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Optimization Algorithmsg

L1

L2

L4
ro

ad

L3

L5
the land with
5 locations

5 workshops and goods flows betwee them
which need to be assigned to locations

◦many real world questions are optimization problems e.g.:

–find the shortest path for a traveling salesman

–optimize factory locations to minimize material transportation

Algorithm Performanceg
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◦has two dimensions: solution quality and required runtime

◦ anytime algorithms maintain an approximate solution:

– at any time during

their run and

– iteratively improve

this guess

Experimental Procedureg

Research Questionsg

◦Which optimization algorithm is best for my problem?

◦An optimization algorithm can have parameters ...

which parameter settings make it work best?

◦For a problem, there can be many concrete instances

... which features make them hard or easy?

◦Are there groups of algorithms (or problem instances)

that behave differently? Why?

◦How can I share problem instances or generate them

reproducibly?
Example Result: plot of the Empirical (Cumulative) Distribute Function
(ECDF), i.e. the fraction of runs that have found the solution for their

respective problem at a given point in time.

Methodologyg

1. Select a set of benchmark instances.

2.Run experiments and collect data, f.e.:

FEs AT NT best obj. value

1 3 42.19 4075

2 5 70.32 3976

...

24099 11393 160237.03 2579

3.Draw diagrams, print tables.

4. Identify interesting information, find rea-

sons, go back to step 1.

Example Problemg

Problem Descriptiong

◦Maximum Satisfiability Problems (MAX-SAT):

–Given: Formula B in Boolean logic with n Boolean variables
~x = (x1, x2, ..., xn), which appear either directly or negated in k

”or”clauses, which are all combined with one ”and”

–MAX-SAT Goal: minimize objective function f (~x) = number of
clauses which are false.

– f (~x) = 0 =⇒ all clauses are true, SAT problem solved

Instance Generationg

◦ supports a common format

–different data types (columns)

–multiple data entries (rows)

–dependencies

◦uses a blueprint for the generation

–human-readable

– re-usable

– reproducible results

–generic and easy to extend

Listing 1: Max-SAT Example Configuration based on the CNF Standard
{ ...

"separator": " ",

"comment_prefix": "c",

"alternative_header": "p cnf 4 100",

"attributes": [

{ "name": "i",

"type": "integer",

"min": -4,

"max": 4 },

{ "name": "j", ... },

{ "name": "k", ...,

"output_probability": 0.3 }

{ "name": "zero",

"type": "integer",

"value": 0}

],

"constraints": [

{ "name": "i!=j",

"left": {

"type": "attribute",

"value": "i" },

"relation": "!=",

"right": {

"type": "attribute",

"value": "j" } },

{ "name": "k!=j", ... },

{ "name": "k!=i", ... },

{ "name": "no_i_zero",

"left": {

"type": "attribute",

"value": "i" },

"relation": "!=",

"right": {

"type": "integer",

"value": 0 } },

{ "name": "no_j_zero", ... },

{ "name": "no_k_zero", ... } }

]

}

p cnf 4 100

-1 3 0
4 -2 0
-2 1 -3 0
...

⇐

Data Analysisg

◦Goal: compare the per-

formance of different al-

gorithm setups.

– load and evaluate the

collected performance

data,

–understanding strengths

and weaknesses of al-

gorithms,

–produce ready for use

figures for publications.

export
to text
files

C
o

n
fi

g
u

ra
ti

o
n

config
.xml

M
e
ta

d
a
ta

dimen-
sions
.xml

instan-
ces
.xml

experi-
ment
.xml

E
x
p

e
ri

m
e
n

ta
l

R
e
s
u

lt
s

log
file

log
file

log
file

optimizationBenchmarking
Framework

eval-
uation
.xml

XHTML

LTEXA

Document
Driver

Graphic
Driver

1
2

3
4

5
6

7
8

9
1
0

1
2

3
4

5
6

7
8

9
1
0

1 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 1000

Evaluation
Module

1
2

3
4

5
6

7
8

9
1
0

1
2

3
4

5
6

7
8

9
1
0

1 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 1000

Evaluation
Module

1
2

3
4

5
6

7
8

9
1
0

1
2

3
4

5
6

7
8

9
1
0

1 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 1000

Evaluation
Module

1
2

3
4

5
6

7
8

9
1
0

1
2

3
4

5
6

7
8

9
1
0

1 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 1000

Evaluation
Module

Input
Driver

⇒

legend k = 91 k = 218

Results for several hill climber algorithms on selected instances of the MAX-SAT problem with varying k.
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