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Abstract—The paper considers the Common Due-Window
(CDW) problem where a single machine processes a certain num-
ber of jobs against a common due-window. Each job possesses
different processing times but different and asymmetric earliness
and tardiness penalties. The objective of the problem is to find
the processing sequence of jobs, their completion times and the
position of the given due-window to minimize the total penalty
incurred due to tardiness and earliness of the jobs. This work
presents exact polynomial algorithms for optimizing a given job
sequence for a single machine with the run-time complexity of
O(n?), where n is the number of jobs. We also provide an
O(n) algorithm for optimizing the CDW with unit processing
times. The algorithms take a sequence consisting of all the jobs
(Jiyi = 1,2,...,n) as input and return the optimal completion
times, which offers the minimum possible total penalty for the
sequence. Furthermore, we implement our polynomial algorithms
in conjunction with Simulated Annealing (SA) to obtain the best
processing sequence. We compare our results with that of Biskup
and Feldmann [2] for different due-window lengths.

This is a preview version of the paper [1] (see page 10 for the
reference). Read the full piece in the proceedings.

I. INTRODUCTION

The Common Due-Window (CDW) scheduling problem
involves sequencing and scheduling of jobs over machine(s)
against a given common due-window. The objective is to find
the position of the due-window of a given length and the
job sequence to minimize the total tardiness and earliness
penalties. Each job possesses a processing time and different
penalties per unit time in case the job is completed before
or later than the due-window. The jobs which are completed
between or at the due-window are called straddle jobs and
do not incur any penalty. Similar to the Common Due-Date
(CDD) problem, the CDW also occurs in the supply chain
management industry to reduce the earliness and tardiness of
the goods produced.

Common due-date problems have been studied extensively
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during the last 30 years with several variants and special
cases [3], [4], [5], [6], [7], [8]. CDW is an extension of the
CDD with the presence of a common due-window instead
of a common due-date. However, several important similar
properties hold for both the problems. In 1994, Kridmer and Lee
studied the due-window scheduling for the parallel machine
case and presented three properties for the CDW [9].

Property 1. There exists an optimal schedule without machine
idle time between the first and the last job.

Proof: Refer to [9], [10]. |

Property 2. In any optimal schedule, jobs completed before d;
(the left due-date) are sequenced in the reverse SPT order, and
the jobs which start after d,. (the right due-date) are sequenced
in the SPT order.

Proof: Refer to [9], [10]. |

Property 3. Let C; be the completion time of job i, then there
exists an optimal schedule where one of the jobs finishes at d;
or at d,, i.e.,

a) C; = d; for some 1, or

b) C; = d, for some i .

Proof: Refer to [9], [10]. |

Krimer and Lee also showed that the CDW with unit
weight case is also NP-complete and provided a dynamic
programming algorithm for the two machine case [9]. Liman et
al. considered the CDW with constant earliness/tardiness
penalties and proposed an O(nlogn) algorithm to minimize
the weighted sum of earliness, tardiness and due-window
location [11]. The same authors also studied the CDW on
a single machine with controllable processing times with
constant penalties for earliness, tardiness and window location,
and different penalties for compression of job processing



times. They showed that the problem can be formulated as an
assignment problem and can be solved using the well-known
algorithms [12].

In 2002, Chen and Lee studied the CDW on parallel
machines and solved the problem using a Branch and Bound
algorithm and showed that the problem can be solved up to
40 jobs on any number of machines [13] in a reasonable time.
In 2005, Biskup and Feldmann dealt with the general case
of the CDW problem and approached it with three different
metaheuristic algorithms, namely, evolutionary strategy, simu-
lated annealing and threshold accepting. They also validated
their approaches on 250 benchmark instances up to 200
jobs [2]. Wan studied the common due-window problem with
controllable processing times with constant earliness/tardiness
penalties and distinct compression costs, and discussed some
properties of the optimal solution along with a polynomial
algorithm for the solving the problem in 2007 [14]. Zhao et
al. studied the CDW with constant earliness/tardiness penalties
and window location penalty, and proposed polynomial time
approximation schemes [15].

In 2010, Yeung et al. formulated a supply chain scheduling
control problem involving single supplier and manufacturer
and multiple retailers. They formulated the problem as a
two machine CDW and presented a pseudo-polynomial al-
gorithm to solve the problem optimally [16]. Cheng et al.
considered the common due-window assignment problem with
time-dependent deteriorating jobs and a deteriorating main-
tenance activity. They proposed a polynomial algorithm for
the problem with linear deterioration penalties and its special
cases [17]. Gerstl and Mosheiov studied the due-window as-
signment problem with unit-time jobs and proposed an O(n?)
algorithm for solving the problem [18].

Yin et al. considered the batch delivery single-machine
scheduling problem with assignable common due-window with
constant penalties and proposed an O(n®) dynamic program-
ming algorithm under an assumption on the relationship among
the cost parameters [19]. In 2013, Janiak et al. presented a sur-
vey paper on the common due-window assignment scheduling
problem and discussed more than 30 different variations of the
problem [20]. Again in 2013, Janiak et al. studied the CDW
assignment problem on parallel machines to minimize the
earliness/tardiness penalties along with the penalties associated
with the location and size of the due-window [21].

In this paper, we consider the single machine case for the
CDW problem with asymmetric penalties for both the general
and the unit-time job cases. We make a theoretical study of
the CDW problem and present an O(n?) and O(n) polynomial
exact algorithms to optimize a given job sequence on a single
machine for the general and unit-time job cases, respectively.

II. PROBLEM FORMULATION

In this section, we give the mathematical notation of the
common due-window problem based on [2]. We also define
some new parameters which are later used in the presented
algorithms in the next section.

Let )
n = the total number of jobs,
d; = the left common due-date,
d. = the right common due-date,

the common due-window length, d = d, — dj,
the processing time of job ¢, 71 =1,2,...,n,

= a

E; = the earliness of job ¢,

T; = the tardiness of job i,

C; = the completion time of job i,

W; = the straddle jobs, i.e. if d; < C; < d,, Vi,
a; = the earliness penalty per unit time for job ¢,
B; = the tardiness penalty per unit time for job i.

We can deﬁne E; and T; mathematically as

E; = max{0,d; — C;}
T; = max{0,C; — d,.}

The objective of the problem is to schedule the jobs against
the due-window to minimize the total penalty incurred by the
earliness and tardiness of the jobs.

minZ{ai "B+ B; - Ti} . 1)

i=1

Before stating the algorithm we first introduce a new vector
DT; =C;—dyand SD; =C; —d,,i=1,2,...,n. DT; and
SD; are just the algebraic deviation of the completion time of
any job ¢ from the left and the right due-date, respectively.

Definition 1. Let PL be a vector of length n where element
of PL (PL;) is the effective penalty possessed by any job i
such that

—Qy, lfD/sz < 0
PL;=<8:;, ifSDi>0 ()
0, otherwise .

We also define two new vectors, D and S, to express the
objective function mentioned in Equation (1) in a compact

form. D; and S; are defined for all 4,7 = 1,2,...,n such that
DT;, it DT; <0

Di_{o, it DT, >0, )
0, if SD; <0

Si= {SDZ-, if SD; >0. @

With the above definitions we can now express the objec-
tive function stated by Equation (1) as min(Sol), where

Sol = {(Di+S:) - PLi} . (5)

We now present and prove an important property for the
Common Due-Date problem. Later on, we extend this property
for the Common Due Window problem

III. NOVEL PROPERTY FOR THE COMMON DUE-WINDOW
DATE

Theorem 1. [f the optimal due-date position in any given job
sequence of the CDD lies between C,._1 and C, i.e., Cr_1 <
d < Cy, then the following relations hold for the two cases
Case 1: If C,._1 < d < C,

i) Z Bzﬁzaz,k—rr—i—l

1=k+1 =1



Case 2: If C,. = d

n

k
i) S B <Y i, k=rr+1,...,n and
i1 i=1

k n
i) Ya< Y B, k=1,23,...,r—1.
i=1 i=k+1
Proof: We know from the property proved by [22] that
the optimal schedule of the CDD for any job sequence either
has t* = 0 or one of the job finishes at the due-date. Hence,
we consider these two cases separately.

Case 1: Optimal schedule with C,._; < d < C,.

Let us first consider the case when the optimal schedule for
any sequence lies strictly between C,._; and C,., i.e. Cr_1 <
d < C,, as shown in Figure 1. We know from [22] that such
a case can occur only when the first job starts at time ¢ = 0
and all the following jobs are processed without any machine
idle time. Let the difference between C)._; and d in Figure 1
be y such that y = d — C,_;. Let E; and T; be the earliness
and tardiness penalties of any job i, for this particular case,
respectively. Hence, the solution value Soly for the schedule
in Figure 1 can be written as

r—1 n
Sola=Y Ei-oi+Y TiB; . (6)
i=1 i=r
——
1 r—11 r n
t=0
Fig. 1. Assume that the first job starts at time ¢ = 0 and the due-date lies

between the completion times of two consecutive jobs, with y = d — Cr_1.

Now, the only possibility to get another schedule is to shift all
the jobs to the right such that one of the jobs finishes at the
due-date. Figure 2 shows the right shift of all the jobs by y
units. It is clear that after this right shift of all the jobs, job
r—1 offers no penalty. Hence, the earliness of the early jobs in
Figure 2 will be E; —y forv = 1,2,...,r — 2 and the tardiness
of the tardy jobs will be T; +y fori =r,r+1,...,n. We can
now write the solution value for Figure 2 as Sol/, where

r—2 n
Sol’ :Z(Ei—y)'ai‘i-Z(Ti"'y)'ﬂi . (N
i=1 =T
I E——— ——
\ 1 n

Fig. 2. Assume that the (» — 1)th job finishes at the due-date d in the optimal
schedule.

Since we already assumed that Figure 1 is the optimal sched-

ule, we have ,
Solg < Sol; . 3

Note that in Figure 1 the earliness of job r is y. Hence Soly
can be rewritten as

r—2 n
Sola=> Eiai+y a1+ Tifi. ©)
=1 i=r

Likewise, the terms in Sol/; can also be expanded as

r—2 r—2 n n
Soly =Y Ei-ai—Y y-ai+ Yy T-Bi+ > y-Bi. (10)
=1 i=1 i=r i=r

Substituting the value of Solg from Equation (9) and Sol)
from Equation (10) in Equation (8), we get

r—2 n
yar—1 < =Y yoit 3 yBi,
1 nz:l i=r (11)
Yya <Yy B
i=1 i=r

Since y > 0 due to case constraint, Equation (11) fetches us

r—1 n
dai<> B (12)
i=1 i=r

Clearly, if Equation 12 holds for any k& = r, then it will also
hold for any k < r, since «; and j3; are positive for all 4,
1 =1,2,...,n. This proves the first case of Theorem 1.

Case 2: Optimal schedule at C,. = d

In this case we assume that the optimal solution lies at the
completion time of some job r. Consider Figure 3, where
the optimal schedule occurs with the due-date position at the
completion time of job r, i.e. C, =d.

—
\ 1 n

C,=d

Fig. 3.
schedule.

Assume that the rth job finishes at the due-date d in the optimal

Let, E; and T; be the earliness and tardiness of any job 1,
respectively, for this particular case (Figure 3) and the solution
value for this case be Sol,, then using Equation (5) we have

r—1 n
Sol, => Ei-ai+ Y, Ti-Bi. (13)
i=1 i=r+1
N I I
1 n
t=0 CT+1 =d

Fig. 4. Schedule with the completion time of job r 4 1 lying at the due-date,
Cry1 =d.

Let the solution value for the case when all the jobs are shifted
to the left by p,1, i.e., the (r + 1)th job ends at the due-date
be Sol,11, see Figure 4. Then the earliness of jobs 1 to r — 1
will increase by the processing time of job r 4 1, compared
to Figure 3, since the due-date position shifts to right by the
same amount and job r will be early by p,;;. Besides, job



7 4+ 1 offers no penalty and the tardiness of the all the jobs
from 7+ 2 to n reduces by p,1. Hence, the objective function
value when the due-date is situated at C.,; becomes

r—1 n
Sol,11 = Z(Ei+pr+l)'ai+pr+l'ar+ Z (Ts —pr1)-Bi -
=1 P
(14)
| T ——T1 11—
\ 1 n

t=20 Cro1=d

Fig. 5. Schedule with the completion time of job  — 1 lying at the due-date,
Cr_1=d.

Likewise, when all the jobs are shifted to the right such that
the (r — 1)th job finishes at the due-date, in comparison to
Figure 3, then jobs 1 to » — 2 will have their earliness reduced
by p,, job r will be tardy by p,- and the all the jobs from r+1
to n will have their tardiness increased by p,.. Let the solution
value for Figure 5 where the (r — 1)th job ends at the due-date
be Sol,_1, then

r—2 n
Soly 1 =Y (Bi—py)ai+pefet . (Ti+p)Bi - (15)
i=1 i=r+1

Since we assume that Sol,. is the optimal value, we have,

Sol, < Soly41 (16)

and

Sol, < Sol,_1 . (17)

Notice that in the first case, when C, = d, the tardiness of
job r+1is p,41 and the earliness of job r — 1 is p,.. Hence,
rearranging the terms in Sol, we get,

r—1 n
Sol, =Y Ei-ci+pry1-Bri+ », Ti-Bi.  (18)
i=1 i=r+2
Splitting the earliness penalty of job r — 1, Sol, can also be
expressed as,

r—2 n
Sol, = Ei-ai+proara+ Y Ti-Bi. (19
i=1

1=r+1

Substituting the values of Sol, from Equation (18) and Sol, 1
from Equation (14) in Equation (16) we get,

Sol, < Soly41,
pry1-Bi < Dr41-0; and
i:;»l * i=1 * (20)
B < Y.
i=r+1 i=1

Likewise, substituting the values of Sol, from Equation (19)
and Sol,_, from Equation (15) in Equation (17),

Sol, < Sol,_1,
r—1 n
r O S r iand
&P 1 z b 1)

]
R
A

> 6

Since «; and B; are positive for all ¢, Equation (20) also
implies,

n k
E ﬁigzaia k:T',T'+1,...7’I’L7 (22)
i=1

i=k+1

i.e., if the sum of the tardiness penalties for the jobs (r + 1)
to n is less than the sum of the earliness penalties for the
jobs from 1 to r, then the same inequality also holds for any

k> r, since 8; >0 and o; > 0 for i =1, 2,...,n. Likewise,
Equation (21) implies that
k n
Zaig Z ﬁia k:1,2,...,7"—1, (23)
i=1 i=k+1

i.e., if the sum of the earliness penalties for the jobs 1 to (r—1)
is less than the sum of the tardiness penalties for the jobs from
r to n, then the same inequality also holds for any £ <r —1,
since 8; > 0 and a; > 0 for ¢ = 1,2,...,n. This proves the
second case of Theorem 1. [ ]

Since there is only one way that the due-date position may
be between the completion times of two consecutive jobs, we
first need to calculate the sum of penalties before and after the
due-date such that the first job starts at time zero and all the
jobs follow without any idle time. Thereafter, we shift all the
jobs towards right as long as the sum of the tardiness of jobs
finishing after the due-date is less than or equal to the some of
the earliness penalties of all the jobs which complete before
the due-date.

d; dr

HEEEE N NS DR

1 2 o+l a2 k1l k n2 -l n

Fig. 6. Schedule for the due-window case, with the left due-date (d;) situated
at C and the right due-date (d;) in between the completion times of jobs k
and (k+1).

However, it can be easily be proved that the relationship
between the sum of the earliness penalties and the tardiness
penalties proved in Theorem 1 for the CDD problem also hold
for the CDW problem.

= [ ]

1 2 r k n2n-l n

Fig. 7. Schedule for the CDW such that all the straddle jobs removed. The
problem now converts to the CDD with the due-date position at C'..

Theorem 2. If in the optimal schedule of a CDW instance,
jobs 1,2,....r — 1 are early and jobs k,k+1,...,n, k>r
n r—1
are tardy then, we have, > 5; < > «; for minimum possible

i=k i=1
value of k.

Proof: Using Property 3, let us assume without loss of
any generality that in the optimal schedule the left due-date
d; lies at the completion time of a job and the right due-date
d, lies between the completion times of two adjacent jobs.



Figure 6 depicts the optimal position of the due-window for
the given instance of n jobs. Jobs 1,2,...,r—1 are early and
jobs k,k+1,..., n are tardy, then we can discard the straddle
jobs (jobs which are within the due-window) and convert the
problem to a CDD problem as shown in Figure 7. The problem
now converts to the CDD with d; being the due-date. Hence,
the properties of Theorem 1 will also hold for the CDW on
the same lines as for the CDD. ]

IV. THE EXACT ALGORITHM

Using Theorem 2, we now present our exact polynomial
algorithms for the CDW with distinct and unit-time jobs cases.
As mentioned above in Properties 1, 2 and 3, we know that
the optimal schedule of the CDW has no idle time of the
machine between C; and C),. The idea of our algorithm is
based on the approaches mentioned in [23], [24]. We first
optimize any given sequence using our polynomial algorithm
and use a modified Simulated Annealing (SA) algorithm to
find the optimal/best processing sequence.

The jobs are initialized with the first job starting at time ¢ =
0 and are shifted to the right by min{—DT,,1, —SD,s2}, i.e.,
minimum deviation of the completion times from the right and
the left due-dates. This way, every shift ensure that one of the
jobs finishes at one of the due-dates and we do not skip over the
optimal position of the due-dates. Once the property mentioned
in Theorem 2 is satisfied, we have our optimal schedule and no
more shifting is required. We now present Algorithm 1 and 2
to optimize the CDW for the distinct and unit-processing times
of the jobs, for a given processing sequence.

V. PROOF OF OPTIMALITY

We now provide the optimality of Algorithm 1 and 2 with
respect to the solution value.

Theorem 3. Algorithm 1 and 2 are optimal for the given
sequence with respect to the objective function value.

Proof: We first schedule a given job sequence such that
the processing of the jobs starts at time ¢ = 0 and move the
jobs towards the right, i.e., increasing the overall tardiness
penalty and decreasing the overall earliness penalty, to find
the minimum value of k as mentioned in Theorem 2. We
increase the completion times by min{DT;, SD,} (DT and
SD are defined in Section II), where job ¢ possesses the least
earliness from d; and job j possesses the least earliness from
d;. The reason behind performing this operation is due to the
Property 2, i.e., either of d; or d, can lie at the completion time
of a job. After every right shift, the values of DT" and SD are
updated for the next iteration as long as the property mentioned
in Theorem 2 holds. For the case when the jobs are all of unit
processing time, then min{DT;, SD;} is always equal to one
and we do not need to update the two vectors but only sum up
the earliness and tardiness penalties to check for Theorem 2.

|

VI. ALGORITHM RUN-TIME COMPLEXITY

In this section we study and prove the run-time complexity
of Algorithms 1 and 2.

Algorithm 1: Exact algorithm for the general CDW for a
given job sequence with a run-time complexity of O(n?

NN R W N -

10
11
12
13

14

15
16
17
18
19

20

21
22
23
24
25

C(—Z peVi=1,2,...,n
Calculate DE,SD Vi

A+ DT; Vi

loop <1

while loop < n do

nl + arg max(DT; < 0)
1=1,2,....,n

n2 < argmax(SD; < 0)

1=1,2,....,n
T—mln{ DT,1,—SDy2}
if (7 # @) then
DIy =DT;+7 Vi
SD; =8D;+71Vi
i1 argmax(SD > 0)

if (pl < p_e) then

loop < loop + 1
Calculate D;, S;, PL; Vi
return Sol

Algorithm 2: Linear algorithm for a given sequence for
the CDW with unit-time job processing times.

N R W N -

RN B

17

18
19
20
21
22

Cie i ppVi=12...n
DT; + C;—d; Vi
SD;, +— C; —d, Vi

nl + arg max(DT; < 0)
1=1,2,....n

pe Z e
pl — Zz:nQ ﬁl
t<« 0
loop < 1
while loop < n do
n2<+n2-—1
pe < pe — Qi
pl <= pl + B2
nl<+nl-—1
if (pl < pe) then

| t < loop
loop < loop + 1
DT, =DT; +t Vi
SD; = SD; +1t Vi
Calculate D;, S;, PL; Vi
Sol Z?:l{(Di + Si) . PLZ'}
return Sol




TABLE 1.

RESULTS OBTAINED FOR SINGLE MACHINE COMMON DUE-WINDOW PROBLEM TILL 50 JOBS. FOR EACH JOB THERE ARE 10 DIFFERENT
INSTANCES EACH WITH A VALUE FOR k AND FOR EACH k THERE ARE 5 DIFFERENT DUE-WINDOWS.

10* 20 50
k h1 - h2 BR Algo 1+SA BR Algo 1+SA BR Algo 1+SA
0.1-0.2 1896 1896 4089 4089
0.1-03 1330 1330 2713 2713 28225 28225
1 02-0.5 540 540 1162 1162 12756 12754
03-04 919 919 2294 2294 21137 21115
03-0.5 587 587 1559 1559 14002 13971
0.1-0.2 947 947 8251 8251 29110 29054
0.1-03 539 539 5950 5950 20133 20133
2 02-0.5 191 191 2770 2770 8480 8468
03-04 432 432 4482 4482 15166 15152
03-0.5 265 265 2923 2923 9436 9434
0.1-0.2 1488 1488 5881 5881 33407 33180
0.1-03 1012 1012 4067 4067 23027 23021
3 02-0.5 398 398 1675 1675
03-04 760 760 3035 3035 17640 17535
03-0.5 462 462 1998 1998 11402 11401
0.1-0.2 2128 2128 8977 8977 25869 25860
0.1-03 1576 1576 6609 6609 17568 17544
4 02-0.5 712 712 3113 3113 7378 7376
03-04 1162 1162 4832 4830 13633 13619
03-0.5 740 740 3210 3210 8448 8446
0.1-0.2 1150 1150 4028 4028 31468 31456
0.1-03 755 755 2850 2850 21693 21689
5 02-0.5 284 284 1192 1192 8954 8948
03-04 542 542 2112 2112 15767 15747
03-0.5 339 339 1341 1341 9994 9965
0.1-0.2 1479 1479 6306 6306 33452 33452
0.1-03 1023 1023 4247 4247 23267 23261
6 02-05 439 439 1557 1557 10245 10221
03-04 779 779 3042 3042 17400 17392
03-0.5 500 500 1778 1778 11207 11200
0.1-02 2093 2093 10204 10204 42257 42234
0.1-03 1521 1521 7492 7492 29277 29274
7 02-05 717 717 3573 3573 12014 12000
03-04 1190 1190 5722 5722 20718 20715
03-0.5 809 809 3846 3846 12953 12935
0.1-0.2 1644 1644 3749 3742 42220 42218
0.1-03 1287 1287 2519 2519 28411 28403
8 02-05 670 670 991 990 11167 11154
03-04 952 952 1801 1801 21014 20965
03-0.5 680 680 1069 1069 12917 12913
0.1-0.2 1466 1466 3317 3317 33222 33222
0.1-03 1121 1121 2342 2342 23848 23840
9 02-05 492 492 1056 1056 10987 10985
03-04 772 772 1767 1767 17999 17972
03-0.5 513 513 1187 1187 11951 11935
0.1-02 1835 1835 4673 4673 31492 31492
0.1-03 1384 1384 3266 3266 22056 22040
10 02-05 691 691 1355 1355 9653 9653
03-04 1047 1047 2419 2419 16538 16510
03-0.5 717 717 1474 1474 10628 10597




TABLE II.  RESULTS OBTAINED FOR SINGLE MACHINE COMMON DUE-WINDOW PROBLEM TILL 50 JOBS, WHERE EVERY JOB HAS A UNIT PROCESSING
TIME. FOR EACH JOB THERE ARE 10 DIFFERENT INSTANCES EACH WITH A VALUE FOR k AND FOR EACH k THERE ARE 5 DIFFERENT DUE-WINDOWS.
n hl - h2 k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10

0.1-0.2 170 97 157 181 137 204 250 223 201 162
0.1-03 115 58 109 126 98 144 179 158 140 118
10 02-05 45 19 46 58 46 66 84 68 62 54
03-04 77 45 81 92 75 108 145 112 105 86
03-05 48 27 53 61 49 73 99 72 71 57
0.1-02 542 865 647 805 589 858 819 467 622 624
0.1-0.3 372 627 446 565 411 592 587 305 439 426
20 02-05 157 291 185 234 177 235 266 115 203 169
03-04 286 460 339 397 300 428 441 216 346 310
03-05 185 306 222 250 197 266 294 130 236 194
0.1-02 4641 3935 3769 3981 3341 3747 4327 4124 4100 4053
0.1-03 3290 2719 2539 2752 2251 2632 2956 2828 2822 2849
50 02-05 1462 1137 1027 1163 886 1171 1156 1151 1174 1267
03-04 2460 1978 1834 2075 1601 2006 2050 2077 2052 2180
03-05 1615 1242 1149 1313 994 1286 1260 1300 1327 1420

Lemma 1. The run-time complexities of Algorithm 1 and 2 are
O(n?) and O(n), respectively, where n is the total number of
Jjobs.

Proof: Tt can easily observed that the complexity of the
Algorithm 1 is dependent on the while loop in line 6. The
computations of nl,n2, DT, SD, iy and is are all of O(n) and
are computed n times, in the worst case. Hence, the complexity
of Algorithm 1 is O(n?). However, in Algorithm 2 we do not
need to compute these parameters after every iteration of the
while loop. All the computations inside both the while loops
are of O(n) and so are the calculations of nl,n2,SD, DT, PL
and Sol. Hence, the run-time complexity of Algorithm 2 is
O(n). [ |

VII. RESULTS

We now present our computational results for the two
cases of CDW, discussed in the paper. We use the CDW
benchmark instances provided by Biskup and Feldmann in [2]
and compare our results with theirs.

As described in [23], [24], [25], we use a modified
Simulated Annealing algorithm to generate job sequences
and Algorithm 1 and 2 to optimize each sequence to its
minimum penalty for the two cases. Our experiments over
all the instances suggest that an ensemble size of 4 4+ n/10
and the maximum number of iterations of 500 n, where n
is the number of jobs, work best for the provided instances
in general. The runtime for all the results is the time after
which the solutions mentioned in Table I are obtained on
average after 10 different replication. The initial temperature
is kept as twice the standard deviation of the energy at
infinite temperature: og,_ = \/(E?)r=0c — (E)2__ . We
estimate this quantity by randomly sampling the configuration
space [26]. An exponential schedule for cooling is adopted
with a cooling rate of 0.9999 with the Metropolis acceptance
criterion, min{1,exp((— A E)/T)} [26].

The modification from the standard SA is the increase
in the temperature after the annealing temperature becomes
less than 1 unit. In such a case, we increase the temper-
ature to 1/10th of the initial temperature. Apart from this,

we also incorporate elitism in our SA. Elitism has been
successfully adopted in evolutionary algorithms for several
complex optimization problems [27], [28]. Theoretical studies
have been made analysing speed-ups in parallel evolutionary
algorithms combinatorial optimization problems in [29], [30].
We observed that this concept works well for the CDD and
the Aircraft Landing Problem problem [23], [24]. As for the
perturbation rule, we first randomly select a certain number
of jobs in any job sequence and permute them randomly to
create a new sequence. The number of jobs selected for this
permutation is taken as 3 + |\/n/5], where n is the number
of jobs. For large instances the size of this permutation is
quite small, but we have observed that it works well with our
modified simulated annealing algorithm.

In Table I we present our results for the CDW where the
due-window size for any instance is calculated using the values
of hl and h2. A due-window has a left (d;) and right (d,)
due-date, where d; = |h1->"""  p;| and d, = |h2-> .| pi],
as described in [2]. For the first 50 instances with 10 jobs
we obtain the optimal solution for all the instances. For the
remaining 100 instances, we achieve better results for 43
instances than Biskup and Feldmann [2], equal results for 55
and for only two instances we do not reach the best known
solution value but are within a percentage gap of 0.537 and
0.342.

Table II shows our results for the same instances, but for
unit-time processing time of all the jobs. We use Algorithm 2
to optimize any job sequence and the same modified SA to
find the best processing sequence. Since, these instances have
not been studied for the unit-time processing times, we are
unable to compare our results with the literature. Table III
shows the run-time in seconds for all the instances for both
the cases. The run-times shown are the mean time for all the 10
different instances for each job, averaged over 10 replications
of our approach.

VIII. CONCLUSION AND FUTURE DIRECTION

In this paper we present a novel property for the problem
of scheduling against a common due-window for the general
and the unit processing time cases. We present a theoretical



TABLE III. AVERAGE RUN-TIME IN SECONDS FOR ALL THE 10
DIFFERENT INSTANCES FOR EACH JOB OVER 10 ITERATIONS OF THE
ALGORITHMS.

Number of Run-time (seconds)
Jobs Algo 1+SA Algo 2+SA
10 0.585 0.173
20 1.812 0.465
50 13.346 6.028

study for the CDW and its similarity to the CDD. Thereafter,
we present an O(n?) algorithm for a the distinct processing
time case and an O(n) algorithm for the unit processing time
case, to optimize a given job sequence and prove the run-
time complexity and its optimality with respect to the solution
value. We applied our algorithms to the benchmark instances
provided by Biskup and Feldmann [2]. In the future we
intend to implement metaheuristic approaches using graphics
processing units (GPUs) and provide speed-ups in runtime for
all the instances.
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