
can be spotted within an MA by analyzing its evolutionary framework and
each of its local search components. In this context, the more modern (and at
the same time primitive) concept of Memetic Computing has been recently
defined in a structured and systematic way. Specifically, Memetic Computing
is a broad subject which studies complex and dynamic computing structures
composed of interacting operators (memes) whose evolution dynamics is in-
spired by the diffusion of ideas.

Research in evolutionary optimization has always been closely tied to self-
adaptation, i.e., the development of approaches which can adapt their pa-
rameters to the optimization problem at hand. An important research goal
in this area would thus be to develop an intelligent unit which can choose,
during the optimization run, the most suitable combination of operators for
a given problem. Since a high degree of flexibility is necessary for solving
a wide range of problems, Memetic Computing is strictly connected to the
concept of modularity and an evolutionary structure that can be seen as a
collection of interactive modules whose interaction, in an evolutionary sense,
leads to the generation of the solution of the problem.

Concerning the structure of Memetic Computing approaches, there are
two philosophies. On one hand, Memetic Computing can be seen as a broad
subject which includes various kinds of algorithms. In order to solve opti-
mization problems, a structure consisting of multiple operators, each of which
performing a simple action, must be composed. Depending on the underlying
algorithms used, a Memetic Computing approach may or may not be an EA
(or its extension).

On the other hand, Memetic Computing can be considered from a bottom-
up perspective. Here, the optimization algorithm would start as a blank slate
to which components are added one by one. One interesting stream of research
is the automatic design of algorithmic structures. Here, three aspects should
be considered: 1) the memes should be simple operators, 2) the role and
effect of each meme should be clearly understood so that this knowledge
can be encoded and used by the automated designer in a flexible way, and
3) the algorithmic structure should be built up from scratch by means of
the aforementioned bottom-up strategy which aims at including only the
necessary memes and the simplest possible coordination rules.



Evolutionary Optimization 15

5 Swarm Intelligence

Swarm Intelligence, another area closely related to EAs, is concerned with
the design of algorithms or distributed problem-solving devices inspired by
the collective behavior of social insects or animals. Two of the most popu-
lar Swarm Intelligence algorithms are PSO and ACO. Other representative
examples include those for routing in communication networks based on the
foraging behavior of bees [97], and those for dynamic task allocation inspired
by the behavior of wasp colonies [9§].

The natural role model of Particle Swarm Optimization, originally pro-
posed by [Eberhart and Kennedy [99-101], is the behavior of biological social
systems like flocks of birds or schools of fish. PSO simulates a swarm of par-
ticles (individuals) in an n-dimensional search space, where each particle has
its own position and velocity [102-104]. The velocity vector of an individual
determines in which direction the search will continue and if it has an explo-
rative (high velocity) or an exploitative (low velocity) character. This velocity
vector represents an endogenous parameter — while the endogenous informa-
tion in ES is used for an undirected mutation, the velocity in PSO is used to
perform a directed modification of the genotypes (particles’ positions).

ACO, developed by Dorigo et al. [105], is an optimization technique in-
spired by the capability of ant colonies to find short paths between encoun-
tered food sources and their ant hill [106, [107]. This capability is a result of
the collective behavior of locally interacting ants. Here, the ants communicate
indirectly via chemical pheromone trails which they deposit on the ground.
This behavior can be simulated as a multi-agent system using a pheromone
model in order to construct new solutions in each iteration.

In the following sections, we will take a closer look at PSO and ACO, and
discuss their similarities and differences with EAs.

5.1 Particle Swarm Optimization

In what we refer to as the Standard PSO (SPSO), whose code is freely avail-
able on the Particle Swarm Central http://www.particleswarm.info, there
is typically a unique swarm of agents, called particles, in which each particle
P; is defined as

P; = (pi,vi, b;) (1)

where p; is the position, v; the velocity (more precisely the displacement),
and b; the best position ever found so far by the particle. Each particle is
informed by a set NV = {P;} of other particles called “neighborhood”. The
metaphor is that each particle “moves”, and the process at each time step
can be described as follows:


http://www.particleswarm.info
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1. each particle asks its neighbors, and chooses the best one (the one that
has the best b;)

2. it computes a new velocity v} by taking into account v;, p;, b;; the precise
formula is not important here, as it differs from version to version of SPSO
(e.g., compare SPSO 2007 and SPSO 2011) — the most important key
feature is that it contains some randomness and that its general form is

’U; =a (’Ul) +b (pl) +c (bi) + kd (bj) (2)

3. each particle “moves”, by computing the new position as p} = p; + v}
/

4. if the new position is better, then b; is updated, by b} = p!

3

There also exists another possible, formally equivalent but more flexible, point
of view. That is, one may consider three kinds of agents:

1. position agents p;
2. velocity agents v;
3. memory agents m;

Here, m; is in fact the b; of the previous process description. Now, there
are three populations, P = {p;}, V = {v;}, and M = {m,}. Each v; has a
“neighbourhood” of informants, which is a subset of M, and the process at
each time step can be described as follows:

1. the velocity agent v; updates its components, thanks to the function a of

2. then it combines them with some information coming from p;, m;, and
from its best informant m;, thanks to the functions b, ¢, d, in order to
define a new velocity v} (note that the order of the operations may be
equivalently 2 then 1, as is commutative)

3. a new position agent p) is generated, by p, = p; + v}

4. if the new agent is better than m;, the agent m; “dies”, and is replaced
by a better one, by using the formula m} = p},

5. p; “dies”

Mathematically speaking, the behavior here is exactly the same as the pre-
viously described one, but as the metaphor is different, it is now easier to
answer some of the relevant questions we want to address in this chapter.

5.2 Is PSO an EA?

A classical definition of an EA, given in [Section 3] states that it uses mech-
anisms such as reproduction, mutation, recombination, and selection. Quite
often, it is also added that some of these mechanisms have to make use of
randomness. It is clear that randomness is used in all stochastic algorithms,
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including PSO, so we will not proceed on this point any further. In the fol-
lowing, let us consider, one by one, the four mechanisms of EAs — mutation,
recombination, reproduction and selection — from a PSO point of view.

In molecular biology and genetics, mutations are changes in a genomic
sequence. In a D-dimensional search space, a velocity agent can be written
v; = (vi1,- -+, v;,p). It is worth noting that, on a digital computer the search
space is necessarily finite and discrete (even if the number of possible v; j
values is huge). Therefore, v; can be seen as a “genomic sequence”. According
to point 1 in the algorithm description above, the velocity agent can be said
to be “mutated”. Here, however, the mutation rate is almost always equal
to 100% (all components are modified). Also, mutation occurs before the
reproduction.

Genetic recombination is a process by which a molecule of nucleic acid
is broken and then joined to a different one. Point 2 in the PSO algorithm
description can be seen as a recombination of the genomic sequences of three
agents.

Reproduction (or procreation) is the biological process by which new “off-
spring” individual organisms are produced from their “parents”. According
to point 3 of the PSO description, a part of the process can be symbolically
described by

(pi, vi) = p; (3)
which can be interpreted as procreation with two “parents”.

Natural selection is the process by which traits become more or less com-
mon in a population due to consistent effects upon the survival or repro-
duction of their bearers. We can see that point 4 of the PSO algorithm is
a selection mechanism: the agent m; may die or survive, according to its
“quality”. Also, it can be proved (see more comments about this in [10§])
that there is always convergence. It means that the m; agents (and also the
p; agents) become more and more similar. In the optimisation context, this
phenomenon is called stagnation, and is not very desirable. In other words,
there is a kind of selection, but it has to be carefully controlled for good
performance.

So, is PSO an EA or not? The answer to the question itself is not really
interesting. It is just a matter of classification. By studying the question,
however, a new point of view on PSO could be defined, which may suggest
some fruitful variants (not studied in detail here). For instance:

1. The “mutation” rate may be smaller than 100%. In that case, not all
velocity components are modified. In particular, if it is zero, there is no
“generation”, and, as the position agent “dies”, the swarm size decreases.

2. Instead of being informed by always the same memory agent m;, the ve-
locity agent v; may be informed by some others. The “combination” may
make use of more than two memory agents, or even all (for this case,
see [109]). Actually, we may also define a population £ of “link agents”.
The existence of a (4, j) agent means there is an information link between
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Figure 4: A schematic view of ACO algorithms.
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the velocity agent v; and the memory agent m;. It is even possible to de-
sign an algorithm that works by co-evolution of the four populations P,
V, M, and L.

3. The position agent may not die. In that case, and if the velocity agent is
not null, the swarm size increases.

.. and so on.

5.3 Ant Colony Optimization

Like EAs, ACO algorithms [110, [111] are bio-inspired techniques for opti-
mization. A schematic view of ACO algorithms is shown in They
are based on a so-called pheromone model, which is a set of numerical val-
ues that are associated to opportunely defined solution components. In the
case of the well-known TSP, for example, the edges of the underlying graph
are the solution components. The pheromone model is used to generate — at
each iteration — a fixed number of solutions to the considered problem. Again
considering the case of the TSP, edges with a high pheromone value have a
greater chance to be chosen during the solution construction process. In this
way, the pheromone model — together with the mechanism for constructing
solutions — implies a parameterized probability distribution over the search
space. In general, the ACO approach attempts to solve an optimization prob-
lem by iterating the following two steps:

1. candidate solutions are constructed in a probabilistic way by using the
pheromone model;

2. the candidate solutions are used to modify the pheromone values in a way
that is deemed to bias future sampling toward high quality solutions.
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In other words, the pheromone update aims to concentrate the search in
regions of the search space containing high quality solutions. In particular,
the reinforcement of solution components depending on the solution quality is
an important ingredient of ACO algorithms. It implicitly assumes that good
solutions consist of good solution components. To learn which components
contribute to good solutions can help assembling them into better solutions.

5.4 Is ACO an EA?

While there are some similarities between EAs and ACO algorithms, there
also exist some fundamental differences. Concerning the similarities, ACO
algorithms are — just like EAs — population-based techniques. At each itera-
tion a number of new solutions is generated. In both cases new solutions are
generated based on search experience. However, while most EAs store their
search experience in the explicit form of a population of solutions, ACO al-
gorithms store their search experience in the values of the pheromone model.
Accordingly, there are also differences in updating the stored information.
While standard EAs perform an explicit update of the population — that is,
at each iteration some solutions are replaced by new ones — ACO algorithms
use some of the generated solutions for making an update of the pheromone
values.

Despite the differences, ACO algorithms and certain types of EAs can
be studied under a common framework known as model-based search [112].
Apart from ACO algorithms, this framework also covers stochastic gradient
ascent, the cross-entropy method, and EAs that can be labeled as Estimation
of Distribution Algorithms (EDAs) [113]. According to [112], “in model-based
search algorithms, candidate solutions are generated using a parametrized
probabilistic model that is updated using the previously seen solutions in such
a way that the search will concentrate in the regions containing high quality
solutions.”

The development of EDAs was initiated by mainly two observations. The
first one concerns the fact that standard crossover operators were often ob-
served to destroy good building blocks, i.e., partial solutions that are present
in most, if not all, high quality solutions. The second observation is the one
of genetic drift, i.e., a loss of diversity in the population due to its finite size.
As a result of genetic drift, EAs may prematurely converge to sub-optimal
solutions. One of the earliest EDAs is Population-Based Incremental Learn-
ing (PBIL) [114], developed with the idea of removing the genetics from
the standard GA. In fact, for problems with independent decision variables,
PBIL using only the best solution of each iteration for the update is equiv-
alent to a specific version of ACO known as the hyper-cube framework with
iteration-best update [115].
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Summarizing, while ACO algorithms may be seen as model-based search
algorithms, just like some EAs, ACO algorithms should not be labeled as
“Evolutionary Algorithms”.

6 Concluding Remarks

In this chapter, we have discussed the term “Evolutionary Algorithms” from
various different perspectives. As seen in [Section 3}, there are at least two
ways to define EAs. Traditionally, “Evolutionary Algorithms” is considered
as a term identifying a set of algorithms (e.g., GAs, GP, ES and EP) which
work according to the same basic cycle. Today, even these terms became
mere names for large algorithm families which consist of many different sub-
algorithms. The justification for such a variety of algorithms has been pointed
out in [Section 4.1k the NFLT which signifies that there may be an algorithm
which is best for a certain family of optimization problems, but not for all
possible ones. The variety of “Evolutionary Algorithms” has led to the con-
troversy about what is an EA and what it is not.

One of the factors contributing to this situation is that there exist many
new metaheuristics that share the characteristic traits of EAs but differ signif-
icantly in their semantics. Hybrid EAs incorporating local search algorithms
and other Memetic Computing approaches, for instance, possess a different al-
gorithmic structure. EDAs are population-based randomized algorithms and
involve selection and possibly mutation — but are not related to any process
in nature.

Another possible factor is that researchers nowadays tend to pay more ef-
forts into defining common frameworks which can unite different algorithms,
such as the already mentioned work in [112] or the recent framework proposed
in |116] that unites both the traditional EAs and EDAs. Generally speaking,
metaheuristics can be viewed as the combination of components for search
and selection, i.e., a set of operations for generating one or more trial solu-
tions and/or a set of operations to perform the selection of the solution and
thus of the search directions.

Furthermore, the research communities working on particular algorithms
pursue a process of generalization and formalization during which more simi-
larities between formerly distinct approaches are discovered. These processes
make it easier to construct versatile algorithms and also provide the chance
of obtaining more generally applicable theoretical results.

Besides these reasons, there is the basic fact that researchers themselves
are the ones who decide the name of their algorithms. It may indeed be argued
whether a (1 4+ 1) ES is actually an EA or just a Hill Climbing method, or
whether those very first MAs were special EAs or not. Approaching this issue
from the opposite direction, it is indeed possible to develop algorithms which
improve a set of solutions with a process of choosing the best ones and slightly



Evolutionary Optimization 21

modifying them in an iterative way, e.g., by using unary and binary search
operations, without utilizing any inspiration from nature. Would the term
“Evolutionary Algorithm” appropriate for such an algorithm?

The meaning of the term is thus subject to interpretation, and we put
three other metaheuristics, the MA, PSO and ACO, into the context of this
controversy. The sections on PSO and ACO in particular symbolize very
well how different researchers may either tend to generalize an algorithm’s
definition to make it more compatible to the evolutionary framework or may
emphasize more on its individual features in favor of more distinct semantics.

A simple strategy to avoid ambiguity would be to use terms like Nature-
Inspired Algorithms or Ewvolutionary Computation Techniques for general
methods inspired by nature or evolution and to preserve the term “Evolu-
tionary Algorithm” for GAs, GP, ES, EP and, to a lesser extent, Differential
Evolution and EDAs.

Another idea would be to more strictly divide the theoretical algorithm
structure from its inspirational roots and history, i.e., to totally abandon
terms such as “genetics”, “evolutionary”, “mutation” or “crossover” from
the naming conventions. Of course, this would probably not happen since
these terms have already entered the folklore. However, more frequently using
words such as “unary search operation” instead of “mutation” or “candidate
solution” instead of “phenotype” in favor of a clearer ontology would lead
to more precise definitions, inspire more rigorous analyses, and may reduce
the quack aura sometimes wrongly attributed by industrial engineers to the
so-called Evolutionary Computation techniques.

Yet, it is likely that “Evolutionary Algorithms” would suffer the same fate
as the term “agent” and blur into a state of, on one hand, almost universal
applicability and, on the other hand, lesser semantic value. Then again, this
does not necessarily need to be bad — since it may open the door for even
more cross-discipline interaction and cross-fertilization of ideas, as can be
observed in the agent community too during the past 20 years.
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