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Optimization Algorithms Algorithm Performance
o many real world questions are optimization problems e.g.: o has two dimensions: solution quality and required runtime
—find the shortest path for a traveling salesman o anytime algorithms maintain an approximate solution:

—optimize factory locations to minimize material transportation —at any time during
their run and

Algorithm A

terminate at time y:
A is better than B

—iteratively improve

Algorithm B

this guess

_ terminate at time x:
the land with 5 workshops and goods flows betwee them B is better than A

5 locations which need to be assigned to locations

(better) solution quality (worse

>

runtime
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o Which optimization algorithm is best for my problem? L 1. e e e ey ~ 1. Select a set of benchmark instances.
o An optimization algorithm can have parameters ... 1 — g AL 2. Run experiments and collect data, f.e.:

<
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AT NT best obj. value
3 42.19 4075

which parameter settings make it work best?

ECDF(FEs,F/k<0)
=
N

o For a problem, there can be many concrete instances

. which features make them hard or easy? 03 . 10,32 39706
o Are there groups of algorithms (or problem instances) - 11303 160037 03 2579
that behave differently? Why? | |
o2 1 ; ; . 5 6 7 3. Draw diagrams, print tables.
o How can | share problem instances or generate them log(10.FE L . _ _
ducibly? Example Result: plot of the Empirical (Cumulative) Distribute Function 4. Ildentify interesting information, find rea-
NE|pretelRreliony (ECDF), i.e. the fraction of runs that have found the solution for their

. | SR sons, go back to step 1.
respective problem at a given point in time.

Example Problem

Problem Description Instance Generation
o Maximum Satisfiability Problems (MAX-SAT): o supports a common format Listing 1: Max-SAT Example Configuration based on the CNF Standard
{ ... "constraints": [
—Given: Formula B in Boolean logic with n Boolean variables —different data types (columns) ijizzzzf;reflx vor b pame ST
T = (%1, %2, ..., T,,), which appear either directly or negated in % "alternative_header": "p cnf 4 100", "type": "attribute",
w1 ) . ) " " — " " "attributes": [ "value": "i" },
or’ clauses, which are all combined with one "and multiple data entries (rOWS) { "name": "in relationt. i
) "type": "integer", "right": {
— MAX-SAT Goal: minimize objective function f(Z) = number of —dependencies 'min": -4, "type": "attribute",
. "max": 4 7}, "value": "J§" + I},
clauses which are false. _ _ { "name": "i", ...}, { "name" : k.=§ Y
ouses a blueprint for the generatior [ vnaner: vk, .., { "name": "ki=i", ... }.
— f(Z) = 0 = all clauses are true, SAT problem solved  Loutput_probability!: 0.3 } { "name": o=
"name": "zero'", "left":
X X, X5 X, 27?7 _human_readable "type": "integer", "type": "attribute",
"value": 0} "value": "i" },
)\ d 21 —re_usable 1, "relation": "!="
. e f 4 100 T per tinsegert
' cn ype": "integer",
d —reproducible results g ‘value": 0} ).
! ¢ 21 & - -1 30 { "name": "no_j_zero", ... I},
. 4 -20 ¢ { "name": "no_k_zero", ... } }
—generic and easy to extend ]
>1 —2 1 _3 O }
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