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Abstract—XCS – the eXtended Classifier System – combines
an evolutionary algorithm with reinforcement learning to evolve
a population of condition-action rules (classifiers). Typically,
population-based approaches are slow and increasing the prob-
lem size (in terms of the number of features/samples) poses a
real threat to the suitability of XCS for real-world applications.
Thus, reducing the execution time without losing accuracy is
highly desirable. Profiling of the execution of off-the-shelf XCS
implementations suggests that the rule matching process is
the most computational demanding step. A solution to this is
parallelization, i.e., using parallel processing techniques to speed
up the matching process (and thus the entire XCS learning
process). There are many ways to achieve that, using Graphic
Processing Units (GPUs) is one option. Originally, GPUs were
designed to conduct a sequence of graphics operations in a
massively parallel fashion. Today, GPUs can be used for all
sorts of general purpose calculations that are normally handled
by the CPU. In this paper, we propose a hybrid rule matching
process using both CPU and GPU simultaneously for a maximum
performance gain. Our experimental results indicate that this
approach does speed up the XCS learning process, and that the
GPU is the dominant powerful computing resource in the model.

This is a preview version of the conference paper [1] (see
page 10 for the reference). Read the full piece at
http://dx.doi.org/10.1109/CIDM.2013.6597250.

I. INTRODUCTION

Since the first publication of XCS [2], it has emerged

as one of the successful Michigan-style learning classifier

systems [3]. XCS is a successor of the original work by

Holland (CS-1) [4]. It is a Genetic-Based Machine Learning

(GBML) method, which maintains a population of condition-

action rules called classifiers. One part of the learning process

is matching corresponding rules to a given data input. The

matching process is a highly computational demanding stage.

It is a limiting factor to the scalability of XCS. For problems

with a large number of features, i.e., so-called high dimen-

sionality, XCS can get inconveniently slow.

An analytical investigation on the XCS components has

revealed that the matching process consumes 65% to 85%

of the overall execution time [3]. Hence, improving the per-

formance of this function has a great potential for decreasing

the overall execution time. While using CPU-integrated vector

instructions can reduce the matching time [3], XCS can also

benefit from using the Graphic Processing Unit (GPU). For

example, an enhanced Compute Unified Device Architecture

(CUDA)-based matching process can produce a speed-up by

factor 3 to 50 [5].

The CUDA library was introduced by NVIDIA, which

allows for running general CPU commands on a General-

Purpose Graphic Processor Unit (GPGPU) with a massive

parallel processing capability. Initially, graphic cards were

designed to render 3D graphics. Recent advances in GPU

technologies, however, also encourage developers to use the

massive parallel cores inside a GPU to run simple instructions

on a vast amount of data simultaneously. This idea pushed

graphic card manufacturers to provide developing tools and

libraries. With this technology, we can employ the high

performance computation capacity of a GPGPU. Moreover,

nowadays we can afford to have GPGPU-enabled graphic

cards in typical desktop computers or laptops. Even high

performance computing servers also provide GPU-enabled

nodes.

In the literature, however, there is a lack of related work

that explores the efficient use of both GPGPUs and CPUs

at the same time. Usually, the CPU remains idle while del-

egating processing to the GPU. Our work bridges this gap

by introducing a new hybrid GPGPU and CPU-based XCS

matching process. In this paper, we present two different

models. Both models are analyzed on various GPU/CPU load

configurations and a broad range of real-world data sets. The

first tested model is using a trivial parallelization architecture.

This model breaches the CUDA best practice guidelines and

thus does not reach a reasonable speed-up level. The second

model, on the other hand, is designed to follow the CUDA

guidelines and achieves speed-up with a factor up to 18. The

experimental results therefore show that a good parallelization

strategy has a great impact on the performance of a GPGPU-

enabled approach.

The rest of the paper is organized as follows. Section II

introduces general background information and related work.

The experimental design and two proposed hybrid CPU-

GPU based matching functions are presented in Section III.

Section IV explains the results of the experiments and finally
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Algorithm 1 High-level pseudocode of XCS

Require: Input data:σ, Population:[∆], MaxPopulationSize:Φ

repeat

σ ← env
[M ] ← GetMatchSet(σ,[∆])
[PA] ← CreatePredictionArray([M ])
act← SelectAnAction([PA])
[A] ← CreateActionSet([M ], act)
R← ExecutingActionOnENV (act)
[A] ← UpdateSet([A], R)
[∆] ← RuleDiscovery([A],[∆])
while SizeOf(∆) > Φ do

DeleteStochClassifier(∆)

end while

until terminating conditions are not met

the conclusion and future work are presented in Section V.

II. BACKGROUND

In this section, the base-line XCS model is briefly explained.

Then, the GPGPU programming style and the CUDA frame-

work are introduced. Lastly, we review studies that are related

to our work.

A. eXtended Classifier System

The eXtended Classifier System, or XCS [2] in short, is

built based on the original learning classifier system (CS-

1) introduced by Holland [4]. The XCS learning process is

an evolutionary process, which includes the following steps:

At each time step, the classifier system receives a problem

instance – this input is in the form of a vector of features –

which requires a decision (called action) to be performed next.

A match set [M ] is created consisting of rules (classifiers)

that can be “triggered” by the given data instance. A covering

operator is used to create new matching classifiers when [M ]

is empty. A prediction array [PA] is constructed for [M ] that

contains an estimation of the corresponding rewards for each

of the possible actions.

Based on the values in the prediction array, an action, act,
is selected. Those classifiers that support the predicted action

built the Action Set [A] (see Algorithm 1).

In response to act, the reinforcement mechanism is invoked

and the prediction (p), prediction error (ǫ), accuracy (k), and

fitness (F ) of the classifiers are updated. The corresponding

numerical reward is distributed to the rules accountable for it

so as to improve the estimates of the action values.

This matching process is the limiting factor for the scal-

ability of XCS. The overall execution time of the matching

process is of linear order of the feature size and population

size. Hence, for high-dimensional data sets (e.g., data sets with

tens of thousands of features) XCS can be inconveniently slow.
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Fig. 1. A typical modern GPU architecture.

1) Real Value Encoding: The condition of classifiers in

the freely available XCS implementations, such as XCS-C

by Butz [6], was described by a character based ternary

representation for binary inputs {0, 1, and # for Don’t Care}.
Later, Wilson et al. [7] revised the XCS and proposed XCSR

for getting real input values. In this model, each condition

covers a real interval predicate, defined by two real values

(Centre, Spread): a center point and a spread range around it to

describe a range of accepted values between Centre± Spread.

Although our proposed method is implemented as an XCSR

version, it can be easily extended to any other XCS-based

models or even, with a little more effort, to other GBMLs, as

the strategy we propose to parallelize the matching process is

independent of the rest of the learning algorithm, including

the encoding approach.

2) XCS Execution Profile: The profiling analysis of the

freely available XCS implementations (xcslib by Pier Luca

Lanzi and XCS-C by Martin Butz) suggests that 65%- 85%

of the overall XCS runtime are spent on the rule matching

phase [3]. That is, the process of finding whether any rule in

the population can match the input values or not.

In this paper, we use a modified version of Butz’ XCSR

implementation. In order to avoid data structure conversion

between CPU and GPU, we have replaced the linked-list based

population with an array-based population (see Section III-B

for more details). We then examine the execution profile

of our XCSR version. Our XCSR has been analyzed over

Algorithm 2 The XCS GetMatchSet() function

Require: Input data:σ, Population:∆, MaxPopulationSize:Φ
for ∀cl ∈ ∆ do

if match(cl,σ) then

M ← M + cl
end if

end for

if M = ∅ then

M ← createNewCoverMatch(σ)

end if



(a) after 1 iteration

(b) after 10 iterations

(c) after 100 iterations

(d) after 1000 iterations

Fig. 2. The execution profile of XCS (a) after 1 iteration, (b) after 10
iterations, (c) after 100 iterations, and (d) after 1000 iterations. These figures
support the statement that in a long run, GetMatchSet() and DeleteStockClas-
sifier() functions are the high computing demanding processes among XCS
components.

nine different real data sets with different characteristics (see

Section III-A).

The execution profile of our XCSR reveals that the functions

GetMatchSet() and DeleteStockClassifier() are the most com-

putational demanding processes in XCS. For large-scale data

sets, initially the preparation phase, which includes reading

the data sets and converting the data into appropriate data

structures, is spending considerable amount of time as well –

but it runs only once. Eventually, after a few iterations, Get-

MatchSet() is spending more than 70% of the XCS execution

time.

For small-size data sets most of the execution time (up

to 65%) is spent by the function DeleteClassifier() to select

a classifier and delete it in order to maintain the bounded

population size. This is another piece of evidence showing

that high-dimensional data sets (with thousands of features)

will force XCS to create large classifiers, which leads to a

highly expensive rule matching function. The GetMatchSet()

function has more potential for massive parallelization than

DeleteStockClassifier(). In this paper (as well as most of the

related work) the focus is on improving the matching process.

B. General-Purpose Graphic Processing Units

The underlying architecture of GPUs allows them to do

floating point calculation at least ten times faster than current

multi-core CPUs [5]. They provide massively parallel threads

to compute in a Single Instruction on Multiple Data (SIMD)

fashion. The sophisticated control logic unit and integrated

cache have been replaced by hundreds of additional Arithmetic

and Logic Units (ALUs). Therefore, once the data is loaded,

hundreds of independent threads can run simultaneously.

The threads are organized into Blocks and Grids. A Grid

contains multiple Blocks. Each Block is handled by a single

multiprocessor. The threads inside a Block share a common

memory called Shared Memory. A couple of very fast 32-bit

local Registers are also provided for each thread. Each GPU

has an integrated memory (Device Memory). The data should

be transferred from the main memory (Host Memory) to the

Device Memory.

1) CUDA Framework: NVIDIA introduced the Compute

Unified Device Architecture (CUDA) as an extension to C,

which allows developers to move intensive computing pro-

cesses to the GPGPU. The piece of codes run by GPU threads

are called Kernel Functions.

CUDA library provides instructions to allocate Device

Memory, copy data into Device Memory, define the Kernel

Functions, and retrieve the results back to the Host Memory.

To improve the memory latency operations between Host and

Device Memory, CUDA provides two additional memory al-

location modes: Page-locked Host Memory, also called Pinned

memory, and Zero-copy Host Memory modes. The former

prevents the operating system to page the allocated memory

to the hard disk, which allows the GPU to use Direct Memory

Access (DMA) to speed up the memory operations. In the

later mode, a new feature added to CUDA 2.2, the GPU

can physically access the Host Memory, which will prevent

memory latency operations.

In this work, we have used the Zero-copy Host Memory

mode, where both CPU and GPU can access the same physical

memory allocated for the XCS population. This is an essential

feature since, in our design, both CPU and GPU matching

functions are working on the same population.



2) Performance Issues: Understanding of CUDA and hard-

ware architecture is important when designing efficient kernel

functions. As we will see later, following the CUDA guidelines

would improve the performance of the system.

According to NVIDIA’s best practice guidelines [8], data

transfer between Host and Device Memory is expensive.

Therefore, it is essential to avoid frequent transferring data

between kernel and the main algorithm. Also, due to cumu-

lative data transfer overheads, it is better to run one large

transfer instead of many small ones. Another important issue

is the memory access pattern used by the kernel functions. It

is fastest when k GPU threads access k words in the memory,

all sequentially aligned. Strided and misaligned access will

effectively decrease the performance.

As mentioned in Section II-B, kernel functions can access

different types of memories, here ordered from the fastest

to the slowest: Register, Local Memory, Shared Memory,

Constant Memory, and Global Memory. Using registers leads

to zero latency between the kernel instructions and accessing

the global memory will cause a major delay.

The other major concern in designing kernel functions is

avoiding any flow control instructions, such as if, switch, for,

or while. Each flow control commands will cause branching

and divergence of the execution flow and will force the

GPU to turn the parallel execution plan into serial execution.

Therefore, sometimes one extra condition (maybe used to

detect early termination) can lead to a huge delay in the overall

execution.

C. Related Work

Pioneer work in the area of speeding up classifier systems

was conducted by Llorà and Sastry [3]. They proposed using

an efficient condition encoding and a fast rule matching

process based on CPU-implemented vector instruction set. The

standard character-based ternary condition alphabet, widely

used to construct classifiers for binary input values, does not

efficiently use the allocated memory. They used a compact

bit-set representation, which can save 75% of the allocated

memory; because a character is eight bits long while only

two bits are required for bit-set encoding. They also took the

advantage of hardware-integrated 32-bit vector instructions to

provide a small degree of parallelization. More precisely, four

binary conditions can be checked at the same time. Their

experimental results on the Multiplexer test bed problems

showed an up to 90 times faster matching process.

Lanzi and Loiacono [5] used the CUDA library to revise

the XCS matching function. Their experimental analysis of

the independent matching process suggested a speed-up by a

factor of 20 to 50 for the ternary-based XCRS matching func-

tion. Later, Loiacono [9] extended the work and implemented

computing a prediction array that is calculated on GPGPU

units by using the CUDA library. He reported a 2 to 32 times

speed-up of the new CUDA-based prediction array function.

This high speed-up level was achieved because the matching

process runtimes were compared independently to the other

functions in the learning system. Yet, the XCS execution

TABLE I
A SUMMARY OF THE DATA SETS USED IN OUR EXPERIMENTS. † DATA SETS

BELONG TO THE UCI REPOSITORY.

Data Set number of features number of samples
GE Prostate Cancer 12600 136
Arcene † 10000 200
GE Leukemia 7129 72
madelon † 500 2600
parkinson † 23 197
Hepatitis † 19 155
Pima † 8 768
Breast Cancer † 9 286

profile suggests that the matching process only occupies for

65% to 80% of the whole process [3]. Moreover, memory

operations latency between Device Memory and Host Memory

effectively increases the runtime.

In all these studies, only parts of the whole learning system

have been analyzed and reported. In recent work, Franco

et al. [10] enhanced BioHEL – a Pittsburgh-style learning

classifier system – fitness computation process by using the

CUDA library. They analyzed the proposed model indepen-

dently and incorporated it in the learning system and reported

a 52-58 times faster learning method. 11 data sets with

different characteristics were selected for their experiments.

In their model, two separate kernel functions are implemented

– one for conducting the matching process and the other for

gathering the results of the first kernel and making the final

conclusion in a parallel reduction manner.

III. DESIGN OF EXPERIMENTS

To establish the hybrid CPU/GPU based matching process

idea, we have designed a series of experiments on some real-

world data sets. Although only the XCS matching process has

been enhanced, we have not analyzed the matching process

separately but the whole of XCS. The values reported in the

result section reflect the mean execution time over 30 trials,

each time over 100 iterations, for every single data set.

A. Data Sets

In our experiments, data sets with different characteristics

have been selected: those with a small number of features

to more than 100000 and from a small number of samples

to a large number of samples (see Table I). The data sets

marked with † stem from the UCI repository [11], a very well-

known freely available machine learning data set repository.

We also include two Gene-Expression (GE) data sets: GE

Prostate Cancer [12] and GE Leukemia [13]. GE profiling

using DNA microarrays allows us to analyze multiple gene

markers simultaneously. Consequently, it is a convenient test

to identify abnormal biological processes such as cancer [14].

However, from our perspective, these data sets represent an im-

portant real-world application for analyzing high-dimensional

data sets.

B. CPU/GPU Hybrid Models

The original GetMatchSet() function of XCS has been pre-

sented in Algorithm 2. In our experiments, we developed two



Algorithm 3 CUDA-enabled GetMatchSet(): execute either of

matching models

Require: Input data:σ, Classifier:cl, Condition Length:τ ,

Population:∆, PopulationSize:ϕ, Maximum thread number

in a block:MAXThreads

cudaMemcpy(∆, cudaMemcpyHostToDevice)

cudaMemcpy(σ, cudaMemcpyHostToDevice)

if mode = 1 then

NBlocks ← ϕ/ MAXThreads

cuMatchBitModel1 ≪ NBlocks, MAXThreads ≫

(∆,σ)

else

dim3 dimBlock(MAXThreads,τ/ MAXThreads)

dim3 dimGrid(ϕ)

cuMatchBitModel2 ≪ dimGrid , dimBlock ≫ (∆,σ)

end if

different CUDA-enabled GetMatchSet() functions. To execute

a CUDA-enabled function, the data should be copied to the

Device Memory (GPU internal memory) and call a kernel

method. The execution parameters of a kernel method are

defined by the size of Grid and the size of each Block (as ≪

dimGrid, dimBlock ≫). The following Algorithm 3 prepares

data and executes one of our two models. The results should be

retrieved from the Device Memory to the Host Memory – even

for integrated GPUs that basically share a physical memory

with the CPU. From CUDA version 2.2 on, GPU threads have

the ability to read and write directly on the Host Memory via

the zero copy memory allocation mode. This feature eliminates

the data transfer latency and enables the GPU to access bigger-

sized data.

The matching process calculations are split between GPU

and CPU (based on the GPU load parameter). For example,

if the GPU load is 70%, then 70% of the macro classifiers

in the population are checked by the GPU and the remaining

30% are checked by the CPU. The list of matched classifiers

is combined at the end. The following subsections describe

our two different strategies to use GPGPU threads for finding

the matching rules.

1) Task-Oriented Parallelization: In the first model, we de-

signed a very traditional task-oriented parallelization approach,

which emphasizes on using multiple threads each for one task.

Each thread is designated to matching one rule (classifier)

to the input values. This model violates many CUDA best

practice guidelines. In other words, both the memory access

strategy and simple execution flow are poorly considered.

Both loops and condition statements create divergence, which

significantly increase the execution time.

2) Data-Oriented Parallelization: In the second model, we

used a guideline-conform way to design the kernel function,

this time based on a data parallelization approach. Each thread

is designated to check only one condition on a data value,

while each block is responsible to check one classifier and

investigate if that rule matches the input values (a row of

values) or not. Although the number of threads in a block

Algorithm 4 First CUDA-enabled GetMatchSet() kernel: Each

thread assigned to check matching of one classifier

Require: Input data:σ, Classifier:cl, Condition Length:τ ,

Population:∆, PopulationSize:ϕ
iThread ← blockIdx.x × blockDim.x + threadIdx.x

for iCond = 0 to τ do

if ∆[iThread].condition[iCond] 6= # then

if σ[iThread] ≤ ∆[iThread].condition[iCond].min OR
σ[iThread] ≥ ∆[iThread].condition[iCond].max then

return

end if

end if

iCond++

end for

[M ] ← [M ] + cl

is physically limited, fortunately, ordinary GPUs provide tens

of thousands physical threads.

We also used a reduction approach to eliminate loops by

using a shared flag. Initially, the flag is set; if any condition

in a classifier is violated, then the flag would be reset, which

means that the classifier is not matched with data anymore. If

all conditions matched with the input value, the flag retains

the initial value. At the end, by checking the flag, it becomes

clear if the rule (classifier) is matched or not. This technique

eliminates the need of collecting and summarizing the result

of all threads, which saves a lot of GPU execution time.

C. Hardware and Software

The proposed models in this paper were implemented on

the latest CUDA library (version 4.0), and were deployed and

tested on two major types of NVIDIA Graphic cards (GeForce

and Tesla) over five different hardware configurations, which

include two of different GPU architectures on VPAC1 Tango

1Victorian Partnership for Advanced Computing: vpac.org

Algorithm 5 Second CUDA-enabled GetMatchSet() kernel:

Each block for matching of one classifier and each thread

within that block is assigned to a condition of the related

classifier

Require: Input data:σ, Population:[∆]

shared matched← 1
iBlock← blockIdx.x
iThread← threadIdx.y × blockDim.x+ threadIdx.x
cond← ∆[iBlock].condition[iThread]

checkRes ← cond = # OR (cond.min ≥ σ[iThread] ≤
cond.max)

if checkRes = 0 then

matched ← 0
end if

if iThread = 0 AND checkRes = 1 then

M ←M + cl
end if



Fig. 3. XCS GetMatchSet() on CUDA.

Cluster server, GPU units on MASSIVE2 cluster server and two

desktop PCs equipped with low budget NVIDIA GPU cards:

1) Tango server with one Enrico-based node with a 2.27

GHz quad-core Nehalem server equipped with 12GB

RAM and two of the latest NVIDIA Fermi architecture

Tesla C2050.

2) Tango server with a small 4-node based GPU partition,

each one has a Tesla 1060, 1 quad-core processor with

4GB of RAM and a single 320GB hard drive.

3) Massive cluster server with 1008 CPU-cores and 168

GPUs. Each node has a 12-core CPU and 48 GB RAM.

GPU nodes are equipped with 2 NVIDIA M2070 GPUs

with 6GB GDDR5.

4) One desktop PC with Intel Core 2 Due Centrino 2.5 GHz,

4GB memory, and a NVIDIA GeForce 8400M GS.

5) One desktop PC with Intel Core i7 1.60 GHz, 6GB

memory, and a NVIDIA GeForce GT 330M GPU.

The operating system of the Tango and Massive servers is

CentOS 5.6, a Linux server edition. Both desktop PCs use

Ubuntu 10.04 LTS, a Linux desktop edition.

IV. RESULTS

The results of running two different GPGPU-CPU hybrid

models, realized into two different kernel functions, are shown

in Figures 5 and 6 respectively. In both figures, the speed-

ups of the corresponding model are presented based on the

GPU load. For example, in Figure 5, the first graph depicts

the fact that only in two cases the task-oriented model has

demonstrated close to 2X speed-up; in three cases, the model

has not only increased the execution time (negative speed-

up) but also that by increasing the GPU load the overall

performance degrades. This figure also suggests that the task-

oriented model performs poorly in high-dimensional data sets,

but for small-size data sets it could provide a competitive

learning system. Also, because the desktop hardware using

GeForce330M GS possesses a fairly powerful CPU, increasing

the GPU loads, in most cases, actually decreases the overall

speed. However, this trend is not followed by the server-based

devices, which pose fairly powerful GPUs and less powerful

2The Multi-modal Australian ScienceS Imaging and Visualization Environ-
ment: massive.org.au

Fig. 4. Legend for Figures 5 and 6.

CPUs. Overall, in this model shifting the computing load

from CPUs to GPUs does not effectively increase the speed

performance.

Figure 6 for the data-oriented parallelization model presents

more encouraging results. The graphs show an effective

GPU/CPU distribution trend. Basically, by increasing the GPU

load, in the majority of cases, the execution time decreases

significantly, hence a speed-up of up to 18 times could be

reached. It also appears that in all scenarios, a higher (90%)

GPU load would result in a faster learning system. However,

if we shift all the computation burden to GPU (100%), then

we will lose a significant portion of the leverage of using the

CUDA-enabled matching process.

The graphs also emphasize on the main aspect of the

GPGPU technology: Highly massive parallel computing ca-

pacity. It appears that in all cases, whether high-dimensional

data sets with tens of thousands of features or small-scale

data sets with few features, shifting the matching process to

the GPU will increase the speed. Still, the XCS matching

process would benefit most from using GPU computing for

high-dimensional data sets. The GPU’s massively parallel ar-

chitecture can easily absorb the increasing resource demands,

which is a threat for CPU-only models. However, for the data

sets with a large number of samples, our proposed models

do not provide significant improvements. For example, the

Madelon data set has 500 features and 2600 samples and the

data-oriented model can only slightly improve the matching

speed.

The second proposed model (based on a data parallelization

approach) was focused on using the massive parallel GPU

thread capacity to handle the thousands of features, and

iterative policy to check all samples. Therefore, it is safe to

conclude that this model does not provide any leverage for

large sample size data sets.

We should be aware that the graphs are in speed-up scale.

In other words, it is not visible that in Figure 6’s GE Prostate

case, the desktop PC with GeForce 8400M GS video card

could finish the experiments three times faster than cluster

servers. An interesting observation reveals that, although the

second PC with GeForce 330M GS has i7 cores CPU, the first

PC could beat the second one, when only the CPU was used

for the matching process, because it has a faster CPU. But,

gradually the second PC could fill the gap because it has a

more powerful GPGPU.

V. CONCLUSION AND FUTURE WORK

In this paper, we have proposed two hybrid GPGPU-CPU

based rule matching processes to improve XCS’s runtime
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(a) GE Prostate
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(c) GE6 Leukemia
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(e) Madelon
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(f) Hepatitis
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Fig. 5. Experimental results of the gained speed-up by implementing the first (task-oriented) model. The graphs show the increase/decrease in execution
time (in speed-up scale) by changing the GPU loads. Each sub-graph presents the results of using one data set for the five different platforms. For example,
Figure (a) depicts the experiments of GE prostate cancer (a high-dimensional data set). It shows that the model can get a very low level of speed-up when
run on two of the GPU servers, and on other hardware the model performs poorly. Figure (i) demonstrates a consistent and similar behavior of the model
over all platforms on the Breast Cancer (a very low-dimensional data set). Legend: see Figure 4.

especially for high-dimensional problems (having a huge

number of features). We employed the massively parallel

processing capability of a GPGPU to handle a massive number

of conditions simultaneously. The XCS execution profiles

recorded in this paper reveal that the matching function is a

highly demanding computing component of XCS. Therefore,

it has a great potential to improve the speed of XCS if we

can boost the speed of the matching process. We worked

on the original XCSR implementation and modified the Get-

MatchSet() function to be capable of using both CPU and

GPGPU as computing resources. Two different CUDA-based

rule matching functions are proposed, which can run part of

the matching process on a GPGPU and the rest on the CPU.

The second model, based on a data parallelization strategy,

has demonstrated outstanding acceleration in the matching

process (a speed-up to a factor of 18). This model also depicts

the advantage of using GPGPU-enabled models for high-

dimensional data sets. It follows the best practice guidelines

for CUDA utilization to the word. The first, a task-based

approach, on the other hand, does not fully consider these

best practices and actually performs much worse.

For future work, we plan to extend our model for data sets

with a large number of samples. Using multi-GPU nodes may

also improve the speed performance. Nowadays, GPU servers

have more than one GPU installed on each node. Therefore,

we can easily distribute the GPU loads between two or more

GPUs – CUDA supports multi-GPU development.
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Fig. 6. Experimental results of the gained speed-up by implementing the second (data-oriented) model (the one with the better design). The graphs show the
increase/decrease in execution time (in speed-up scale) by changing the GPU loads. Each sub-graph presents the results of using one data set on five different
platforms. For example, Figure (a) depicts the experiments of GE prostate cancer (a high-dimensional data set). It shows that the model can speed up the
learning process by increasing the GPU load, on all platforms. Figure (i) demonstrates a consistent and similar behavior of the model over all platforms on
the Breast Cancer (a very low-dimensional data set). Legend: see Figure 4.
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