
Algorithm Benchmarking
Automating Research Work in Optimization

Thomas Weise1, Abhishek Awasthi2, Markus Ullrich2, Jörg Lässig2

1Hefei University, Institute of Applied Optimization, Hefei, Anhui, China
2University of Applied Sciences Zittau/Görlitz, Enterprise Application Development Group, Görlitz, Germany

Optimization Algorithmsg

L1

L2

L4
ro

ad

L3

L5
the land with
5 locations

5 workshops and goods flows betwee them
which need to be assigned to locations

◦many real world questions are optimization problems e.g.:

–find the shortest path for a traveling salesman

–optimize factory locations to minimize material transportation

Algorithm Performanceg

s
o
lu

ti
o
n
 q

u
a
lit

y
(w

o
rs

e
)

(b
e

tt
e

r)

Algorithm A

Algorithm B

runtime

terminate at time :
B is better than A

x

terminate at time :
A is better than B

y

◦has two dimensions: solution quality and required runtime

◦ anytime algorithms maintain an approximate solution:

– at any time during

their run and

– iteratively improve

this guess

Experimental Procedureg

Research Questionsg

◦Which optimization algorithm is best for my problem?

◦An optimization algorithm can have parameters ...

which parameter settings make it work best?

◦For a problem, there can be many concrete instances

... which features make them hard or easy?

◦Are there groups of algorithms (or problem instances)

that behave differently? Why?

◦How can I share problem instances or generate them

reproducibly?
Example Result: plot of the Empirical (Cumulative) Distribute Function
(ECDF), i.e. the fraction of runs that have found the solution for their

respective problem at a given point in time.

Methodologyg

1. Select a set of benchmark instances.

2.Run experiments and collect data, f.e.:

FEs AT NT best obj. value

1 3 42.19 4075

2 5 70.32 3976

...

24099 11393 160237.03 2579

3.Draw diagrams, print tables.

4. Identify interesting information, find rea-

sons, go back to step 1.

Example Problemg

Problem Descriptiong

◦Maximum Satisfiability Problems (MAX-SAT):

–Given: Formula B in Boolean logic with n Boolean variables
~x = (x1, x2, ..., xn), which appear either directly or negated in k

”or”clauses, which are all combined with one ”and”

–MAX-SAT Goal: minimize objective function f (~x) = number of
clauses which are false.

– f (~x) = 0 =⇒ all clauses are true, SAT problem solved

Instance Generationg

◦ supports a common format

–different data types (columns)

–multiple data entries (rows)

–dependencies

◦uses a blueprint for the generation

–human-readable

– re-usable

– reproducible results

–generic and easy to extend

Listing 1: Max-SAT Example Configuration based on the CNF Standard
{ ...

"separator": " ",

"comment_prefix": "c",

"alternative_header": "p cnf 4 100",

"attributes": [

{ "name": "i",

"type": "integer",

"min": -4,

"max": 4 },

{ "name": "j", ... },

{ "name": "k", ...,

"output_probability": 0.3 }

{ "name": "zero",

"type": "integer",

"value": 0}

],

"constraints": [

{ "name": "i!=j",

"left": {

"type": "attribute",

"value": "i" },

"relation": "!=",

"right": {

"type": "attribute",

"value": "j" } },

{ "name": "k!=j", ... },

{ "name": "k!=i", ... },

{ "name": "no_i_zero",

"left": {

"type": "attribute",

"value": "i" },

"relation": "!=",

"right": {

"type": "integer",

"value": 0 } },

{ "name": "no_j_zero", ... },

{ "name": "no_k_zero", ... } }

]

}

p cnf 4 100

-1 3 0
4 -2 0
-2 1 -3 0
...

⇐

Data Analysisg

◦Goal: compare the per-

formance of different al-

gorithm setups.

– load and evaluate the

collected performance

data,

–understanding strengths

and weaknesses of al-

gorithms,

–produce ready for use

figures for publications.

export
to text
files

C
o

n
fi

g
u

ra
ti

o
n

config
.xml

M
e
ta

d
a
ta

dimen-
sions
.xml

instan-
ces
.xml

experi-
ment
.xml

E
x
p

e
ri

m
e
n

ta
l

R
e
s
u

lt
s

log
file

log
file

log
file

optimizationBenchmarking
Framework

eval-
uation
.xml

XHTML

LTEXA

Document
Driver

Graphic
Driver

1
2

3
4

5
6

7
8

9
1
0

1
2

3
4

5
6

7
8

9
1
0

1 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 1000

Evaluation
Module

1
2

3
4

5
6

7
8

9
1
0

1
2

3
4

5
6

7
8

9
1
0

1 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 1000

Evaluation
Module

1
2

3
4

5
6

7
8

9
1
0

1
2

3
4

5
6

7
8

9
1
0

1 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 1000

Evaluation
Module

1
2

3
4

5
6

7
8

9
1
0

1
2

3
4

5
6

7
8

9
1
0

1 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 1000

Evaluation
Module

Input
Driver

⇒

legend k = 91 k = 218

Results for several hill climber algorithms on selected instances of the MAX-SAT problem with varying k.

Selected Literatureg

1. Thomas Weise, Xiaofeng Wang, Qi Qi, Bin Li, and Ke Tang. Automatically discover-
ing clusters of algorithm and problem instance behaviors as well as their causes from
experimental data, algorithm setups, and instance features. Applied Soft Computing
Journal (ASOC), 73:366-382. December 2018.

2. Markus Ullrich, Thomas Weise, Abhishek Awasthi and Jörg Lässig. A Generic Problem
Instance Generator for Discrete Optimization Problems, In BB-DOB Workshop at The
Genetic and Evolutionary Computation Conference (GECCO’18).

3. Abhishek Awasthi, Jörg Lässig, Thomas Weise, and Oliver Kramer. Tackling Common
Due Window Problem with a Two-Layered Approach. In Proceedings of the 10th
International Conference on Combinatorial Optimization and Applications (COCOA
2016).

4. Thomas Weise, Yuezhong Wu, Raymond Chiong, Ke Tang, and Jörg Lässig. Global
versus local search: The impact of population sizes on evolutionary algorithm perfor-
mance. Journal of Global Optimization, February 2016.

5. Thomas Weise, Raymond Chiong, Ke Tang, Jörg Lässig, Shigeyoshi Tsutsui, Wenx-
iang Chen, Zbigniew Michalewicz, and Xin Yao. Benchmarking Optimization Al-
gorithms: An Open Source Framework for the Traveling Salesman Problem. IEEE
Computational Intelligence Magazine (CIM), 9(3):40-52, August 2014.

SMWK Landtagsmittel-Projektekonferenz, Zittau, Germany, November 7th, 2018


